143 research outputs found

    Optic Flow Based Autopilots: Speed Control and Obstacle Avoidance

    Get PDF
    International audienceThe explicit control schemes presented here explain how insects may navigate on the sole basis of optic flow (OF) cues without requiring any distance or speed measurements: how they take off and land, follow the terrain, avoid the lateral walls in a corridor and control their forward speed automatically. The optic flow regulator, a feedback system controlling either the lift, the forward thrust or the lateral thrust, is described. Three OF regulators account for various insect flight patterns observed over the ground and over still water, under calm and windy conditions and in straight and tapered corridors. These control schemes were simulated experimentally and/or implemented onboard two types of aerial robots, a micro helicopter (MH) and a hovercraft (HO), which behaved much like insects when placed in similar environments. These robots were equipped with opto-electronic OF sensors inspired by our electrophysiological findings on houseflies' motion sensitive visual neurons. The simple, parsimonious control schemes described here require no conventional avionic devices such as range finders, groundspeed sensors or GPS receivers. They are consistent with the the neural repertoire of flying insects and meet the low avionic payload requirements of autonomous micro aerial and space vehicles

    Design of a rescue robot for search and mapping operation

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2006Includes bibliographical references (leaves: 65-66)Text in English; Abstract: Turkish and Englishx, 76 leavesThe aim of this thesis is to design a mobile robot for rescue operations after an earthquake. The robot is designed to locate injured victims and life triangle in debris, to create a map of the disaster area and to collect the necessary information needed by digging and support robots in order to the database center. This robot enables us to rescue the victim in the shortest time with minimum injury. This will let us risking the lives of the rescue teams much less as well as rescuing much more victim alive.Robot is designed with the longitudinal body design. Shock absorber system gives the damper effect against falls as well as adding advanced equilibrium properties while passing through a rough land. Driving mechanism is a tracked steering system.Front and back arm system is developed to provide high mobility while overtaking the obstacles.Secondly hovercraft type robot, which works with the cushion pressure principle, is designed as a rescue robot. It is thought that if the adequate height is supplied, the robot could manage to overcome obstacles.As a third design, ball robot, which could easily move uphill and has a capability to overrun obstacles, is studied.Jumping mechanism will be working by magnetic piston.In addition robot is equipped with the sensors so that it has capable of the navigation. In order to achieve feasible sensor systems, all electronic components are evaluated and the most effective sensors are chosen

    Mobile Robotics

    Get PDF
    The book is a collection of ten scholarly articles and reports of experiences and perceptions concerning pedagogical practices with mobile robotics.“This work is funded by CIEd – Research Centre on Education, project UID/CED/01661/2019, Institute of Education, University of Minho, through national funds of FCT/MCTES-PT.

    Neuromimetic Robots inspired by Insect Vision

    Get PDF
    International audienceEquipped with a less-than-one-milligram brain, insects fly autonomously in complex environments without resorting to any Radars, Ladars, Sonars or GPS. The knowledge gained during the last decades on insects' sensory-motor abilities and the neuronal substrates involved provides us with a rich source of inspiration for designing tomorrow's self-guided vehicles and micro-vehicles, which are to cope with unforeseen events on the ground, in the air, under water or in space. Insects have been in the business of sensory-motor integration for several 100 millions years and can therefore teach us useful tricks for designing agile autonomous vehicles at various scales. Constructing a "biorobot" first requires exactly formulating the signal processing principles at work in the animal. It gives us, in return, a unique opportunity of checking the soundness and robustness of those principles by bringing them face to face with the real physical world. Here we describe some of the visually-guided terrestrial and aerial robots we have developed on the basis of our biological findings. These robots (Robot Fly, SCANIA, FANIA, OSCAR, OCTAVE and LORA) all react to the optic flow (i.e., the angular speed of the retinal image). Optic flow is sensed onboard the robots by miniature vision sensors called Elementary Motion Detectors (EMDs). The principle of these electro-optical velocity sensors was derived from optical/electrophysiological studies where we recorded the responses of single neurons to optical microstimulation of single photoreceptor cells in a model visual system: the fly's compound eye. Optic flow based sensors rely solely on contrast provided by reflected (or scattered) sunlight from any kind of celestial bodies in a given spectral range. These nonemissive, powerlean sensors offer potential applications to manned or unmanned aircraft. Applications can also be envisaged to spacecraft, from robotic landers and rovers to asteroid explorers or space station dockers, with interesting prospects as regards reduction in weight and consumption

    A Stochastic Dynamics Model of Beam Obstacle Traversal in Two Dimensions

    Get PDF
    Animals are excellent locomotors at traversing obstacles in complex terrain. Recent studies in our lab discovered that the potential energy landscape helps understand how animals’ and robots’ transition between locomotor modes. In that study, the energy landscape model was quasi-static and did not capture stochastic dynamics common in locomotion. In addition, obstacles were uniform; however, in the nature world, obstacles are rarely symmetric. Here, I take the next step in establishing a stochastic dynamics simulation on a simplistic 2-D model system, a self-propelled circular body interacting with two adjacent horizontal elastic beam obstacles on a horizontal flat ground. Body-beam interaction was determined by calculating collisional dynamics between rigid bodies and solving the interaction force by constraint conditions. On the landscape, the resistance of the two beam obstacles resulted in a potential energy barrier on each side. I found that increasing random force and self-propulsive force increased the body’s probability to overcome the barriers to traverse. By setting different stiffness, I can create a landscape with asymmetric barriers, and the body had a higher probability to escape by moving along trajectories that overcame the lower barrier. This simple model revealed that potential energy landscapes can be a useful tool to help understand the beam obstacle traversal process

    MOSAiC Implementation Plan

    Get PDF
    This document is the second version of the Implementation Plan for the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) initiative and lays out a vision of how associated observational, modeling, synthesis, and programmatic objectives can be manifested. The document was drafted during an international workshop in Potsdam in July 2015, and further developed during two additional workshops at AWI Potsdam in December 2015 and February 2016. Support for this planning activity has been provided by the IASC-ICARPIII process, the Alfred Wegener Institute Helmholtz Centre for Polar- and Marine Research, and the University of Colorado/ NOAA-ESRL-PSD. This document provides a framework for planning the logistics of the project, developing scientific observing teams, organizing scientific contributions, coordinating the use of resources, and ensuring MOSAiC’s legacy of data and products. A brief overview and summaries of key science questions are provided in Section 1. Section 2 includes an overview of specific observational requirements, while Section 3 describes the coordination and design of specific field assets. Practical logistics plans are outlined in Section 4. Links with current and future satellite programs and model activities are given in Sections 5 and 6. The MOSAiC data management strategy is given in Section 7. Links to other programs are outlined in Section 8. The appendix (Section 9) lists the parameters to be measured and the participating groups

    Final Design Review Report: The Underdogs

    Get PDF
    Aspen is a three-legged dog with mobility issues from Berkeley, California. She was hit by a car and her rear left leg was amputated at the hip. Robin Swanson, Aspen\u27s owner, and her friend, Audrey Beil, are the sponsors for this project. Jack Montgomery, Katherine Thomas, and Parker Johnson, “The Underdogs”, are tasked with helping Aspen regain some of her mobility and the ability to go on walks. Research was done into the problem by talking with the sponsors and looking into existing products, designs, and patents. This document, the Final Design Review Report, outlines the background information, problem specification, design, manufacturing, and testing process used to develop a solution for Aspen. The final design, its operation, and the necessary manufacturing process are discussed in full detail. A design verification plan is included for testing procedures

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space
    • …
    corecore