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Figure 1: We present a new interaction method for transitioning between content-aware normal field of view (NFoV) camera paths
that enables efficient 360° video playback on 2D displays. (a) The user watches an NFoV video corresponding to a camera path
extracted from the input 360° video. The corresponding view boundary is marked in red and other candidate views are marked in
yellow in (d). All NFoV camera paths are precomputed by the proposed content-aware and diverse virtual camera path optimization.
(b) During playback, the user can either press the arrow key or click the thumbnail, to spatially transition from the current view to
another view; the orange arrow in (e, f) indicates the trajectory of the transitioning view in red. When transitioning is finished, the
user continues watching the content in the new view (c), preserving the awareness of directional and contextual information.

ABSTRACT

Despite the increasing number of head-mounted displays, many 360°
VR videos are still being viewed by users on existing 2D displays.
To this end, a subset of the 360° video content is often shown in-
side a manually or semi-automatically selected normal-field-of-view
(NFoV) window. However, during the playback, simply watching
an NFoV video can easily miss concurrent off-screen content. We
present Transitioning360, a tool for 360° video navigation and play-
back on 2D displays by transitioning between multiple NFoV views
that track potentially interesting targets or events. Our method com-
putes virtual NFoV camera paths considering content awareness and
diversity in an offline preprocess. During playback, the user can
watch any NFoV view corresponding to a precomputed camera path.
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‡e-mail:zwx980624@gmail.com
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Moreover, our interface shows other candidate views, providing a
sense of concurrent events. At any time, the user can transition to
other candidate views for fast navigation and exploration. Experi-
mental results including a user study demonstrate that the viewing
experience using our method is more enjoyable and convenient than
previous methods.

Index Terms: Computing methodologies—Computer graphics—
Graphics systems and interfaces—Virtual reality; Computing
methodologies—Computer graphics—Image manipulation—Image
processing

1 INTRODUCTION

360° videos with omnidirectional field-of-view can nowadays be
recorded easily, as commercial mobile 360° cameras, such as the
Insta360 ONE X and RICOH Theta cameras, are becoming popu-
lar. 360° video content can be viewed via head-mounted displays
(HMDs) such as HTC Vive and Oculus Rift [10], with which users
can freely and easily rotate their heads to explore and watch interest-
ing content under certain views [20]. However, HMDs are not always
available, and a more general way to experience 360° videos and
other virtual content is to navigate a normal-field-of-view (NFoV)
viewport on 2D displays (typically varying from 60° to 110°). In



such cases, the user has to manually change the viewpoint with a
mouse or via a touch screen, which degrades the level enjoyment and
efficiency. Moreover, during playback, the user may miss important
or interesting objects or events outside the selected view.

As virtual content playback and exploration are important in
the VR and XR fields, several solutions have been proposed to
address this problem [5, 8, 11, 15, 21–23]. An intuitive solution is
to automatically analyze a scene to track a moving object, and
display it in an NFoV viewport, especially for sports video [5, 21,
22]. To support smart interaction, Kang and Cho [8] proposed a
system that computes an optimal virtual camera path considering
saliency of the scene and temporal smoothness of the camera path.
At any time, the user can adjust the view direction and the camera
path will be gradually updated to focus on a new optimal viewing
direction. To visualize contextual information of important content
outside the current view, the Outside-In interface [15] overlays other
candidate NFoV thumbnails on the main view, where the candidates
are manually specified and fixed. However, these methods either
yield single virtual camera paths, which miss off-screen content, or
they visualize handcrafted fixed views without automatic camera
path planning.

We present Transitioning360 – a new technique for 360° video
navigation and playback on 2D NFoV displays. Given a 360° video
and the number of NFoV camera paths specified by the user, our
method computes virtual NFoV camera paths considering content
awareness and diversity of the paths. As a result, temporally stable
camera paths are created to cover the most interesting and diverse
video content possible. To make the camera path optimization prob-
lem tractable, we introduce a novel diversity term to jointly consider
the interaction among paths and a coarse-to-fine optimization strat-
egy that builds upon dynamic programming. While watching and
exploring the main view similar to Kang and Cho [8], contents in
other potential NFoV views are computed and visualized, allowing
the user to easily transition to alternative views by simply clicking
the arrow keys, or clicking the corresponding view thumbnails.

We evaluated the proposed method with a user study, which con-
firmed that Transitioning360 was generally preferred and provided
better locating capability and ease of use. We believe the proposed
method can inspire the community, and summarize our main contri-
butions as follows:

• An algorithm for diverse content-aware NFoV virtual camera
paths computation with a novel diversity constraint and coarse-
to-fine dynamic programming optimization.

• A method for interactive 360° video navigation with spatial-
aware transitioning between NFoV paths.

• A user study to evaluate the proposed method for 360° video
navigation on 2D display.

2 RELATED WORK

Our work is related to the general techniques of 360° image and
video processing, and navigation and visualization of 360° imagery.

360° image and video processing. Nowadays, 360° cameras
and display devices are becoming increasingly popular, which con-
tributes to the growth of 360° VR images and videos available online.
In some cases, the recorded content may not be ready to watch due
to the suboptimal configuration of cameras during capturing. For
example, if the 360° camera is not set up parallel to the ground,
the recorded content should be corrected using upright adjustment.
Jung et al. [6] proposed a robust upright adjustment method by op-
timizing the horizontal and vertical lines in the scene. To improve
the scalability without the requirement of presence of lines, a deep
learning-based approach [7] was proposed, which was trained on
panoramic images. Temporal stabilization is another common pro-
cessing task for 360° video [9, 11, 23, 27]. Kopf et al. [9] and Tang
et al. [23] proposed methods to robustly estimate feature trajectories
in 360° video and remove high-frequency jitters. While stabilization

improves 360° viewing comfort in headsets, other approaches are
necessary for exploring 360° videos. Lai et al. [11] compute seman-
tic segmentation, saliency and the focus of expansion from 360°
video, and optimize a path for a first-person NFoV hyperlapse with
a constant speed. Lee et al. [12] introduced a deep neural network
to produce story-based temporal summarization of 360° videos. For
more 360° image and video creation methods with deep learning, we
refer to a recent survey [26]. Truong et al. [17] developed an interac-
tive tool for NFoV shot extraction based on user-specified guidelines
for event scenarios. Mixed reality rendering and composition is es-
sential for immersive and interactive mixed reality experiences in
360° video. The MR360 system [19] seamlessly composites 3D
virtual objects into a live 360° video using perceptually optimized
image-based rendering techniques that synthesizes illumination from
LDR 360° video. Virtual objects can also be inserted into moving
360° videos when the camera motion and scene are reconstructed
using 360° structure from motion [24].

Navigation of 360° video. Previous navigation techniques can
be divided into automatic or interactive. Automatic navigation meth-
ods focus on computing a virtual NFoV camera path that tracks
important objects in the scene. Su et al. [21, 22] introduced methods
to densely sample spatiotemporal glimpses for each frame, where
each glimpse is rated with a capture-worthiness score. A virtual
camera trajectory across frames is then constructed by maximizing
the accumulated score subject to a camera motion smoothness con-
straint. The NFoV video is rendered by cropping the view along the
path. Deep 360 pilot [5] uses an object detector to propose candidate
bounding boxes, followed by an RNN-based selector to filter the op-
timal bounding box. Finally, an RNN-based regressor learns smooth
transitions between selected bounding boxes across frames. Unlike
previous methods that either impose loose constraints on camera mo-
tion or implicitly constrain camera smoothness, Kang and Cho [8]
introduced an iterative virtual camera path refinement algorithm. It
first calculates an initial path considering pixel-wise saliency and
camera smoothness based on optical flow in the scene, then performs
FoV-aware path planning to adjust the view using regional saliency,
and finally performs temporal smoothing for the path. This method
successfully tracks moving objects without jumping back and forth
between multiple objects. The above methods compute a single cam-
era path for navigation, which ignores all regions of interest except
the most salient one.

Interactive navigation methods guide users with visualization
techniques, and allow users to adjust their view while watching
360° videos. Pavel et al. [18] proposed a button-triggered shot re-
orientation technique to prevent users from getting lost during in-
teractive navigation. However, the reset viewing direction is fixed.
Lin et al. [14] investigated two navigation schemes: one provides
active views similar to Hu et al. [5], the other provides the guidance
about important off-screen content by showing an arrow indicating
its direction. Wallgrün et al. [25] compared arrow, butterfly guide,
and radar guidance mechanisms for image-based VR tours. However,
the visualization of visual thumbnails and NFoV view adjustment
are not addressed. The Interactive360 system [8] allows the user to
interactively adjust the view. Once the user manually adjusts the
view, a new camera path is updated in an online manner, with the new
NFoV content rendered with low latency. Lin et al. [15] developed
the Outside-In system to visualize candidate off-screen content by
creating off-screen view thumbnails that are floating in the 3D space
between the spherical video and the screen. However, the off-screen
content is manually labeled, and fixed at constant directions, which
does not extend to complex and dynamic scenes.

Our Transitioning360 aims to improve the navigation and play-
back experience of 360° videos, especially for complex scenes, by
providing diverse NFoV views for fast transitioning between them.
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Figure 2: Content-awareness features computed in the preprocessing
step. (a) shows an input frame of the 360° video. (b) shows the cor-
responding saliency map visualized as a heat map. (c) optical flow
vectors are visualized with the inset color palette. (d) visualizes the
human instance segmentation results in green.

3 OVERVIEW

Our approach is based on the following design principles:
1) Content-awareness. Candidate NFoV views should focus

on the most interesting content in the input video.
2) Diversity of views. The virtual cameras should show diverse

views and not overlap too much with each other.
3) Stability of views. The views should move and transition

smoothly over time.
4) Efficient navigation. The user can quickly and easily move

to other views without getting lost when changing the view.
5) Making users aware of candidate views. During watching

the NFoV video in the main view, the user should be aware of
alternative interesting views.

Following the above principles, we compute temporally smooth
NFoV virtual camera paths that cover potentially interesting targets,
inspired by the single-path computation in Interactive360 (Section 4).
Moreover, the diversity of targets is encouraged by automatically
proposing multiple camera paths using a novel diversity constraint
(Section 5). During the navigation from the main view corresponding
to one camera path, the user can see the thumbnails of alternative
views and efficiently change the view via a spatio-temporal transition
that indicates the spatial relationship between the views (Section 6).

4 SINGLE-PATH COMPUTATION

Single-path navigation [8] is a basic technique our method builds
on. Given a 360° video, a content-aware, temporally smooth virtual
NFoV camera path is computed. In the following, we provide a
self-contained introduction to the adjusted single-path computation
algorithm and refer readers to the paper [8] for more details.

4.1 Preprocessing
The content-awareness of the NFoV virtual camera path in 360°
video is indicated by visual features such as video saliency, motion,
and optionally object instance segmentations [4] as features in a
preprocessing step (see examples in Figure 2). We use the equirect-
angular projection to represent 360° video. Before computation, we
uniformly resize the input video to a width of 360 pixels, which
optimally balances computational efficiency and accuracy. For ef-
ficiency, we sample one key frame from every fourth frames in the
original video. We also pad the left and right boundaries by 20 pixels
in a circular fashion, and cut the top and bottom 10 pixels to avoid
errors caused by severe distortions.

Saliency maps are widely used in computer vision as a measure
of human visual attention [2]. We found that the recent 360° video

saliency detection methods [1, 3] usually predict cluttered visual
attention fixation heat maps, where object shapes are not modeled
well. Instead, we use the method by Zhou et al. [28] to compute the
saliency score st(p) ∈ [0,1] for key frame t at 2D position p.

Motion is represented as optical flow, where ot(p) is the 2D
displacement vector of the pixel p from key frame t to the next key
frame. We use SIFT flow [16] to compute the optical flow between
adjacent video frames and accumulate the flows between consecutive
key frames as the optical flow between the corresponding key frames.

Beyond the original method [8], we further use object instance
segmentation maps to detect desired semantic labels such as “hu-
man”. We compute human segmentation maps using Mask R-CNN
[4] pretrained on the COCO dataset [13]. The segmentation score
mt(p) ∈ [0,1] at pixel p for key frame t reveals the confidence that
the pixel belongs to the desired category. While we use “human” as
labels in our experiments, other object categories included in the
COCO dataset, such as “dog”, “car” or “chair”, can also be used,
or the user can provide new images with ground-truth segmentation
map labels for training other categories.

4.2 Path Computation
The virtual NFoV path is computed in two steps: an initial path
is first optimized based on content-awareness and then temporally
smoothed. Throughout our experiments, we set the vertical FoV to
60° with a fixed aspect ratio of 16:9.

Given a 360° video with T key frames F = { f1, . . . , fT }, we
compute the corresponding saliency maps S = {s1, . . . ,sT }, opti-
cal flows O = {o1, . . . ,oT } and instance segmentation maps M =
{m1, . . . ,mT }. We uniformly downsample the spatial dimension of S,
O and M to size W ×H with W = 180 pixels for computational effi-
ciency. An initial path P = {p1, . . . ,pt , . . . ,pT } is computed with pt
representing a 2D pixel coordinate for the t-th key frame on the path.
The initial path is obtained by minimizing the following objective:

E(P) =
T

∑
t=1

(|1− ct(pt)|)+ωo

T−1

∑
t=1

‖v(pt ,pt+1)−ot(pt)‖ , (1)

where the content-awareness is encouraged by the term ct(pt) =
λsst(pt)+λmmt(pt), a weighted combination of the saliency st(pt)
and segmentation score mt(pt) at pixel pt in key frame t. v(pt , pt+1)
is the 2D vector from pt to pt+1, defined in a horizontally circular
form, encouraged to be close to the motion ot(pt) in the scene.
ωo = 0.1 balances the effects of content-awareness and motion. We
use weights λs = 5/6 and λm = 1/6 if the specified object categories
are detected in the scene, for static cameras. If strong camera motion
exists, we alternatively set λs = 1/6 and λm = 5/6, because saliency
values for objects could be suppressed. In all other cases, we set
λs = 1 and λm = 0.

The objective in Equation 1 is recursively optimized by minimiz-
ing Et(pt), the energy of a path from the first key frame to the t-th
key frame, ending at pt :

Et(pt)=Et−1(ṗt−1)+|1− ct(pt)|+ωo ‖v(ṗt−1,pt)−ot−1(ṗt−1)‖ ,
(2)

where

ṗt−1 = arg min
ṗ∈N (pt )

{Et−1(ṗ)+ωo ‖v(ṗ,pt)−ot−1(ṗ)‖}. (3)

Here, N (pt) is a 31×31 spatial neighborhood of pt , which is large
enough to track fast-moving objects. We compute the optimal Et(pt)
by increasing t from 1 to T , and backtracking from the globally
optimal solution ET (pT ) to obtain the optimal path P.

After planning the initial path P, we compute a temporally smooth
path P̂ = {p̂1, . . . , p̂T } by minimizing an objective for suppressing



(a) With FoV-aware adjustment (b) Without FoV-aware adjustment 

Figure 3: Comparison of paths with and without FoV-aware adjustment.
(a) shows a frame where three NFoV views with yellow boundaries
are computed with FoV-aware path adjustment. Two of the three NFoV
views overlap each other severely. (b) shows the camera paths without
FoV-aware adjustment; each camera is focusing on a different person.

the velocity and acceleration of the virtual camera trajectory while
approximating the initial path:

Ê(P̂) =
T

∑
t=1

‖p̂t −pt‖2 +ωv

T−1

∑
t=1

‖p̂t+1 − p̂t‖2

+ωa

T−1

∑
t=2

‖p̂t+1 −2p̂t + p̂t−1‖2 ,

(4)

where ωv = 20 and ωa = 20 are weights balancing the data, velocity
and acceleration terms.

In Interactive360 [8], an intermediate, FoV-aware path P′ is com-
puted before the path smoothing, to reflect the surrounding context
based on the initial path P for each key frame:

E ′(p′
t) =

∣∣1− c′t(p
′
t)
∣∣+ωp

∥∥p′
t −pt

∥∥ , (5)

where p′
t ∈ P′ is the FoV-aware path at the t-th frame, c′t(p′

t) is the
corresponding regional content-awareness defined as the average of
content-awareness ct(p) within the FoV centered at p′

t . However,
when computing multiple paths, this adjustment results in nearby
NFoV views to overlap each other and degrades the diversity of
paths, see Figure 3. We thus omit the FoV-aware adjustment step.

During online navigation, the user is allowed to manually adjust
the view. Once the user assigns a new view, we use a path finder
to optimize a new path starting at the current view, and use a video
player to render and show the partially updated path [8].

5 DIVERSE VIRTUAL CAMERA PATHS

We build on the techniques in Section 4 to compute multiple di-
verse NFoV camera paths. The number N of views can be manually
specified by the user, or automatically determined as follows: we
set N as the number of visually salient objects where the average
area ratio of minimum bounding box to maximum bounding box
among candidate detected objects for all key frames is larger than 0.5.
Such automatic view number setting is suitable when the number of
interesting objects in the video is stable over time.

As a pilot trial, we have used a greedy algorithm by iteratively
extracting paths. We show the drawbacks of the greedy algorithm-
based solution, and then propose a dynamic programming-based
optimization algorithm with a coarse-to-fine strategy.

5.1 Greedy Algorithm: A Pilot Trial
A straightforward idea to compute multiple paths is to iteratively
compute single paths as in Section 4.2, and to suppress the content-
awareness features along the previous optimal paths. The modifica-
tion of the content-awareness term prevents the paths from being
substantially the same in subsequent iterations. Let P̂k denote the
optimal path computed in the k-th iteration. The saliency maps Sk at
the k-th iteration can be suppressed around the path as follows:

sk
t (qt)=

{
0, if k>1 and IOU(R(qt),R(p̂k

t ))≥ δ
sk−1
t (qt), otherwise (with s0

t := st ),
(6)

(a) Two NFoV Views (b) Intersection (c) Union

Figure 4: Approximate intersection-over-union (IOU) of irregular re-
gions using rectangles. See the supplementary material for details.

(a) Results using the greedy algorithm

(b) Results using the dynamic programming-based joint optimization

Figure 5: Multi-path computation: greedy algorithm vs. dynamic pro-
gramming. (a) shows the NFoV frames from the first path computed
by the greedy algorithm (Section 5.1); (b) shows the NFoV frames
from one path computed using dynamic programming, which jointly
considers multiple paths and can track contents more robustly.

where qt is a 2D coordinate in key frame t, p̂k
t is the 2D coordinate

in key frame t along path k, IOU(R(qt),R(p̂k
t )) is the approximate

intersection-over-union of the two NFoVs R(qt) and R(p̂k
t ) centered

at qt and p̂k
t , respectively (see Figure 4), and δ is a threshold set to

0.2. The instance segmentation maps Mk are processed similarly.
While the above greedy algorithm can successfully extract N

paths with diverse content, there are inevitably drawbacks. First, the
importance levels of the paths are not uniformly distributed: the first
path is always more important than others, while the last path is with
least interest. Second, when targets move at different times, the first
path tends to capture all moving targets by changing the target, thus
being more dynamic than subsequent paths. An example is shown in
Figure 5(a), where two dancers perform one after the other. The first
path computed by the greedy algorithm tries to capture significant
motions, and it switches the target from the first dancer to the second
dancer once the former stops the performance.

5.2 Dynamic Programming-based Optimization
We present a dynamic programming-based optimization algorithm
for multiple path computation. It jointly optimizes paths using
content-awareness features while considering the interaction be-
tween them. Similar to the two-step single-path computation, we
first compute initial paths, and then temporally smooth them. Let P=
{P1, . . . ,PN} denote the N initial paths, where Pn = {pn

1, . . . ,p
n
T } is

the n-th path with the 2D coordinate pn
t representing the viewing

direction in key frame t. Similar to Equation 1, the overall objective
to minimize is defined as:

E(P)=
N

∑
n=1

[
T

∑
t=1

|1−ĉt(pn
t )|+ωo

T−1

∑
t=1

∥∥v(pn
t ,p

n
t+1)−ot(pn

t )
∥∥
]

, (7)

where ĉt(pn
t ) includes the saliency and instance segmentation maps

of the n-th path, and further considers the interaction of other paths
imposed on it. We define ĉt(pn

t ) as follows:

ĉt(pn
t ) = ct(pn

t ) ∏
1≤k≤N

k �=n

max(0,1−ωd · IOU(R(pn
t ),R(p

k
t ))), (8)

where ct(pn
t ) combines saliency and instance segmentation as in

Section 4.2, pk
t is the 2D coordinate corresponding to path k in key



frame t, IOU(R(pn
t ),R(pk

t )) is the IOU of two NFoV views R(pn
t )

and R(pk
t ) centered at pn

t and pk
t , respectively, and ωd = 1.5 is a

constant parameter that controls the diversity of paths. Intuitively, if
no other view is overlapping with R(pn

t ), the corresponding ĉt(pn
t )

equals to ct(pn
t ). Otherwise, ĉt(pn

t ) is suppressed, determined by the
IOU introduced by any other overlapping view pk

t .
The objective in Equation 7 can be solved using dynamic pro-

gramming. Let Et(Pt) denote the total energy for the N optimal
paths from the first key frame up to key frame t, with paths ending
at Pt = {p1

t , . . . ,pN
t }. Et(Pt) is recursively computed as follows:

Et(Pt) = Et−1(Ṗt−1)

+
N

∑
n=1

|1− ĉt(pn
t )|+ωo

∥∥v(ṗn
t−1,p

n
t )−ot−1(ṗn

t−1)
∥∥ ,

(9)

where the optimal paths Ṗt−1 = {ṗ1
t−1, . . . , ṗ

N
t−1} up to key frame

t −1 are computed as:

ṗn
t−1 = arg min

ṗn∈N (pn
t )
{Et−1(ṗn)+ωo ‖v(ṗn,pn

t )−ot−1(ṗn)‖} . (10)

As before, N (pt) is the 31×31 spatial neighborhood of pt . The
optimal paths Et(Pt) can be computed by increasing t from 1 to
T , and backtracking from the globally optimal solution ET (PT ) to
obtain the optimal paths P. We then perform temporal smoothing of
paths following Equation 4.

The dynamic programming-based solution, as mentioned, jointly
considers the content-awareness and diversity of the N paths, which
can thus avoid unnecessarily changing targets. Figure 5(b) shows a
path computed by our algorithm that consistently tracks one of the
targets while leaving other targets to be tracked by other paths.

5.3 Coarse-to-fine Strategy
The complexity of the proposed dynamic programming algorithm
in Equation 9 increases exponentially with the number N of views.
Meanwhile, directly optimizing the objective at resolution W×H is
memory consuming due to the huge state space of dynamic program-
ming. To make the problem tractable, we present a coarse-to-fine
strategy. In a nutshell, the joint dynamic-programming-based op-
timization is performed at a coarse scale, followed by a fine-scale
refinement based on single-path optimization.

We downsample the saliency S, optical flow O, and instance
segmentation M to obtain coarse-scale versions S̃, Õ, M̃ of dimension
W̃ × H̃, where W̃ =W/sw and H̃ = H/sh, using scaling factors sw
and sh. In our experiments, we set W̃ = 9 and H̃ = 5. Without loss
of generality, we use q = (qx,qy) to denote a 2D coordinate at the
coarse scale, and F(q) to denote the spatial mapping function to the
fine scale that corresponds to q, where F(q) = {(x,y) | sw ·qx ≤ x <
sw · (qx +1),sy ·qy ≤ y < sy · (qy +1)}.

We note that the downsampling method for S̃, Õ and M̃ is crucial
for correct path optimization at such a coarse scale. For example,
if the downsampled optical flow õt at key frame t is computed
as the mean of the corresponding flows in F(q) for a pixel q at
the coarse resolution, i.e., õt(q) := 1

|F(q)| ∑g∈F(q) ot(g), then the
downsampled flow õt(q) tends to be close to zero, which will prevent
cameras from moving. To compute more representative saliency
s̃t(q), instance segmentation m̃t(q) and optical flow õt(q) at coarse
scale, we present a method that leverages motion coherence and a
voting strategy. We argue that any strong coherent motion at the fine
scale should also be revealed in the corresponding coarse-resolution
optical flow. To this end, we first sort the fine-scale flow vectors
within the footprint F(q) of each coarse-scale pixel q according to
their magnitude, and keep the Top-K (K=10 in our experiments)
candidates {ot(g′1), . . . ,ot(g′K)} originally from {g′1, . . . ,g

′
K} at the

fine scale. Then, the Top-K optical flows are used to vote for a 2D

1

0

(a) Original frame

(b) Original optical flow and saliency

(c) Our optical flow and saliency at coarse scale

(d) Mean optical flow and saliency at coarse scale

1

0

1

0

Figure 6: Downsampled saliency map and optical flow. (a) shows
an input 360° video frame, whose original optical flow and saliency
visualizations are given in (b). (c) shows the optical flow and saliency
results using our motion-coherent voting strategy. (d) shows the naive
downsampling of the fine-scale saliency and optical flow, which can
miss small, highly salient targets.

coordinate q′ at the coarse scale, where the majority of the optical
flow end points {g′k +ot(g′k) | 1 ≤ k ≤ K} are located inside F(q′).

Finally, the coarse optical flow vector at key frame t is com-
puted as õt(q) = q′ − q. Let’s denote the subset of K optical
flow vectors (for K � K) that contribute to the voting to F(q′)
as {ot(g∗1), . . . ,ot(g∗K)}, starting at pixels G∗ = {g∗1, . . . ,g

∗
K}. The

coarse-scale saliency s̃t(q) and instance segmentation m̃t(q) are
computed as the average of saliency and instance segmentation val-
ues of the fine-scale pixels G∗. Figure 6 demonstrates the effect
of our motion-coherent voting strategy for content-aware feature
downsampling in coarse-to-fine dynamic programming. Our method
captures the motion and saliency at the fine scale better than the
average downsampling method.

When optimizing the initial paths P̃ = {p̃1, . . . , p̃n, . . . , p̃N} at
coarse scale following Equation 9, we set the spatial neighborhood

˜N (p̃n
t ) to 3× 3 pixels and use the coarse-scale motion parameter

ω̃o = 0.1. We further refine the coarse-scale paths P̃ at the fine scale
by enumerating possible coordinates within the spatial neighbor-
hood F(p̃n

t ) and optimizing the objective in Equation 1. With this
strategy, our method can efficiently compute up to N = 4 camera
paths in minutes, which we have found to be sufficient to capture
the most important and interesting video contents. Figure 7 shows
an illustration of the coarse-to-fine refinement process. Finally, each
path at the fine scale is temporally smoothed and rendered as an
NFoV video for the final results.



Table 1: We list seven representative 360° videos we explored using Transitioning360, with their computation times for the coarse-scale joint
dynamic programming (DP), fine-scale refinement and temporal smoothing stages. Further examples are provided in the supplementary material.

Parkour Party I ScubaSoccer Wrestling Skateboard Party II Monkey

Thumbnail

Resolution 1280×720 1280×720 1280×720 1280×720 1920×1080 1920×1080 1920×1080

Length 29 s 4 s 21 s 11 s 10 s 15 s 8 s

NFoV Views 4 3 4 3 2 4 3

Coarse-scale
DP Time

235.50 s 8.11 s 173.55 s 16.99 s 23.10 s 121.94 s 12.72 s

Refinement
Time

15.31 s 2.11 s 11.58 s 4.85 s 4.22 s 7.93 s 3.45 s

Smoothing
Time

0.37 s 0.56 s 0.19 s 0.17 s 0.01 s 0.08 s 0.01 s
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Figure 7: Coarse-to-fine strategy. A coarse-scale path determined by
the joint dynamic programming optimization is refined at the fine scale.
Note that the refined path coordinate corresponding to q at coarse
scale is searched within the matching field F(q) to be more accurate.

6 TRANSITIONING-BASED INTERACTION

Once the paths are precomputed, their views can be experienced via
the interaction module of Transitioning360. Following the design
principles in Section 3, the motivation of the interaction is to allow
users to easily reach NFoV views corresponding to paths with spatio-
temporal transitions, and to provide previews of other views using
video thumbnails. In this section, we introduce these interactions in
terms of transitions between paths and visualization of paths.

6.1 Transitioning Between NFoV Paths

Although each of the NFoV paths computed in Section 5 reveals
local contents of a 360° video, the spatial relationship between paths
are known, which informs the spatial-awareness of our transitioning
operation. During the playback of one NFoV video, the user can
simply transition to another NFoV video by clicking an arrow button
(i.e., up, down, left, right) or slightly moving the mouse, which
indicates a transitioning direction dtrans. Once the user requests a
transition at frame treq, our method immediately starts to transition
the current view to the neighboring video with the transitioning
direction closest to dtrans within a period of time t trans.

The spatial transitioning from one path to another can be per-
formed either while the video is playing or while it is paused, with
the video continuing to play afterwards. We conducted a pilot study
on the two transitioning styles with three participants, and observed
that they prefer transitioning without pausing the video, as pausing
interrupts the flow of time. We thus perform spatio-temporal transi-
tioning starting at frame treq from the current path p̂cur to the nearest
neighboring path p̂nn along the transition direction dtrans by spatially
moving the current NFoV view centered at the 2D coordinate p̂treq

cur

(a) Horizontal thumbnails (b) Outside-In visualization

Figure 8: Path visualization styles in Transitioning360. (a) The NFoV
video thumbnails are horizontally placed below the main view. The
thumbnail with the red boundary indicates the currently selected video.
(b) Outside-In visualization. Candidate videos are displayed within the
main navigation view, with their positions, sizes and shapes indicating
their distances and relative locations.

towards the target coordinate p̂treq+t trans

nn in the 360° video with a con-
stant transitioning velocity of vtrans = 60°/s. We note that there can
be severe spatial FoV overlap between p̂cur and p̂nn around time treq.
The transitioning between such paths can result in annoying jump
cuts. In this case, we temporarily consider p̂nn to be an invalid tran-
sition until it is more distant from p̂cur again. If the user requests to
transition to an invalid path, we simply skip it and transition directly
to the next valid path. An example of spatio-temporal transitioning
between two NFoV views is illustrated in Figure 1(d–f).

6.2 Visualization of Paths

During the navigation of an NFoV video, a clear visualization of
other NFoV views can help the user to know what is happening
in the context around the current view, so that they can transition
to another view efficiently. Along with the main view that plays
the current NFoV video, we propose to display interactive video
thumbnails of other paths that play synchronously. The user can
click on any of the thumbnails to transition to the corresponding
video. We clarify that the visualization is not a new technique from
Transitioning360, but can enhance and supplement the transitioning
interaction. We have explored two visualization styles: (1) placing
the video thumbnails horizontally below the main video view, and (2)
utilizing the outside-in technique [15] that spatially displays thumb-
nails inside the main view, with the thumbnails warped following
their approximate geometry projections. Figure 8 shows an example
of the visualization interfaces. As will be shown in Section 8, users
generally preferred to use the outside-in visualization.



(a) (b)(a) (b)

(c) (d)

Figure 9: A gallery of our NFoV video results. (a–d) give four representative 360° frames with the computed NFoV videos marked in different colors.
In each example, the corresponding NFoV video frame sequences with colored boundaries are listed vertically on the right-hand side.

(a) Transitioning by clicking the arrow key

(b) Transitioning by clicking the thumbail

Figure 10: Interaction and transitioning process via Transitioning360
with Outside-In visualization; 3 frames of each transitioning process
are shown. (a) The user requests a transition by clicking the arrow
key indicating “transition to the view to the right”; the corresponding
direction is shown in the center of the frame. (b) The user clicks the
video thumbnail to request a transitioning to the corresponding video.

7 EXPERIMENTAL RESULTS

In this section, we show experimental results generated by Tran-
sitioning360. We implemented the tool using the Unity3D game
engine (2018.2.13f1), with off-the-shelf saliency detection [28], op-
tical flow [16] and instance segmentation [4] modules based on
the authors’ implementations. Source code is available at https:
//github.com/yaoling1997/Transitioning360. We use a PC
with an Intel Core-i7 3.6 GHz CPU and 32 GB RAM. We tested the
tool using 360° videos from Su et al. [22], Kang and Cho [8] and
YouTube. The length of videos varies from 4 to 34 seconds. The
offline preprocessing of saliency, optical flow and instance segmen-
tation takes about 270 seconds for a 10-second video. The online
interactive navigation process using Transitioning360 is real-time.
Table 1 lists representative videos captured by both static and dy-
namic cameras, with input video attributes and processing times
for the path optimization steps. We manually set the number of
camera paths for Parkour, Party I, ScubaSoccer and Wrestling, and
automatically set the number of views for the remaining examples.

Figure 9 shows a gallery of automatically created NFoV video
computation results. Different from previous methods [8, 22], our
method computes more than one path that collectively present po-
tentially important or interesting content. The paths are diverse and
temporally stable for various scenes. Figure 10 shows typical inter-
action and transitioning processes via Transitioning360 using the
Outside-In visualization. While watching an NFoV video, users can
request transitions by clicking the arrow keys or clicking a video
thumbnail. We encourage the reader to watch the supplementary
video for the full experience of our results.

We have shown examples in Figure 3 to illustrate the effect of

(a) NFoV videos with 𝜔! = 0.0 (b) NFoV videos with 𝜔! = 0.5

(c) NFoV videos with 𝜔! = 1.5 (d) NFoV videos with 𝜔! = 2.0

Figure 11: Effect of different diversity penalties ωd on the diversity
of views. Boundaries of three NFoV views are highlighted in yellow
in (a–d). Larger ωd results in less interesting content in paths, while
smaller ωd makes paths overlap more (fully overlapped in (a)).

(a) NFoV video with !𝜔! = 0.1

(b) NFoV video with !𝜔! = 1.0

(c) NFoV video with !𝜔! = 10.0
Figure 12: Effect of different ω̃o values at the coarse scale. (a) A
small ω̃o value does not track targets reliably, while a large ω̃o (c) may
sacrifice content awareness by capturing static parts of the scene.
(b) Our setting of ω̃o = 1 robustly captures people in the scene.

skipping the FoV-aware adjustment. Figure 5 shows the advantage
of performing joint path optimization over greedy algorithm-based
optimization in path computation. Figure 6 demonstrates the effect of
our downsampling method with the motion coherent voting strategy.

In Figure 11, we evaluate the effect of the view diversity parame-
ter ωd in Equation 8, which controls the balance between content-

https://github.com/yaoling1997/Transitioning360
https://github.com/yaoling1997/Transitioning360


(a)  N = 1 (b)  N = 2

(c)  N = 3 (d)  N = 4

Figure 13: Examples of NFoV paths for N = 1,2,3,4 views.

awareness and view diversity. As can be seen, smaller ωd leads
to severe overlaps between camera paths, while larger ωd makes
paths more diverse, with potentially less interesting content per path.
We set ωd = 1.5 throughout our experiments to optimally balance
content-awareness and view diversity.

Figure 12 shows the effect of the parameter ω̃o in Section 5.3,
which controls the motion sensitivity at the coarse scale. The fine-
scale motion parameter ωo is fixed to 0.1 as in the original ap-
proach [8]. Sampled NFoV video frame sequences are shown with
different ω̃o values. In Figure 12(a), with a small ω̃o, the NFoV view
floats without tracking important contents, because of the reduced
motion consistency penalty. Figure 12(b) shows that with ω̃o = 1, the
camera robustly captures the people within the FoV. In Figure 12(c),
as the penalty of motion is enlarged, the camera is conservative
and captures the static scene rather than humans, which sacrifices
content-awareness. We set ω̃o = 1.0 in all our experiments.

Figure 13 shows a comparison of NFoV paths computed for one
to four cameras on the same input video. Using only a single NFoV
camera, in Figure 13(a), focuses on the region with most motion
and saliency: the climbing athlete. Additional camera views, as
in Figure 13(b–d), focus on other meaningful video content, like
the audience, until all dynamic content is captured. Further camera
views would overlap with existing cameras or the static background.

8 USER STUDY

To further evaluate whether Transitioning360 improves the expe-
rience of 360° video navigation and playback on 2D displays, we
conducted a user study. Briefly, we invited participants to experience
360° videos using different interaction interfaces via a 2D display.
After playback of each video, the participants were asked to rate each
method in terms of locating capability, convenience for navigation
and overall preference.

8.1 Participants

We recruited 15 participants from our university with diverse study
backgrounds. From the 15 participants (7 female, 8 male, mean age
21.3 years, SD=2.3), 9 indicated previous VR and HMD experience.

8.2 Data

We collected six 360° videos for the user study: three were labeled
“static” (S1, S2, S3) where most of the targets’ positions in the scene
are relatively fixed, while the other three videos were “dynamic”
(D1, D2, D3) with some targets moving in the scene. The lengths
and virtual NFoV camera path numbers of the videos were: S1 (30 s,
2 paths), S2 (22 s, 3 paths), S3 (20 s, 4 paths), D1 (20 s, 3 paths),
D2 (21 s, 3 paths), D3 (22 s, 4 paths). We also used a training video
(21 s, 2 paths) to train participants before the main study.

8.3 Methods and Measures

We evaluated the following interaction methods:
• Baseline interaction with horizontal thumbnails (“BH”).

The traditional interactive method widely used on YouTube.
The user can click and drag the mouse within the main view to
manually adjust the direction of the NFoV camera. The thumb-
nails below the main view are not interactive and only used for
references of other interesting objects outside the main view.

• Interactive360 with horizontal thumbnails (“IH”). The In-
teractive360 interaction [8] with candidate video thumbnails
shown horizontally below the main view as in Figure 8(a). The
user can click and drag the mouse within the main view to
manually adjust the direction of the NFoV camera. The thumb-
nails below the main view are not interactive and only used for
references of other interesting objects outside the main view.

• Transitioning360 with horizontal thumbnails (“TH”). The
Transitioning360 interaction with candidate video thumbnails
shown horizontally below the main view as in Figure 8(a). The
user can click and drag the mouse within the main view to
manually adjust the direction of the NFoV camera. Moreover,
the user can press an arrow key or click a video thumbnail for
transitioning to the corresponding view.

• Transitioning360 with Outside-In (“TO”). The Transition-
ing360 interaction with candidate video thumbnails displayed
within the main view using Outside-In [15] as shown in Fig-
ure 8(b). The user can click and drag the mouse within the
main view to manually adjust the direction of the NFoV cam-
era. Moreover, the user can press an arrow key or click a video
thumbnail for transitioning to the corresponding view.

Similar to previous work [8, 15], each experience of a video using
any method was measured by the participants using 7-point Likert
scales for questions on:

• Locating capability: “Please rate this method on the capabil-
ity level of locating important targets: 1–lowest to 7–highest.”

• Ease of use: “Please rate this method on the convenience level
to navigate the video: 1–lowest to 7–highest.”

• Intention to use: “Please rate this method on the intention to
use level: 1–lowest to 7–highest.”

8.4 Procedure

We used a 23′′ 1920×1080 HD monitor for the video experience,
with a viewing distance of 40–60 cm. The main navigation view
was located in the screen center with a fixed size of 1280× 720.
Each participant experienced one randomly selected static video
and one dynamic video with all four interaction methods. The order
of methods was randomized, except for the baseline interaction,
which was always tested first. There are two reasons to start with
the baseline method: (1) to avoid participants becoming bored when
experiencing the baseline method after experiencing other methods,
and (2) to set a standard for rating the other interaction methods.

After welcoming participants, we asked them to fill out demo-
graphic information. Then, each participant sat in front of the mon-
itor and was instructed about the user study. Before formal tests
of each method, each participant was trained how to operate the
interface for navigation with the training video. After learning the
interaction usage, the participant started a trial until they understood
the interaction method. This training procedure took about 2–4 min-
utes per method. The participant then experienced each method using
both the static and dynamic videos. After playing back each video
as often as wanted, participants rated the experience (a combination
of {method, video}) using the aforementioned measures. The partic-
ipant was also encouraged to share comments on the interaction and
interface after each experience. On average, the whole procedure
took around 20 minutes.
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Figure 14: User study ratings on 7-point Likert scales with the error bars showing standard deviations. We use the following abbreviations: BH:
Baseline method with horizontal thumbnails; IH: Interactive360 [8] with horizontal thumbnails; TH: Transitioning360 with horizontal thumbnails
(ours); TO: Transitioning360 with Outside-In (ours). Note that our interaction methods (TH, TO) outperform the baselines (BH, IH) in most cases.

Table 2: Statistical significance analyses between interaction methods, summarized using mean±standard deviation. Asterisks indicate significant
differences. Green entries indicate that the method in the row is better than the method in the column; red entries indicate worse results.

Locating capability Ease of use Intention to use
Method M±SD BH IH TH TO M±SD BH IH TH TO M±SD BH IH TH TO

BH 3.70±0.98 — ** *** *** 4.10±1.33 — — *** *** 4.00±0.62 — — *** ***

IH [8] 4.30±1.11 ** — ** *** 4.20±1.82 — — ** *** 4.27±1.31 — — *** ***

TH (ours) 5.07±0.68 *** ** — — 5.00±1.17 *** ** — * 5.27±0.89 *** *** — —

TO (ours) 5.30±0.84 *** *** — — 5.50±0.95 *** *** * — 5.30±1.11 *** *** — —
∗ statistically significant (p < 0.05) ∗∗ statistically highly significant (p < 0.01) ∗∗∗ statistically strongly significant (p < 0.001)

8.5 Results
In total, we have collected 15 (participants) × 4 (methods) ×
2 (videos)×3 (questions) = 360 ratings. Figure 14 shows user rat-
ings on the 7-point Likert scales. We further analyze the results
with repeated measures ANOVA and paired t-tests, which revealed
that there were no significant interaction effects between the video
types and interactive method types. There was no significant main
effect between static and dynamic videos, but significant main ef-
fects among interactive methods were found, in terms of locating
capability, ease-of-use level and intention-to-use level.

For locating capability, Transitioning360 was rated significantly
better than alternative methods, and the visualization styles do not
affect the locating of objects in the scene. For ease of use, Transition-
ing360 with Outside-In visualization was rated the best. The ratings
for “intention of use” indicated that participants were generally more
willing to use Transitioning360 as their preferred tool for 360° video
navigation, with either horizontal thumbnail or Outside-In visual-
ization. Table 2 summarizes the significance analyses; full data are
provided in the supplementary material.

8.6 Open Comments
We further collected comments from participants on the interaction
methods. One participant reported that Interactive360 [8] required
frequent use of the mouse to click and drag content searching, which
was less convenient than simply clicking the arrow keys in TH or TO
(our methods). Another participant commented that it is convenient
to change view using arrow keys in TH and TO, while also being
able to use the mouse to slightly adjust the view for more active
exploration. One participant suggested adding a feature to change the
mode among methods so that users can have more choices. Another
participant proposed adding camera acceleration and deceleration to
our transitioning methods TH and TO, to improve the visual effect.

One participant pointed out that the order of horizontal thumb-
nails below the main view in BH, IH and TH cannot reveal the
spatial relationship of the views, which sometimes led to confusion
about the spatial context. Several participants commented that in

TO, the video thumbnails can sometimes occlude the contents in
the main view and distract viewer’s attention. The comments from
participants were generally positive towards Transitioning360. Par-
ticipants found the transitioning between views useful as it improved
the convenience level.

9 CONCLUSION

In this paper, we presented Transtioning360, a new interactive 360°
video navigation approach for 2D displays, which builds upon a
coarse-to-fine joint optimization algorithm for multiple virtual NFoV
camera path computation. The paths are content-aware and can
locate and track potentially interesting and important 360° video
content. The paths are also diverse to cover different important
targets, and temporally stable. We introduced the joint objective of
camera paths, and solved it using dynamic programming. To make
the problem tractable, we proposed a coarse-to-fine strategy with
paths initially solved at the coarse scale and further refined at the
fine scale. NFoV videos corresponding to the paths can be easily
experienced on 2D displays. Moreover, users can spatio-temporally
transition between precomputed content-aware videos with just a
single-clicking action rather than tedious manual view adjustments
with many mouse clicking and dragging actions. We conducted a user
study to evaluate the locating capability, ease of use and intention to
use of the proposed interaction method with visualization interfaces.
The results demonstrated that Transitioning360 is generally more
preferred as a navigation tool with better locating capability and
easier usage, and using the Outside-In visualization can enhance the
Transitioning360 interaction.

9.1 Limitations and Future Work
Our method also has limitations. First, throughout our experiments,
at most four cameras paths were computed for any 360° video. We
observed that four cameras were generally sufficient as the hori-
zontal FoV of each camera is about 90°, and so additional cameras
would overlap more, which would degrade the view diversity. Nev-
ertheless, an algorithm to compute more pleasant camera paths is



desirable. Second, the FoV of each camera was fixed throughout our
experiments. If the person is close to the camera, only part of their
body will be visible. Therefore, incorporating zooming would be an
interesting extension. Finally, the content awareness in our method
is estimated using saliency, motion and instance segmentation. Ad-
ditional semantic cues, such as human-object-interactions (HOI),
could be explored to improve content awareness.
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