103 research outputs found

    An Automatic Image Content Retrieval Method for better Mobile Device Display User Experiences

    Get PDF
    A growing number of commercially available mobile phones come with integrated high-resolution digital cameras. That enables a new class of dedicated applications to image analysis such as mobile visual search, image cropping, object detection, content-based image retrieval, image classification. In this paper, a new mobile application for image content retrieval and classification for mobile device display is proposed to enrich the visual experience of users. The mobile application can extract a certain number of images based on the content of an image with visual saliency methods aiming at detecting the most critical regions in a given image from a perceptual viewpoint. First, the most critical areas from a perceptual perspective are extracted using the local maxima of a 2D saliency function. Next, a salient region is cropped using the bounding box centred on the local maxima of the thresholded Saliency Map of the image. Then, each image crop feds into an Image Classification system based on SVM and SIFT descriptors to detect the class of object present in the image. ImageNet repository was used as the reference for semantic category classification. Android platform was used to implement the mobile application on a client-server architecture. A mobile client sends the photo taken by the camera to the server, which processes the image and returns the results (image contents such as image crops and related target classes) to the mobile client. The application was run on thousands of pictures and showed encouraging results towards a better user visual experience with mobile displays

    Image Data Augmentation Approaches: A Comprehensive Survey and Future directions

    Full text link
    Deep learning (DL) algorithms have shown significant performance in various computer vision tasks. However, having limited labelled data lead to a network overfitting problem, where network performance is bad on unseen data as compared to training data. Consequently, it limits performance improvement. To cope with this problem, various techniques have been proposed such as dropout, normalization and advanced data augmentation. Among these, data augmentation, which aims to enlarge the dataset size by including sample diversity, has been a hot topic in recent times. In this article, we focus on advanced data augmentation techniques. we provide a background of data augmentation, a novel and comprehensive taxonomy of reviewed data augmentation techniques, and the strengths and weaknesses (wherever possible) of each technique. We also provide comprehensive results of the data augmentation effect on three popular computer vision tasks, such as image classification, object detection and semantic segmentation. For results reproducibility, we compiled available codes of all data augmentation techniques. Finally, we discuss the challenges and difficulties, and possible future direction for the research community. We believe, this survey provides several benefits i) readers will understand the data augmentation working mechanism to fix overfitting problems ii) results will save the searching time of the researcher for comparison purposes. iii) Codes of the mentioned data augmentation techniques are available at https://github.com/kmr2017/Advanced-Data-augmentation-codes iv) Future work will spark interest in research community.Comment: We need to make a lot changes to make its quality bette

    Representations and representation learning for image aesthetics prediction and image enhancement

    Get PDF
    With the continual improvement in cell phone cameras and improvements in the connectivity of mobile devices, we have seen an exponential increase in the images that are captured, stored and shared on social media. For example, as of July 1st 2017 Instagram had over 715 million registered users which had posted just shy of 35 billion images. This represented approximately seven and nine-fold increase in the number of users and photos present on Instagram since 2012. Whether the images are stored on personal computers or reside on social networks (e.g. Instagram, Flickr), the sheer number of images calls for methods to determine various image properties, such as object presence or appeal, for the purpose of automatic image management and curation. One of the central problems in consumer photography centers around determining the aesthetic appeal of an image and motivates us to explore questions related to understanding aesthetic preferences, image enhancement and the possibility of using such models on devices with constrained resources. In this dissertation, we present our work on exploring representations and representation learning approaches for aesthetic inference, composition ranking and its application to image enhancement. Firstly, we discuss early representations that mainly consisted of expert features, and their possibility to enhance Convolutional Neural Networks (CNN). Secondly, we discuss the ability of resource-constrained CNNs, and the different architecture choices (inputs size and layer depth) in solving various aesthetic inference tasks: binary classification, regression, and image cropping. We show that if trained for solving fine-grained aesthetics inference, such models can rival the cropping performance of other aesthetics-based croppers, however they fall short in comparison to models trained for composition ranking. Lastly, we discuss our work on exploring and identifying the design choices in training composition ranking functions, with the goal of using them for image composition enhancement

    Exploring Salient Thumbnail Generation for Archival Collections Online

    Get PDF
    This study developed and evaluated a method for generating thumbnails for archival documents utilizing open source image saliency software. Salient thumbnails were evaluated against a baseline by running a lab study that assessed the thumbnails' usefulness during finding and re-finding tasks. Results did not find any significant difference in time, user confidence, or user preference of salient thumbnails compared to the baseline. However, salient thumbnails resulted in improved accuracy during re-finding tasks, suggesting that they may offer some advantage for representing archival correspondence.Master of Science in Information Scienc

    Transitioning360: Content-aware NFoV Virtual Camera Paths for 360° Video Playback

    Get PDF

    Photo Wallet : interface design for simple mobile photo albums

    Get PDF
    Tese de mestrado. Multimédia (Perfil Tecnologias). Universidade do Porto. Faculdade de Engenharia. 201

    Probabilistic framework for image understanding applications using Bayesian Networks

    Get PDF
    Machine learning algorithms have been successfully utilized in various systems/devices. They have the ability to improve the usability/quality of such systems in terms of intelligent user interface, fast performance, and more importantly, high accuracy. In this research, machine learning techniques are used in the field of image understanding, which is a common research area between image analysis and computer vision, to involve higher processing level of a target image to make sense of the scene captured in it. A general probabilistic framework for image understanding where topics associated with (i) collection of images to generate a comprehensive and valid database, (ii) generation of an unbiased ground-truth for the aforesaid database, (iii) selection of classification features and elimination of the redundant ones, and (iv) usage of such information to test a new sample set, are discussed. Two research projects have been developed as examples of the general image understanding framework; identification of region(s) of interest, and image segmentation evaluation. These techniques, in addition to others, are combined in an object-oriented rendering system for printing applications. The discussion included in this doctoral dissertation explores the means for developing such a system from an image understanding/ processing aspect. It is worth noticing that this work does not aim to develop a printing system. It is only proposed to add some essential features for current printing pipelines to achieve better visual quality while printing images/photos. Hence, we assume that image regions have been successfully extracted from the printed document. These images are used as input to the proposed object-oriented rendering algorithm where methodologies for color image segmentation, region-of-interest identification and semantic features extraction are employed. Probabilistic approaches based on Bayesian statistics have been utilized to develop the proposed image understanding techniques
    • …
    corecore