69,466 research outputs found

    Recurrence-based time series analysis by means of complex network methods

    Full text link
    Complex networks are an important paradigm of modern complex systems sciences which allows quantitatively assessing the structural properties of systems composed of different interacting entities. During the last years, intensive efforts have been spent on applying network-based concepts also for the analysis of dynamically relevant higher-order statistical properties of time series. Notably, many corresponding approaches are closely related with the concept of recurrence in phase space. In this paper, we review recent methodological advances in time series analysis based on complex networks, with a special emphasis on methods founded on recurrence plots. The potentials and limitations of the individual methods are discussed and illustrated for paradigmatic examples of dynamical systems as well as for real-world time series. Complex network measures are shown to provide information about structural features of dynamical systems that are complementary to those characterized by other methods of time series analysis and, hence, substantially enrich the knowledge gathered from other existing (linear as well as nonlinear) approaches.Comment: To be published in International Journal of Bifurcation and Chaos (2011

    Acyclic Subgraphs of Planar Digraphs

    Get PDF
    An acyclic set in a digraph is a set of vertices that induces an acyclic subgraph. In 2011, Harutyunyan conjectured that every planar digraph on nn vertices without directed 2-cycles possesses an acyclic set of size at least 3n/53n/5. We prove this conjecture for digraphs where every directed cycle has length at least 8. More generally, if gg is the length of the shortest directed cycle, we show that there exists an acyclic set of size at least (13/g)n(1 - 3/g)n.Comment: 9 page

    Flat Foldings of Plane Graphs with Prescribed Angles and Edge Lengths

    Get PDF
    When can a plane graph with prescribed edge lengths and prescribed angles (from among {0,180,360\{0,180^\circ, 360^\circ\}) be folded flat to lie in an infinitesimally thin line, without crossings? This problem generalizes the classic theory of single-vertex flat origami with prescribed mountain-valley assignment, which corresponds to the case of a cycle graph. We characterize such flat-foldable plane graphs by two obviously necessary but also sufficient conditions, proving a conjecture made in 2001: the angles at each vertex should sum to 360360^\circ, and every face of the graph must itself be flat foldable. This characterization leads to a linear-time algorithm for testing flat foldability of plane graphs with prescribed edge lengths and angles, and a polynomial-time algorithm for counting the number of distinct folded states.Comment: 21 pages, 10 figure

    Applications of Structural Balance in Signed Social Networks

    Full text link
    We present measures, models and link prediction algorithms based on the structural balance in signed social networks. Certain social networks contain, in addition to the usual 'friend' links, 'enemy' links. These networks are called signed social networks. A classical and major concept for signed social networks is that of structural balance, i.e., the tendency of triangles to be 'balanced' towards including an even number of negative edges, such as friend-friend-friend and friend-enemy-enemy triangles. In this article, we introduce several new signed network analysis methods that exploit structural balance for measuring partial balance, for finding communities of people based on balance, for drawing signed social networks, and for solving the problem of link prediction. Notably, the introduced methods are based on the signed graph Laplacian and on the concept of signed resistance distances. We evaluate our methods on a collection of four signed social network datasets.Comment: 37 page

    Magic-State Functional Units: Mapping and Scheduling Multi-Level Distillation Circuits for Fault-Tolerant Quantum Architectures

    Full text link
    Quantum computers have recently made great strides and are on a long-term path towards useful fault-tolerant computation. A dominant overhead in fault-tolerant quantum computation is the production of high-fidelity encoded qubits, called magic states, which enable reliable error-corrected computation. We present the first detailed designs of hardware functional units that implement space-time optimized magic-state factories for surface code error-corrected machines. Interactions among distant qubits require surface code braids (physical pathways on chip) which must be routed. Magic-state factories are circuits comprised of a complex set of braids that is more difficult to route than quantum circuits considered in previous work [1]. This paper explores the impact of scheduling techniques, such as gate reordering and qubit renaming, and we propose two novel mapping techniques: braid repulsion and dipole moment braid rotation. We combine these techniques with graph partitioning and community detection algorithms, and further introduce a stitching algorithm for mapping subgraphs onto a physical machine. Our results show a factor of 5.64 reduction in space-time volume compared to the best-known previous designs for magic-state factories.Comment: 13 pages, 10 figure

    Time lagged ordinal partition networks for capturing dynamics of continuous dynamical systems

    Full text link
    We investigate a generalised version of the recently proposed ordinal partition time series to network transformation algorithm. Firstly we introduce a fixed time lag for the elements of each partition that is selected using techniques from traditional time delay embedding. The resulting partitions define regions in the embedding phase space that are mapped to nodes in the network space. Edges are allocated between nodes based on temporal succession thus creating a Markov chain representation of the time series. We then apply this new transformation algorithm to time series generated by the R\"ossler system and find that periodic dynamics translate to ring structures whereas chaotic time series translate to band or tube-like structures -- thereby indicating that our algorithm generates networks whose structure is sensitive to system dynamics. Furthermore we demonstrate that simple network measures including the mean out degree and variance of out degrees can track changes in the dynamical behaviour in a manner comparable to the largest Lyapunov exponent. We also apply the same analysis to experimental time series generated by a diode resonator circuit and show that the network size, mean shortest path length and network diameter are highly sensitive to the interior crisis captured in this particular data set
    corecore