69 research outputs found

    Graph Theoretic Approaches to Understand Resilience of Complex Systems

    Get PDF
    Modern society is critically dependent on a network of complex systems for almost every social and economic function. While increasing complexity in large-scale engineered systems offer many advantages including high efficiency, performance and robustness, it inadvertently makes them vulnerable to unanticipated perturbations. A disruption affecting even one component may result in large cascading impacts on the entire system due to high interconnectedness. Large direct and indirect impacts across national and international boundaries of natural disasters like Hurricane Katrina, infrastructure failures like the Northeast blackout, epidemics like the H1N1 influenza, terrorist attacks like the 9/11, and social unrests like the Arab Spring are indicative of the vulnerability associated with growing complexity. There is an urgent need for a quantitative framework to understand resilience of complex systems with different system architectures. In this work, a novel framework is developed that integrates graph theory with statistical and modeling techniques for understanding interconnectedness, interdependencies, and resilience of distinct large-scale systems while remaining cognizant of domain specific details. The framework is applied to three diverse complex systems, 1) Critical Infrastructure Sectors (CIS) of the U.S economy, 2) the Kalundborg Industrial Symbiosis (KIS), Denmark and 3) the London metro-rail infrastructure. These three systems are strategically chosen as they represent complex systems of distinct sizes and span different spatial scales. The framework is utilized for understanding the influence of both network structure level properties and local node and edge level properties on resilience of diverse complex systems. At the national scale, application of this framework on the U.S. economic network reveals that excessive interconnectedness and interdependencies among CIS significantly amplify impacts of targeted disruptions, and negatively influence its resilience. At the regional scale, analysis of KIS reveals that increasing diversity, redundancy, and multi-functionality is imperative for developing resilient and sustainable IS systems. At the urban scale, application of this framework on the London Metro system identifies stations and rail connections that are sources of functional and structural vulnerability, and must be secured for improving resilience. This framework provides a holistic perspective to understand and propose data-driven recommendations to strengthen resilience of large-scale complex engineered systems

    Critical Infrastructure Protection Approaches: Analytical Outlook on Capacity Responsiveness to Dynamic Trends

    Get PDF
    Overview: Critical infrastructures (CIs) – any asset with a functionality that is critical to normal societal functions, safety, security, economic or social wellbeing of people, and disruption or destruction of which would have a very significant negative societal impact. CIs are clearly central to the normal functioning of a nation’s economy and require to be protected from both intentional and unintentional sabotages. It is important to correctly discern and aptly manage security risks within CI domains. The protection (security) of CIs and their networks can provide clear benefits to owner organizations and nations including: enabling the attainment of a properly functioning social environment and economic market, improving service security, enabling integration to external markets, and enabling service recipients (consumers, clients, and users) to benefit from new and emerging technological developments. To effectively secure CI system, firstly, it is crucial to understand three things - what can happen, how likely it is to happen, and the consequences of such happenings. One way to achieve this is through modelling and simulations of CI attributes, functionalities, operations, and behaviours to support security analysis perspectives, and especially considering the dynamics in trends and technological adoptions. Despite the availability of several security-related CI modelling approaches (tools and techniques), trends such as inter-networking, internet and IoT integrations raise new issues. Part of the issues relate to how to effectively (more precisely and realistically) model the complex behavior of interconnected CIs and their protection as system of systems (SoS). This report attempts to address the broad goal around this issue by reviewing a sample of critical infrastructure protection approaches; comprising tools, techniques, and frameworks (methodologies). The analysis covers contexts relating to the types of critical infrastructures, applicable modelling techniques, risk management scope covered, considerations for resilience, interdependency, and policy and regulations factors. Key Findings: This research presents the following key findings: 1. There is not a single specific Critical Infrastructure Protection (CIP) approach – tool, technique, methodology or framework – that exists or emerges as a ‘fit-for-all’; to allow the modelling and simulation of cyber security risks, resilience, dependency, and impact attributes in all critical infrastructure set-ups. 2. Typically, two or more modelling techniques can be (need to be) merged to cover a broader scope and context of modelling and simulation applications (areas) to achieve desirable highlevel protection and security for critical infrastructures. 3. Empirical-based, network-based, agent-based, and system dynamics-based modelling techniques are more widely used, and all offer gains for their use. 4. The deciding factors for choosing modelling techniques often rest on; complexity of use, popularity of approach, types and objectives of user Organisation and sector. 5. The scope of modelling functions and operations also help to strike the balance between ‘specificity’ and ‘generality’ of modelling technique and approach for the gains of in-depth analysis and wider coverage respectively. 6. Interdependency and resilience modelling and simulations in critical infrastructure operations, as well as associated security and safety risks; are crucial characteristics that need to be considered and explored in revising existing or developing new CIP modelling approaches. Recommendations: Key recommendations from this research include: 1. Other critical infrastructure sectors such as emergency services, food & agriculture, and dams; need to draw lessons from the energy and transportation sectors for the successive benefits of: i. Amplifying the drive and efforts towards evaluating and understanding security risks to their infrastructure and operations. ii. Support better understanding of any associated dependencies and cascading impacts. iii. Learning how to establish effective security and resilience. iv. Support the decision-making process linked with measuring the effectiveness of preparedness activities and investments. v. Improve the behavioural security-related responses of CI to disturbances or disruptions. 2. Security-related critical infrastructure modelling approaches should be developed or revised to include wider scopes of security risk management – from identification to effectiveness evaluations, to support: i. Appropriate alignment and responsiveness to the dynamic trends introduced by new technologies such as IoT and IIoT. ii. Dynamic security risk management – especially the assessment section needs to be more dynamic than static, to address the recurrent and impactful risks that emerge in critical infrastructures

    Cyber-Physical Threat Intelligence for Critical Infrastructures Security

    Get PDF
    Modern critical infrastructures comprise of many interconnected cyber and physical assets, and as such are large scale cyber-physical systems. Hence, the conventional approach of securing these infrastructures by addressing cyber security and physical security separately is no longer effective. Rather more integrated approaches that address the security of cyber and physical assets at the same time are required. This book presents integrated (i.e. cyber and physical) security approaches and technologies for the critical infrastructures that underpin our societies. Specifically, it introduces advanced techniques for threat detection, risk assessment and security information sharing, based on leading edge technologies like machine learning, security knowledge modelling, IoT security and distributed ledger infrastructures. Likewise, it presets how established security technologies like Security Information and Event Management (SIEM), pen-testing, vulnerability assessment and security data analytics can be used in the context of integrated Critical Infrastructure Protection. The novel methods and techniques of the book are exemplified in case studies involving critical infrastructures in four industrial sectors, namely finance, healthcare, energy and communications. The peculiarities of critical infrastructure protection in each one of these sectors is discussed and addressed based on sector-specific solutions. The advent of the fourth industrial revolution (Industry 4.0) is expected to increase the cyber-physical nature of critical infrastructures as well as their interconnection in the scope of sectorial and cross-sector value chains. Therefore, the demand for solutions that foster the interplay between cyber and physical security, and enable Cyber-Physical Threat Intelligence is likely to explode. In this book, we have shed light on the structure of such integrated security systems, as well as on the technologies that will underpin their operation. We hope that Security and Critical Infrastructure Protection stakeholders will find the book useful when planning their future security strategies

    Enhancing Future Skills and Entrepreneurship

    Get PDF
    This open access book presents the proceedings of the 3rd Indo-German Conference on Sustainability in Engineering held at Birla Institute of Technology and Science, Pilani, India, on September 16–17, 2019. Intended to foster the synergies between research and education, the conference is one of the joint activities of the BITS Pilani and TU Braunschweig conducted under the auspices of Indo-German Center for Sustainable Manufacturing, established in 2009. The book is divided into three sections: engineering, education and entrepreneurship, covering a range of topics, such as renewable energy forecasting, design & simulation, Industry 4.0, and soft & intelligent sensors for energy efficiency. It also includes case studies on lean and green manufacturing, and life cycle analysis of ceramic products, as well as papers on teaching/learning methods based on the use of learning factories to improve students’problem-solving and personal skills. Moreover, the book discusses high-tech ideas to help the large number of unemployed engineering graduates looking for jobs become tech entrepreneurs. Given its broad scope, it will appeal to academics and industry professionals alike

    Resilience-enhancing solution to mitigate risk for sustainable supply chain-an empirical study of elevator manufacturing

    Get PDF
    As the complexity of supply chains increases, the enhancement of resilience for mitigating sustainable disruption risks in supply chains is an important issue. Quality function deployment (QFD) has been successfully applied in many domains to solve multicriteria decision-making (MCDM) problems. However, research on developing two houses of quality to connect sustainable supply chain disruption risks, resilience capacities, and resilience-enhancing features in elevator manufacturing supply chains by using the MCDM approach is lacking. This study aims to develop a framework for exploring useful decision-making by integrating the MCDM approach and QFD. By applying the framework, supply chain resilience can be improved by identifying the major sustainable risks and the key resilience to mitigate these risks. Important managerial insights and practical implications are obtained from the framework implementation in a case study of the elevator manufacturing industry. To strengthen resilience and thus mitigate key risks, the most urgent tasks are to connect the working site and the backstage to enhance product development and design and to share real-time job information. When these features are strengthened, agility, capacity, and visibility can be improved. Finally, unexpected events lead to changes in supplier delivery dates, and factors such as typhoon and lack of critical capacities/skilled employees with the greatest impact can be alleviated. This framework will provide an effective and pragmatic approach for constructing sustainable supply chain risk resilience in the elevator manufacturing industry.</p
    • …
    corecore