1,178 research outputs found

    Emerging technologies for learning report (volume 3)

    Get PDF

    Designing to Support Workspace Awareness in Remote Collaboration using 2D Interactive Surfaces

    Get PDF
    Increasing distributions of the global workforce are leading to collaborative workamong remote coworkers. The emergence of such remote collaborations is essentiallysupported by technology advancements of screen-based devices ranging from tabletor laptop to large displays. However, these devices, especially personal and mobilecomputers, still suffer from certain limitations caused by their form factors, that hinder supporting workspace awareness through non-verbal communication suchas bodily gestures or gaze. This thesis thus aims to design novel interfaces andinteraction techniques to improve remote coworkers’ workspace awareness throughsuch non-verbal cues using 2D interactive surfaces.The thesis starts off by exploring how visual cues support workspace awareness infacilitated brainstorming of hybrid teams of co-located and remote coworkers. Basedon insights from this exploration, the thesis introduces three interfaces for mobiledevices that help users maintain and convey their workspace awareness with their coworkers. The first interface is a virtual environment that allows a remote person to effectively maintain his/her awareness of his/her co-located collaborators’ activities while interacting with the shared workspace. To help a person better express his/her hand gestures in remote collaboration using a mobile device, the second interfacepresents a lightweight add-on for capturing hand images on and above the device’sscreen; and overlaying them on collaborators’ device to improve their workspace awareness. The third interface strategically leverages the entire screen space of aconventional laptop to better convey a remote person’s gaze to his/her co-locatedcollaborators. Building on the top of these three interfaces, the thesis envisions an interface that supports a person using a mobile device to effectively collaborate with remote coworkers working with a large display.Together, these interfaces demonstrate the possibilities to innovate on commodity devices to offer richer non-verbal communication and better support workspace awareness in remote collaboration

    Interactive tabletops in education

    Get PDF
    Interactive tabletops are gaining increased attention from CSCL researchers. This paper analyses the relation between this technology and teaching and learning processes. At a global level, one could argue that tabletops convey a socio-constructivist flavor: they support small teams that solve problems by exploring multiple solutions. The development of tabletop applications also witnesses the growing importance of face-to-face collaboration in CSCL and acknowledges the physicality of learning. However, this global analysis is insufficient. To analyze the educational potential of tabletops in education, we present 33 points that should be taken into consideration. These points are structured on four levels: individual user-system interaction, teamwork, classroom orchestration, and socio-cultural contexts. God lies in the detail

    Technology Enhanced Learning through ICT Tools using Aakash Tablet

    Get PDF
    Today with advancement in technology teachers have been conscious about the quality of teaching. Teaching can be enhanced through information communication technology (ICT) tools in education system for better understanding of the subject. Information communication technology can be utilized for the education sector. ICT can play great role in formal and non-formal forms of education. Lots of companies are coming up with digital materials for poor students. Many are making specialized hardware to meet the requirement of elementary education system

    The Office of the Future: Virtual, Portable, and Global.

    Get PDF
    Virtual reality has the potential to change the way we work. We envision the future office worker to be able to work productively everywhere solely using portable standard input devices and immersive head-mounted displays. Virtual reality has the potential to enable this, by allowing users to create working environments of their choice and by relieving them from physical world limitations, such as constrained space or noisy environments. In this paper, we investigate opportunities and challenges for realizing this vision and discuss implications from recent findings of text entry in virtual reality as a core office task

    Analyses on tech-enhanced and anonymous Peer Discussion as well as anonymous Control Facilities for tech-enhanced Learning

    Get PDF
    An increasing number of university freshmen has been observable in absolute number as well as percentage of population over the last decade. However, at the same time the drop-out rate has increased significantly. While a drop in attendance could be observed at the same time, statistics show that young professionals consider only roughly thirty percent of their qualification to originate in their university education. Taking this into consideration with the before mentioned, one conclusion could be that students fail to see the importance of fundamental classes and choose to seek knowledge elsewhere, for example in free online courses. However, the so acquired knowledge is a non-attributable qualification. One solution to this problem must be to make on-site activities more attractive. A promising approach for raised attractiveness would be to support students in self-regulated learning processes, making them experience importance and value of own decisions based on realistic self-assessment and self-evaluation. At the same time, strict ex-cathedra teaching should be replaced by interactive forms of education, ideally activating on a meta-cognitive level. Particularly, as many students bring mobile communication devices into classes, this promising approach could be extended by utilising these mobile devices as second screens. That way, enhanced learning experiences can be provided. The basic idea is simple, namely to contribute to psychological concepts with the means of computer science. An example for this idea are audience response systems. There has been numerous research into these and related approaches for university readings, but other forms of education have not been sufficiently considered, for example tutorials. This technological aspect can be combined with recent didactics research and concepts like peer instruction or visible learning. Therefore, this dissertation presents an experimental approach at providing existing IT solutions for on-site tutorials, specifically tools for audience responses, evaluations, learning demand assessments, peer discussion, and virtual interactive whiteboards. These tools are provided under observation of anonymity and cognisant incidental utilisation. They provide insight into students\' motivation to attend classes, their motivation to utilise tools, and into their tool utilisation itself. Experimental findings are combined into an extensible system concept consisting of three major tool classes: anonymous peer discussion means, anonymous control facilities, and learning demand assessment. With the exception of the latter, promising findings in context of tutorials are presented, for example the reduction of audience response systems to an emergency brake, the versatility of (peer) discussion systems, or a demand for retroactive deanonymisation of contributions. The overall positive impact of tool utilisation on motivation to attend and perceived value of tutorials is discussed and supplemented by a positive impact on the final exams\' outcomes.:List of Definitions, Theorems and Proofs List of Figures List of Tables Introduction and Motivation Part I: Propaedeutics 1 Working Theses 1.1 Definitions 1.2 Context of Working Theses and Definitions 2 Existing Concepts 2.1 Psychology 2.1.1 Self-Regulation and self-regulated Learning 2.1.2 Peer Instruction, Peer Discussion 2.1.3 Learning Process Supervision: Learning Demand Assessment 2.1.4 Cognitive Activation 2.1.5 Note on Gamification 2.1.6 Note on Blended Learning 2.2 Computer Science 2.2.1 Learning Platforms 2.2.2 Audience Response Systems (ARS) 2.2.3 Virtual Interactive Whiteboard Systems (V-IWB) 2.2.4 Cognisant Incidential Utilisation (CIU) 2.3 Appraisal 3 Related Work 3.1 Visible Learning 3.2 auditorium 3.3 Auditorium Mobile Classroom Service 3.4 ARSnova and other Audience Response Systems 3.5 Google Classroom 3.6 StackOverflow 3.7 AwwApp Part II: Proceedings 4 Global Picture and Prototype 4.1 Global Picture 4.2 System Architecture 4.2.1 Anonymous Discussion Means 4.2.2 Anonymous Control Facilities 4.3 Implementation 4.3.1 The Prototype 5 Investigated Tools 5.1 Note on Methodology 5.2 Anonymity 5.2.1 Methodology 5.2.2 Visible Learning Effects 5.2.3 Assertion 5.2.4 Experiments 5.2.5 Results 5.2.6 Conclusions 5.3 Learning Demand Assessment 5.3.1 Methodology 5.3.2 Visible Learning Effects 5.3.3 Tool Description 5.3.4 Assertion 5.3.5 Experiments 5.3.6 Results 5.3.7 Conclusions 5.4 Peer Discussion System 5.4.1 Methodology 5.4.2 Visible Learning Effects 5.4.3 Tool Description 5.4.4 Assertion 5.4.5 Experiments 5.4.6 Results 5.4.7 Conclusions 5.5 Virtual Interactive Whiteboard 5.5.1 Methodology 5.5.2 Visible Learning Effects 5.5.3 Tool Description 5.5.4 Assertion 5.5.5 Experiments 5.5.6 Results 5.5.7 Conclusions 5.6 Audience Response System and Emergency Brake 5.6.1 Methodology 5.6.2 Visible Learning Effects 5.6.3 Tool Description 5.6.4 Assertion 5.6.5 Experiments 5.6.6 Results 5.6.7 Conclusions 5.7 Evaluation System 5.7.1 Methodology 5.7.2 Visible Learning Effects 5.7.3 Tool Description 5.7.4 Assertion 5.7.5 Experiments 5.7.6 Results and Conclusion 6 Exam Outcome 7 Utilisation and Motivation 7.1 Prototype Utilisation 7.2 Motivational Aspects Part III: Appraisal 8 Lessons learned 9 Discussion 9.1 Working Theses’ Validity 9.2 Research Community: Impact and Outlook 9.2.1 Significance to Learning Psychology 9.3 Possible Extension of existing Solutions 10 Conclusion 10.1 Summary of scientific Contributions 10.2 Future Work Part IV: Appendix A Experimental Arrangement B Questionnaires B.1 Platform Feedback Sheet B.1.1 Original PFS in 2014 B.1.2 Original PFS in 2015 B.2 Minute Paper B.3 Motivation and Utilisation Questionnaires B.3.1 Motivation 2013 and 2014 B.3.2 Motivation 2015 B.3.3 Utilisation 2014 B.3.4 Utilisation 2015, Rev. I B.3.5 Utilisation 2015, Rev. II C References C.1 Auxiliary Means D Publications D.1 Original Research Contributions D.2 Student Theses E Glossary F Index G Milestones AcknowledgementsÜber die vergangene Dekade ist eine zunehmende Zahl Studienanfänger beobachtbar, sowohl in der absoluten Anzahl, als auch im Bevölkerungsanteil. Demgegenüber steht aber eine überproportional hohe Steigerung der Abbruchquote. Während gleichzeitig die Anwesenheit in universitären Lehrveranstaltungen sinkt, zeigen Statistiken, dass nur etwa ein Drittel der Berufseinsteiger die Grundlagen ihrer Qualifikation im Studium sieht. Daraus könnte man ableiten, dass Studierende den Wert und die Bedeutung universitärer Ausbildung unterschätzen und stattdessen Wissen in anderen Quellen suchen, beispielsweise unentgeltlichen Online-Angeboten. Das auf diese Art angeeignete Wissen stellt aber eine formell nicht nachweise Qualifikation dar. Ein Weg aus diesem Dilemma muss die Steigerung der Attraktivität der universitären Lehrveranstaltungen sein. Ein vielversprechender Ansatz ist die Unterstützung der Studierenden im selbst-regulierten Lernen, wodurch sie die Wichtigkeit und den Wert eigener Entscheidung(sfindungsprozesse) auf Basis realistischer Selbsteinschätzung und Selbstevaluation erlernen. Gleichzeitig sollte Frontalunterricht durch interaktive Lehrformen ersetzt werden, idealerweise durch Aktivierung auf meta-kognitiver Ebene. Dies ist vielversprechend insbesondere, weil viele Studierende ihre eigenen mobilen Endgeräte in Lehrveranstaltungen bringen. Diese Geräte können als Second Screen für die neuen Lehrkonzepte verwendet werden. Auf diese Art kann dann eine verbesserte Lernerfahrung vermittelt werden. Die Grundidee ist simpel, nämlich in der Psychologie bewährte Didaktik-Konzepte durch die Mittel der Informatik zu unterstützen. Ein Beispiel dafür sind Audience Response Systeme, die hinlänglich im Rahmen von Vorlesungen untersucht worden sind. Andere Lehrformen wurden dabei jedoch unzureichend berücksichtigt, beispielsweise Tutorien. Ähnliche Überlegungen gelten natürlich auch für bewährte didaktische Konzepte wie Peer Instruction oder Betrachtungen in Form von Visible Learning. Deshalb präsentiert diese Dissertation einen experimentellen Ansatz, informationstechnische Lösungen für vor-Ort-Übungen anzubieten, nämlich Werkzeuge für Audience Response Systeme, Evaluationen, Lernbedarfsermittlung, Peer Discussion, sowie virtuelle interaktive Whiteboards. Die genannten Werkzeuge wurden unter Beachtung von Anonymitäts- und Beiläufigkeitsaspekten bereitgestellt. Sie erlauben einen Einblick in die Motivation der Studierenden Tutorien zu besuchen und die Werkzeuge zu nutzen, sowie ihr Nutzungsverhalten selbst. Die experimentellen Ergebnisse werden in ein erweiterbares Systemkonzept kombiniert, das drei Werkzeugklassen unterstützt: anonyme Peer Discussion, anonyme Kontrollwerkzeuge und Lernbedarfsermittlung. Für die ersten beiden Klassen liegen vielversprechende Ergebnisse vor, beispielsweise die notwendige Reduktion des Audience Response Systems auf eine Art Notbremse, die Vielseitigkeit von (Peer-)Discussion-Systemen, oder aber auch der Bedarf für eine retroaktive Deanonymisierung von initial anonymen Beiträgen. Der allgemein positive Einfluss der Werkzeugnutzung auf die Motivation an Tutorien teilzunehmen sowie den wahrgenommenen Wert der Tutorien werden abschließend diskutiert und durch verbesserte Abschlussklausurergebnisse untermauert.:List of Definitions, Theorems and Proofs List of Figures List of Tables Introduction and Motivation Part I: Propaedeutics 1 Working Theses 1.1 Definitions 1.2 Context of Working Theses and Definitions 2 Existing Concepts 2.1 Psychology 2.1.1 Self-Regulation and self-regulated Learning 2.1.2 Peer Instruction, Peer Discussion 2.1.3 Learning Process Supervision: Learning Demand Assessment 2.1.4 Cognitive Activation 2.1.5 Note on Gamification 2.1.6 Note on Blended Learning 2.2 Computer Science 2.2.1 Learning Platforms 2.2.2 Audience Response Systems (ARS) 2.2.3 Virtual Interactive Whiteboard Systems (V-IWB) 2.2.4 Cognisant Incidential Utilisation (CIU) 2.3 Appraisal 3 Related Work 3.1 Visible Learning 3.2 auditorium 3.3 Auditorium Mobile Classroom Service 3.4 ARSnova and other Audience Response Systems 3.5 Google Classroom 3.6 StackOverflow 3.7 AwwApp Part II: Proceedings 4 Global Picture and Prototype 4.1 Global Picture 4.2 System Architecture 4.2.1 Anonymous Discussion Means 4.2.2 Anonymous Control Facilities 4.3 Implementation 4.3.1 The Prototype 5 Investigated Tools 5.1 Note on Methodology 5.2 Anonymity 5.2.1 Methodology 5.2.2 Visible Learning Effects 5.2.3 Assertion 5.2.4 Experiments 5.2.5 Results 5.2.6 Conclusions 5.3 Learning Demand Assessment 5.3.1 Methodology 5.3.2 Visible Learning Effects 5.3.3 Tool Description 5.3.4 Assertion 5.3.5 Experiments 5.3.6 Results 5.3.7 Conclusions 5.4 Peer Discussion System 5.4.1 Methodology 5.4.2 Visible Learning Effects 5.4.3 Tool Description 5.4.4 Assertion 5.4.5 Experiments 5.4.6 Results 5.4.7 Conclusions 5.5 Virtual Interactive Whiteboard 5.5.1 Methodology 5.5.2 Visible Learning Effects 5.5.3 Tool Description 5.5.4 Assertion 5.5.5 Experiments 5.5.6 Results 5.5.7 Conclusions 5.6 Audience Response System and Emergency Brake 5.6.1 Methodology 5.6.2 Visible Learning Effects 5.6.3 Tool Description 5.6.4 Assertion 5.6.5 Experiments 5.6.6 Results 5.6.7 Conclusions 5.7 Evaluation System 5.7.1 Methodology 5.7.2 Visible Learning Effects 5.7.3 Tool Description 5.7.4 Assertion 5.7.5 Experiments 5.7.6 Results and Conclusion 6 Exam Outcome 7 Utilisation and Motivation 7.1 Prototype Utilisation 7.2 Motivational Aspects Part III: Appraisal 8 Lessons learned 9 Discussion 9.1 Working Theses’ Validity 9.2 Research Community: Impact and Outlook 9.2.1 Significance to Learning Psychology 9.3 Possible Extension of existing Solutions 10 Conclusion 10.1 Summary of scientific Contributions 10.2 Future Work Part IV: Appendix A Experimental Arrangement B Questionnaires B.1 Platform Feedback Sheet B.1.1 Original PFS in 2014 B.1.2 Original PFS in 2015 B.2 Minute Paper B.3 Motivation and Utilisation Questionnaires B.3.1 Motivation 2013 and 2014 B.3.2 Motivation 2015 B.3.3 Utilisation 2014 B.3.4 Utilisation 2015, Rev. I B.3.5 Utilisation 2015, Rev. II C References C.1 Auxiliary Means D Publications D.1 Original Research Contributions D.2 Student Theses E Glossary F Index G Milestones Acknowledgement

    Portable form filling assistant for the visually impaired

    Full text link
    The filling of printed forms has always been an issue for the visually impaired. Though optical character recognition technology has helped many blind people to &lsquo;read&rsquo; the world, there is not a single device that allows them to fill out a paper-based form without a human assistant. The task of filling forms is however an essential part of their daily lives, for example, for access to social security or benefits. This paper describes a solution that allows a blind person to complete paper-based forms, pervasively and independently, using only off-the-shelf equipment including a Smartphone, a clipboard with sliding ruler, and a ballpoint pen. A dynamic color fiduciary (point of reference) marker is designed so that it can be moved by the user to any part of the form such that all regions can be &ldquo;visited&rdquo;. This dynamic color fiduciary marker is robust to camera focus and partial occlusion, allowing flexibility in handling the Smartphone with embedded camera. Feedback is given to the blind user via both voice and tone to facilitate efficient guidance in filling out the form. Experimental results have shown that this prototype can help visually impaired people to fill out a form independently.<br /

    Light on horizontal interactive surfaces: Input space for tabletop computing

    Get PDF
    In the last 25 years we have witnessed the rise and growth of interactive tabletop research, both in academic and in industrial settings. The rising demand for the digital support of human activities motivated the need to bring computational power to table surfaces. In this article, we review the state of the art of tabletop computing, highlighting core aspects that frame the input space of interactive tabletops: (a) developments in hardware technologies that have caused the proliferation of interactive horizontal surfaces and (b) issues related to new classes of interaction modalities (multitouch, tangible, and touchless). A classification is presented that aims to give a detailed view of the current development of this research area and define opportunities and challenges for novel touch- and gesture-based interactions between the human and the surrounding computational environment. © 2014 ACM.This work has been funded by Integra (Amper Sistemas and CDTI, Spanish Ministry of Science and Innovation) and TIPEx (TIN2010-19859-C03-01) projects and Programa de Becas y Ayudas para la Realización de Estudios Oficiales de Máster y Doctorado en la Universidad Carlos III de Madrid, 2010
    • …
    corecore