732 research outputs found

    Multi-Granularity Representation Learning for Sketch-based Dynamic Face Image Retrieval

    Full text link
    In specific scenarios, face sketch can be used to identify a person. However, drawing a face sketch often requires exceptional skill and is time-consuming, limiting its widespread applications in actual scenarios. The new framework of sketch less face image retrieval (SLFIR)[1] attempts to overcome the barriers by providing a means for humans and machines to interact during the drawing process. Considering SLFIR problem, there is a large gap between a partial sketch with few strokes and any whole face photo, resulting in poor performance at the early stages. In this study, we propose a multigranularity (MG) representation learning (MGRL) method to address the SLFIR problem, in which we learn the representation of different granularity regions for a partial sketch, and then, by combining all MG regions of the sketches and images, the final distance was determined. In the experiments, our method outperformed state-of-the-art baselines in terms of early retrieval on two accessible datasets. Codes are available at https://github.com/ddw2AIGROUP2CQUPT/MGRL.Comment: 5 pages,5 figure

    Semantics-Driven Large-Scale 3D Scene Retrieval

    Get PDF

    Multi-form Visualisation: An approach to acousmatic composition

    Get PDF
    This practice-based doctoral research addresses a critical issue in acousmatic composition: the journey from the immaterial world of sonic imagination to the realisation of musical sound. This was an exploratory journey, where my personal sensibility for visual arts practice met my curiosity and profound interest in acousmatic music. Methodologically, the project approached acousmatic composition as an organic process, intertwining visual sensibilities and musical domains by offering a critical approach to the listening experience and to my compositional practice. A key metaphor used is that of the blank page as a space for multi-form visualisation, where gestures derived from sketching and other visual stimuli are used as guides and catalysts for the realisation of sound. In this approach, a process of deliberately blurring boundaries between real and imaginary realms affords a space to daydream to be moved by sounds, the flow of mental images, virtual sensations, and memory-images that one can associate with traces, dots, shapes or textures. This parallel allows me to find my way within the sonic realm, shaping sound materials and sequences that progressively define a musical structure. This space, which has no proper physical existence, invites sonic and visual perception and imagination to confront, destroy and renew each another, directing the music’s emergence through a feedback loop between the visual and the aural. A key conceptual tool in this practice is the notion of sensory qualia and a blend of phenomenological and ecological views of sound and bodily centered, internally registered responses. By focusing on qualitative sensations derived from drawing, painting and sensations of motion in the natural world, parallels with the sonic imagination are stimulated. The graphical expression of gestures deployed in space and time becomes a space of boundless, imaginative reflection of the composer’s sonic conceptions and expectations

    A Semantic-aware Attention and Visual Shielding Network for Cloth-changing Person Re-identification

    Full text link
    Cloth-changing person reidentification (ReID) is a newly emerging research topic that aims to retrieve pedestrians whose clothes are changed. Since the human appearance with different clothes exhibits large variations, it is very difficult for existing approaches to extract discriminative and robust feature representations. Current works mainly focus on body shape or contour sketches, but the human semantic information and the potential consistency of pedestrian features before and after changing clothes are not fully explored or are ignored. To solve these issues, in this work, a novel semantic-aware attention and visual shielding network for cloth-changing person ReID (abbreviated as SAVS) is proposed where the key idea is to shield clues related to the appearance of clothes and only focus on visual semantic information that is not sensitive to view/posture changes. Specifically, a visual semantic encoder is first employed to locate the human body and clothing regions based on human semantic segmentation information. Then, a human semantic attention module (HSA) is proposed to highlight the human semantic information and reweight the visual feature map. In addition, a visual clothes shielding module (VCS) is also designed to extract a more robust feature representation for the cloth-changing task by covering the clothing regions and focusing the model on the visual semantic information unrelated to the clothes. Most importantly, these two modules are jointly explored in an end-to-end unified framework. Extensive experiments demonstrate that the proposed method can significantly outperform state-of-the-art methods, and more robust features can be extracted for cloth-changing persons. Compared with FSAM (published in CVPR 2021), this method can achieve improvements of 32.7% (16.5%) and 14.9% (-) on the LTCC and PRCC datasets in terms of mAP (rank-1), respectively.Comment: arXiv admin note: text overlap with arXiv:2108.0452

    Proceedings of the 2021 DigitalFUTURES

    Get PDF
    This open access book is a compilation of selected papers from 2021 DigitalFUTURES—The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021). The work focuses on novel techniques for computational design and robotic fabrication. The contents make valuable contributions to academic researchers, designers, and engineers in the industry. As well, readers encounter new ideas about understanding material intelligence in architecture

    Mitigating the effect of covariates in face recognition

    Get PDF
    Current face recognition systems capture faces of cooperative individuals in controlled environment as part of the face recognition process. It is therefore possible to control lighting, pose, background, and quality of images. However, in a real world application, we have to deal with both ideal and imperfect data. Performance of current face recognition systems is affected for such non-ideal and challenging cases. This research focuses on designing algorithms to mitigate the effect of covariates in face recognition.;To address the challenge of facial aging, an age transformation algorithm is proposed that registers two face images and minimizes the aging variations. Unlike the conventional method, the gallery face image is transformed with respect to the probe face image and facial features are extracted from the registered gallery and probe face images. The variations due to disguises cause change in visual perception, alter actual data, make pertinent facial information disappear, mask features to varying degrees, or introduce extraneous artifacts in the face image. To recognize face images with variations due to age progression and disguises, a granular face verification approach is designed which uses dynamic feed-forward neural architecture to extract 2D log polar Gabor phase features at different granularity levels. The granular levels provide non-disjoint spatial information which is combined using the proposed likelihood ratio based Support Vector Machine match score fusion algorithm. The face verification algorithm is validated using five face databases including the Notre Dame face database, FG-Net face database and three disguise face databases.;The information in visible spectrum images is compromised due to improper illumination whereas infrared images provide invariance to illumination and expression. A multispectral face image fusion algorithm is proposed to address the variations in illumination. The Support Vector Machine based image fusion algorithm learns the properties of the multispectral face images at different resolution and granularity levels to determine optimal information and combines them to generate a fused image. Experiments on the Equinox and Notre Dame multispectral face databases show that the proposed algorithm outperforms existing algorithms. We next propose a face mosaicing algorithm to address the challenge due to pose variations. The mosaicing algorithm generates a composite face image during enrollment using the evidence provided by frontal and semiprofile face images of an individual. Face mosaicing obviates the need to store multiple face templates representing multiple poses of a users face image. Experiments conducted on three different databases indicate that face mosaicing offers significant benefits by accounting for the pose variations that are commonly observed in face images.;Finally, the concept of online learning is introduced to address the problem of classifier re-training and update. A learning scheme for Support Vector Machine is designed to train the classifier in online mode. This enables the classifier to update the decision hyperplane in order to account for the newly enrolled subjects. On a heterogeneous near infrared face database, the case study using Principal Component Analysis and C2 feature algorithms shows that the proposed online classifier significantly improves the verification performance both in terms of accuracy and computational time

    Principles and Applications of Data Science

    Get PDF
    Data science is an emerging multidisciplinary field which lies at the intersection of computer science, statistics, and mathematics, with different applications and related to data mining, deep learning, and big data. This Special Issue on “Principles and Applications of Data Science” focuses on the latest developments in the theories, techniques, and applications of data science. The topics include data cleansing, data mining, machine learning, deep learning, and the applications of medical and healthcare, as well as social media
    corecore