1,287 research outputs found

    Performance evaluation of wireless IEEE 802.11(b) used for ad-hoc networks in an e-learning classroom network

    Get PDF
    Evaluation of wireless networks for performance evaluation is a popular research area and a wealth of literature exists in this area. Wireless networks in infrastructure mode as well as Ad-hoc networks such as MANETs are considered extensively. Simulation results are provided for E-learning scenarios for cases where wireless networks in infrastructure mode are employed, however the possibilities of using ad- hoc networks and performance evaluation of e-learning scenarios with ad hoc networks are not considered. This paper presents an evaluation of the performances for wireless Ad-hoc networks employed in typical e-learning environment by using the OPNET modeller. Numerical simulation results, discussions and comparisons are provided. The results can be of great help for optimisation studies in typical e-learning environments. The performance issues are considered together with scalability concerns

    Optimization of Intelligent Transportation System using Biologically-Inspired Vehicular Ad hoc Networks for Achieve the Desired Performance

    Get PDF
    Many innovations made possible by the Intelligent Transportation System (ITS), such as media apps, encrypted financial transactions, and effective traffic management, rely heavily on vehicular ad hoc networks (VANETs). Using bio-inspired methodologies, This study looks back at the past and forward to the future to examine all of the routing challenges in VANETs, whether they are associated with a chain of related routing tasks or are aimed at a group of distinct approaches to routing. The high node mobility and unpredictable vehicle distribution (on the road) lead to major issues for VANETs, including the design of a network's physical architecture and unstable connections. VANET's provision of reliable and appropriate vehicular contact in situations requiring good service is crucial. As a result, effective means of navigation are desperately needed in VANET. Hence, in this paper, we examine the Bio-Inspired vehicular ad hoc networks (Bio-VANETs), wherein, should a suggested algorithmic network fail at any given node or vehicle, the remaining vehicles may be able to take over the task of relaying the data to the necessary nodes to achieve the desired performance. Route lifetime increases, and connection failures are decreased when the shortest way is selected using the fewest possible hops over highly connected links. In addition, the received signal intensity fluctuations due to vehicle density and speed are assessed. Packet Delivery Ratio, Optimal Performance, Accuracy and Efficiency of Bio-VANET are discussed and simulated against other methods that are existing models

    A consensus-based approach to reputational routing in multi-hop networks

    Get PDF
    International audienceWhen it comes to the security of the Internet of Things (IoT), securing their communications is paramount. In multi-hop networks, nodes relay information amongst themselves, opening the data up to tampering by an intermediate device. To detect and avoid such malicious entities, we grant nodes the ability to analyse their neighbours behaviour. Through the use of consensus-based validation, based upon blockchain's miners, all nodes can agree on the trustworthiness of all devices in the network. By expressing this through a node's reputation, it is possible to identify malicious devices and isolate them from network activities. By incorporating this metric into a multi-hop routing protocol such as AODV, we can influence the path selection process. Instead of defining the best route based upon overall length, we can chose the most reputable path available, thus traversing trustworthy devices. By performing extensive analyses through multiple simulated scenarios, we can identify a decrease in packet drop rates compared to AODV by ≈ 48% and ≈ 38% when subjected to black-hole attacks with 30 and 100 node networks respectively. Furthermore, by subjecting our system to varying degrees of grey-holes, we can confirm its adaptability to different types of threats

    Bio-inspired Medium Access Control for Wireless Sensor Networks

    Get PDF
    This thesis studies the applications of biologically inspired algorithms and behaviours to the Medium Access Control (MAC) layer of Wireless Sensor Networks (WSNs). By exploring the similarity between a general communications channel and control engineering theory, we propose a simple method to control transmissions that we refer to as transmission delay. We use this concept and create a protocol inspired by Particle Swarm Optimisation (PSO) to optimise the communications. The lessons learned from this protocol inspires us to move closer to behaviours found in nature and the Emergence MAC (E-MAC) protocol is presented. The E-MAC protocol shows emergent behaviours arising from simple interactions and provides great throughput, low end-to-end delay and high fairness. Enhancements to this protocol are later proposed. We empirically evaluate these protocols and provide relevant parameter sweeps to show their performance. We also provide a theoretical approach to proving the settling properties of E-MAC. The presented protocols and methods provide a different approach towards MAC in WSNs

    Cross-Layer Optimization of Message Broadcast in MANETs

    Get PDF

    On the Fundamentals of Stochastic Spatial Modeling and Analysis of Wireless Networks and its Impact to Channel Losses

    Get PDF
    With the rapid evolution of wireless networking, it becomes vital to ensure transmission reliability, enhanced connectivity, and efficient resource utilization. One possible pathway for gaining insight into these critical requirements would be to explore the spatial geometry of the network. However, tractably characterizing the actual position of nodes for large wireless networks (LWNs) is technically unfeasible. Thus, stochastical spatial modeling is commonly considered for emulating the random pattern of mobile users. As a result, the concept of random geometry is gaining attention in the field of cellular systems in order to analytically extract hidden features and properties useful for assessing the performance of networks. Meanwhile, the large-scale fading between interacting nodes is the most fundamental element in radio communications, responsible for weakening the propagation, and thus worsening the service quality. Given the importance of channel losses in general, and the inevitability of random networks in real-life situations, it was then natural to merge these two paradigms together in order to obtain an improved stochastical model for the large-scale fading. Therefore, in exact closed-form notation, we generically derived the large-scale fading distributions between a reference base-station and an arbitrary node for uni-cellular (UCN), multi-cellular (MCN), and Gaussian random network models. In fact, we for the first time provided explicit formulations that considered at once: the lattice profile, the users’ random geometry, the spatial intensity, the effect of the far-field phenomenon, the path-loss behavior, and the stochastic impact of channel scatters. Overall, the results can be useful for analyzing and designing LWNs through the evaluation of performance indicators. Moreover, we conceptualized a straightforward and flexible approach for random spatial inhomogeneity by proposing the area-specific deployment (ASD) principle, which takes into account the clustering tendency of users. In fact, the ASD method has the advantage of achieving a more realistic deployment based on limited planning inputs, while still preserving the stochastic character of users’ position. We then applied this inhomogeneous technique to different circumstances, and thus developed three spatial-level network simulator algorithms for: controlled/uncontrolled UCN, and MCN deployments

    Secure location-aware communications in energy-constrained wireless networks

    Get PDF
    Wireless ad hoc network has enabled a variety of exciting civilian, industrial and military applications over the past few years. Among the many types of wireless ad hoc networks, Wireless Sensor Networks (WSNs) has gained popularity because of the technology development for manufacturing low-cost, low-power, multi-functional motes. Compared with traditional wireless network, location-aware communication is a very common communication pattern and is required by many applications in WSNs. For instance, in the geographical routing protocol, a sensor needs to know its own and its neighbors\u27 locations to forward a packet properly to the next hop. The application-aware communications are vulnerable to many malicious attacks, ranging from passive eavesdropping to active spoofing, jamming, replaying, etc. Although research efforts have been devoted to secure communications in general, the properties of energy-constrained networks pose new technical challenges: First, the communicating nodes in the network are always unattended for long periods without physical maintenance, which makes their energy a premier resource. Second, the wireless devices usually have very limited hardware resources such as memory, computation capacity and communication range. Third, the number of nodes can be potentially of very high magnitude. Therefore, it is infeasible to utilize existing secure algorithms designed for conventional wireless networks, and innovative mechanisms should be designed in a way that can conserve power consumption, use inexpensive hardware and lightweight protocols, and accommodate with the scalability of the network. In this research, we aim at constructing a secure location-aware communication system for energy-constrained wireless network, and we take wireless sensor network as a concrete research scenario. Particularly, we identify three important problems as our research targets: (1) providing correct location estimations for sensors in presence of wormhole attacks and pollution attacks, (2) detecting location anomalies according to the application-specific requirements of the verification accuracy, and (3) preventing information leakage to eavesdroppers when using network coding for multicasting location information. Our contributions of the research are as follows: First, we propose two schemes to improve the availability and accuracy of location information of nodes. Then, we study monitoring and detection techniques and propose three lightweight schemes to detect location anomalies. Finally, we propose two network coding schemes which can effectively prevent information leakage to eavesdroppers. Simulation results demonstrate the effectiveness of our schemes in enhancing security of the system. Compared to previous works, our schemes are more lightweight in terms of hardware cost, computation overhead and communication consumptions, and thus are suitable for energy-constrained wireless networks

    Social-context based routing and security in delay tolerant networks

    Get PDF
    Delay Tolerant Networks (DTNs) were originally intended for interplanetary communications and have been applied to a series of difficult environments: wireless sensor networks, unmanned aerial vehicles, and short-range personal communications. There is a class of such environments in which nodes follow semi-predictable social patterns, such as wildlife tracking or personal devices. This work introduces a series of algorithms designed to identify the social patterns present in these environments and apply this data to difficult problems, such as efficient message routing and content distribution. Security is also difficult in a mobile environment. This is especially the case in the event that a large portion of the network is unreliable, or simply unknown. As the network size increases nodes have difficulty in securely distributing keys, especially using low powered nodes with limited keyspace. A series of multi-party security algorithms were designed to securely transmit a message in the event that the sender does not have access to the destinations public key. Messages are routed through a series of nodes, each of which partially decrypts the message. By encrypting for several proxies, the message can only be intercepted if all those nodes have been compromised. Even a highly compromised network has increased security using this algorithm, with a trade-off of reduced delivery ratio and increased delivery time -- Abstract, page iv

    Performance evaluation of realistic scenarios for vehicular ad hoc networks with VanetMobiSim and NS2

    Get PDF
    Català: En els darrers anys, el considerable creixement del sector dels serveis mòbils arreu del món es certament el major fenòmen al camp de les telecomunicaciones. Les tecnologies inalàmbriques han conduït al desenvolupament de nous sistemes de comunicació y serveis multimèdia. Degut al constant creixement del mercat automobilístic juntament amb la creixent demanda de la seguretat viària ha nascut un nou concepte al camp de les comunicaciones: les xarxes entre vehicles (VANETs). A les VANETs, cada vehicle pot actuar com a router o node, establint connexions entre vehicles propers o amb infraestructura a la carretera. Les VANET estan rebent més atenció del govern i de la indústria automobilística degut a l'àmplia varietat d'aplicacions y serveis que poden oferir, tal com sistemes de seguretet viària assistència a la carretera i accès a Internet. No obstant, el disseny i l'implementació de VANETs és una àrea d'investigació àmplia i complexa tal i com podem percebre, sabent que durant els darrers anys la comunitat investigadora s'ha centrat en l'estudi d'aquestes xarxes. Bàsicament, el nostre projecte està dividit en dues parts principals: Primerament, hem dut a terme una recerca relacionada amb l'estat actual de les VANET avui en dia, amb l'objectiu d'identificar els generadors de moviment i els simuladors de xarxes més apropiats i recomenats a la literatura. En segon lloc, hem decidit utilitzar el VanetMobiSim [80], com a generador de moviment degut a la seva varietat de models de movilitat que es poden testejar, i el NS2 [63] com a simulador de xarxes per ser un dels més utilitzats per molts autors a més de la seva compatibilitat amb el VanetMobiSim. Amb l'ús d'aquestes eines, VanetMobiSim i NS2, hem dut a terme una avaluació profunda de les prestacions de les VANET en diversos escenaris reals, assignant valors diferents a paràmetres tals com el nombre de nodes, la velocitat i el model de propagació.Castellano: En los últimos años, el considerable crecimiento del sector de los servicios móviles alrededor del mundo es con certeza el mayor fenómeno en el campo de las telecomunicaciones. Las tecnologías inalámbricas han conducido al desarrollo de nuevos sistemas de comunicación y servicios multimedia. Debido al constante crecimiento del mercado automovilístico y la creciente demanda en seguridad vial ha nacido un nuevo concepto en el campo de las comunicaciones: las redes entre vehículos (VANETs). En ellas, cada vehículo actúa como router, estableciendo conexiones entre vehículos cercanos o con infraestructura en la carretera. Las VANET estan recibiendo más atención del gobierno y de la industria automovilística debido a la amplia variedad de aplicaciones y servicios que puede ofrecer, tales como sistemas de seguridad vial, asistencia en carretera y acceso a Internet. Sin embargo, el diseño e implementación de las VANET es un area de investigación amplia y compleja, tal y como podemos percibir, sabiendo que durante los últimos años la comunidad investigadora se ha centrado en el estudio de estas redes. Básicamente, nuestro proyecto está dividido en dos partes principales: Primeramente, hemos llevado a cabo una búsqueda relacionada con el estado de arte de las VANET hoy en día, con el objetivo de identificar los generadores de movimiento i los simuladores de redes más apropiados i recomendados en la literatura. En segundo lugar, hemos decidido utilizar el VanetMobiSim [80], como generador de movimiento debido a la alta variedad de modelos de mobilidad que que se pueden testear, y el NS2 [63] como simulador de redes por ser uno de los más utilizados per muchos autores además de su compatibilidad con el VanetMobiSim. Con el uso de estas herramientas, hemos llevado a cabo una evaluación profunda de las prestaciones de las VANET en varios escenarios reales, asignando valores diferentes a parámetros tales como el número de nodos, la velocidad y el modelo de propagación.English: Over recent years, the considerable mobile services sector growth around the world was certainly the major phenomenon in the telecommunications field. Wireless technology has led to the development of new communications systems and multimedia services. Due to the continued growth of the vehicular industry and the increasing demand of road safety, a new concept in the communications field was born: vehicular networks (VANETs). In VANETs, each vehicle could act as router or node, establishing connections among nearby vehicles or with roadside infrastructure. VANETs are receiving more attention from governments and car manufacturers due to the wide variety of applications and services they can provide such as road safety systems, car assistance and Internet acces. However, designing and implementing VANETs is a complex and wide area of research as we can notice, knowing that in the last years the research and development community has focused on the study of such networks. Basically, our project is divided in two main parts: Firstly, we made a state of art related to the actual state of VANETs nowadays in order to find the most appropiate and recommended mobility generator and network simulator reported in the literature. Secondly, we decided to use VanetMobiSim [80], as a mobility generator due to its variety mobility models that could be tested, and NS2 [63] as a network simulator for being one of the most used by many authors and also due to its compatibilty with VanetMobiSim. Using these tools, VanetMobiSim and NS2, we carried out a deep performance evaluation of VANETs in several realistic scenarios, giving different values to parameters such as the number of nodes, speed and the propagation model
    • …
    corecore