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GRAPH THEORETIC APPROACHES TO UNDERSTAND RESILIENCE OF 

COMPLEX SYSTEMS

Shauhrat S. Chopra, PhD 

University of Pittsburgh, 2015

Modern society is critically dependent on a network of complex systems for almost every social 

and economic function. While increasing complexity in large-scale engineered systems offer 

many advantages including high efficiency, performance and robustness, it inadvertently 

makes them vulnerable to unanticipated perturbations. A disruption affecting even one 

component may result in large cascading impacts on the entire system due to high 

interconnectedness. Large direct and indirect impacts across national and international 

boundaries of natural disasters like Hurricane Katrina, infrastructure failures like the Northeast 

blackout, epidemics like the H1N1 influenza, terrorist attacks like the 9/11, and social unrests 

like the Arab Spring are indicative of the vulnerability associated with growing complexity. 

There is an urgent need for a quantitative framework to understand resilience of complex 

systems with different system architectures. In this work, a novel framework is developed 

that integrates graph theory with statistical and modeling techniques for understanding 

interconnectedness, interdependencies, and resilience of distinct large-scale systems while 

remaining cognizant of domain specific details. The framework is applied to three 

diverse complex systems, 1) Critical Infrastructure Sectors (CIS) of the U.S economy, 2) the 

Kalundborg Industrial Symbiosis (KIS), Denmark and 3) the London metro-rail infrastructure. 

These three systems are strategically chosen as they represent complex systems of distinct sizes 

and span different spatial scales. 
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 The framework is utilized for understanding the influence of both network structure 

level properties and local node and edge level properties on resilience of diverse complex 

systems. At the national scale, application of this framework on the U.S. economic network 

reveals that excessive interconnectedness and interdependencies among CIS significantly 

amplify impacts of targeted disruptions, and negatively influence its resilience. At the regional 

scale, analysis of KIS reveals that increasing diversity, redundancy, and multi-

functionality is imperative for developing resilient and sustainable IS systems. At the urban 

scale, application of this framework on the London Metro system identifies stations and rail 

connections that are sources of functional and structural vulnerability, and must be secured 

for improving resilience. This framework provides a holistic perspective to understand 

and propose data-driven recommendations to strengthen resilience of large-scale complex 

engineered systems. 
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1.0  INTRODUCTION 

1.1 COMPLEX SYSTEMS: IMPERATIVE TO BUILD RESILIENCE 

In a highly interconnected world, impacts from events are significantly amplified [1]. For 

example, impacts arising from natural disasters like Hurricane Katrina and Hurricane Sandy, 

infrastructure failures like the northeast blackout, epidemics like H1N1 influenza, terrorist 

attacks, and social unrests like the Arab spring have large consequences cutting across national 

and international boundaries [2-4]. Figure 1 shows the increasing trend of economic damages 

due to natural disasters over the years [5]. Isolated disasters within an interdependent system 

trigger a chain of events that amplify the direct and indirect impacts within the system. The 

Northeast Blackout of 2003 is a prime example of such cascading impacts where disruption on a 

single power plant resulted in an electric grid failure, which in turn affected communication, 

transportation and water supply infrastructure for 55 million people [6]. To minimize such 

cascading impacts [7], there is an urgent need to adopt a systems approach to comprehend 

complexity of engineered systems and its implications for resilience [8-10]. 
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Figure 1. Economic Impacts of Natural disasters in 2005-U.S. ($) Million from 1970 to 2012 [5]. 

The recent increase in catastrophic disasters with large-scale cascading impacts indicates 

the increasing interdependence of engineered systems [11-13]. In order to develop engineered 

systems that are able to survive disasters without experiencing cascading failures, many 

researchers have advocated for a social-ecological approach. This approach considers engineered 

systems nested within ecological systems that are dynamically transforming in response to each 

other [14, 15]. Such a ‘human-environment’ systems approach allows engineers to design 

systems that are able to absorb unforeseen social and ecological stresses, and maintain their 

structure and function [16, 17]. This capacity of the system is commonly termed resilience [18, 

19]. A system that structurally disintegrates and loses its functionality when it suffers a shock 

can hardly be called sustainable and resilient, even if it is highly eco-efficient with low resource 

intensity and emissions [20, 21]. Therefore, the solution to this “wicked problem” of designing 

sustainable complex systems relies on understanding fundamentals of resilience. This realization 

has triggered a considerable increase in research investigating resilience and has popularized the 

subject. Figure 2 illustrates the evolution in sustainability thinking. 
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Figure 2. Evolution of the perspective on sustainability. 

The concept of resilience is a complex one, and it is challenging to create metrics that 

measure resilience in a quantitatively rigorous manner [22, 23]. Bulk of the scientific literature 

on resilience assessment takes a qualitative approach in order to recommend design strategies 

that increase resilience [14, 24]. Yet such studies are unable to address the cyclical nature of 

tradeoffs between these recommended design strategies and resilience, for example- if one builds 

resilience principles such as redundancy and diversity, one is paradoxically increase complexity 

that in turn may impact resilience. On the other hand, studies that have developed quantitative 

frameworks to measure resilience for specific systems cannot be extended to other complex 

systems with different vulnerabilities and interconnections within and with other systems [25, 

26]. There is an urgent need for a quantitative framework to understand resilience of complex 

systems with different system architectures and relationships between the interacting components 

[27]. 
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1.2 RESILIENCE ASSESSMENT OF COMPLEX SYSTEMS: CASE STUDIES 

There is no consensus on the definition of complex systems, but researchers agree that complex 

systems consist of interactions between many different components that adapt to the patterns 

created by these components [28, 29]. In order to study a representative sample of complex 

systems, distinct infrastructure and industrial systems are chosen as case studies. A graph 

theoretic framework is developed and applied to the following three distinct complex systems to 

understand and quantify their resilience: the U.S. economic system, the Industrial symbiosis (IS) 

system at Kalundborg, and the London metro network. Analysis of these three complex systems 

with varied scopes, system boundaries, relationships between the system components and overall 

network topologies will aid in developing the theoretical understanding of resilience.  

The three case studies are selected not just for understanding fundamentals of resilience 

they provide, but also with the intention to recommend strategies to improve resilience of these 

systems. Although the three case studies at hand are considerably different, the aim is to 

understand their network architecture and its implications for resilience while remaining 

cognizant of their functionality. Previous studies have called for comprehensive resilience 

assessment of all three case studies, however a quantitatively rigorous is yet to be developed and 

applied to them. Application of this methodology has provided insights that can inform policy 

makers and decision maker, and arm them with data to take tough decisions. 

U.S. Economic Input-Output (EIO) Network: The first case study aims to understand the 

network architecture of the U.S. EIO network, with focus on coupling of Critical Infrastructure 

Sectors (CIS), and its implication for the resilience of economic systems. The inherent 

complexity of the economic system causes a domino effect where stress on one sector directly 

and indirectly impacts multiple other sectors upstream and downstream in the supply chain. In an 
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effort to mitigate the impact of natural and technological disasters on the nation’s safety, 

prosperity and health, the recent U.S. Presidential Policy Directive (PPD 21) on Critical 

Infrastructure Security and Resilience establishes a national policy to manage risk and develop 

resilience of CIS [30]. In addition, it identifies 16 CIS whose incapacity due to hazards, ranging 

from natural disasters to cyber-attacks, would have a debilitating impact on the nation’s security, 

economy, health and safety. Therefore, it signifies the importance of building resilient CIS for 

improving the overall resilience of the economic system. The U.S. economy exemplifies an 

excellent context to understand interdependencies, vulnerabilities, and resilience of large-scale 

complex systems.  

Industrial Symbiosis network: The second case study focuses on understanding and 

designing heuristics to improve resilience of IS networks by identifying vulnerabilities and 

evaluating its evolution. IS networks comprise of industries with synergetic relationships, where 

one industries waste is another industries raw material [31]. IS networks are highly complex and 

resource efficient with substantial economic and environmental benefits for the participating 

industries. However, they are fragile because of the coupled nature of connections between the 

participating industries. A disturbance affecting even one industry can result in a complete 

breakdown of the IS system. For this reason, the focus is on understanding interconnections and 

vulnerabilities to build resilience in the IS system at Kalundborg (referred to as KIS), Denmark, 

which is one of the most studied eco-industrial parks. KIS is good proxy to study resilience of IS 

parks because of the large quantities of publicly data and research available on it, which is 

lacking for newer IS system that are mushrooming in newly industrialized countries like China 

and India, among others. 



 6 

London Metro network: The third case study focuses on understanding the implications 

of spatial organization of a city and the network structure of its metro-rail system (also called 

metro system) for the resilience. Rapid urbanization in megacities, especially from developing 

countries, has boosted the demand for transportation, and further strained existing fragile 

transportation infrastructure like metro system. Moreover, spatial organization of megacities also 

impacts the performance of transportation systems. For this reason, metro network structure is 

examined to understand resilience of metro systems in polycentric cities by integrating graph 

theory approach with geospatial analysis. Specifically, the London Metro System (also known as 

the Tube) is studied since it is a good example of a large-scale metro network in a city with a 

polycentric spatial organization.  

For each of these case studies, a systems framework is developed that primarily employs 

graph theory techniques to understand resilience of unique complex systems in a quantitative 

fashion. Since the resilience of a system is essentially a function of the vulnerability in the 

system, the graph theory framework developed considers vulnerability at both the level of the 

individual system components and the overall system level. 

1.3 RESEARCH OBJECTIVES 

The core goal of this research was to develop a graph theoretic framework to elucidate attributes 

of network structures that aid in building resilience, and subsequently, formulate design 

strategies that bolster resilience in new and pre-existing complex systems. Three case studies 

were used to understand the resilience of complex systems: 1) CIS in the 2007 U.S. Economic 

Input-Output (IO) network, 2) IS network at Kalundborg, Denmark, and 3) London Metro-rail 
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infrastructure network, UK. This approach combined the use of relevant biophysical data, for 

instance-- economic flows between industries for case study 1, water exchange between 

industries in case study 2, and passenger flow between stations in case study 3, with graph theory 

based tools and techniques to advance resilience in built environment systems. The research 

spanned multiple case studies, each of which provided key insights for developing strategies 

specific to the system type with the graph theoretic framework. The overall objectives were to:  

1. Model interdependencies and interconnectedness of CIS in the U.S economy to understand 

its implications on resilience of economic systems by integrating graph theory based analysis 

of complex networks with the 2007 U.S. IO Benchmark model. (Chapter 3) 

2. Determine vulnerabilities and evaluate the evolution of the KIS network to understand its 

resilience by integrating the concepts of graph theory with biophysical information about 

symbiotic resource flows. (Chapter 4) 

3. Analyze the network topology of the London metro system by graph theory based techniques 

to identify specific network properties that would improve resilience of metro systems in 

polycentric urban regions. (Chapter 5) 

4. Assess and compare network properties essential for resilience building ascertained from the 

analysis of the distinct complex systems in the case studies. (Chapter 6) 
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1.4 INTELLECTUAL MERIT 

This research has led to creation of a novel quantitative framework that integrates graph theoretic 

modeling approaches with other mathematical models for understanding resilience of a complex 

system. This hybrid resilience framework provides a holistic perspective to understand and 

propose data-driven recommendations to strengthen resilience of large-scale engineered systems, 

which is especially necessary for disaster preparedness and pre-hazard planning of new and 

existing interdependent infrastructures. In addition to its ability to explore resilience of 

infrastructure systems through a social-ecological approach, this framework can be extended to 

develop computational and visualization tools for specific infrastructure projects and sectors.   

The aim of this research is to fill fundamental research gaps regarding resilience within 

the sustainability literature. The quantitatively rigorous approach developed in this research is 

useful for providing necessary insights to policy makers and stakeholders for building resilience. 

Moreover, this research has resulted in creation of system-specific metrics that identify and rank 

system components whose disruption have the greatest impact on the entire structure and 

function of the system. This information is particularly useful when it comes to design and 

development of effective disaster preparedness and infrastructure protection plans. Application 

of this approach on individual case studies has been particularly insightful for understanding that 

there is no universal theory of resilience, and resilience strategies significantly differ for distinct 

complex systems.  
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1.5 BROADER IMPACTS 

With growing concerns over global environmental change that have prompted strict directives 

from international, national and local governing agencies to reduce emissions and resource 

consumption, there is an unprecedented amount of urgency to understand network architecture of 

resilient complex systems. This work impacts the broad academic community and aids 

policymakers in developing informed systemic interventions at several levels. This work takes 

the form of three peer-reviewed articles that are at various stages of publication during the final 

writing herein:  

1. Understanding Resilience in Industrial Symbiosis Networks: Insights from Network 

Analysis, Journal of Environmental Management, 2014. [32]  

2. Interconnectedness and Interdependencies of Critical Infrastructures in the U.S. 

Economy: Implications for Resilience, Physica A: Statistical Mechanics and its 

Applications, 2015. Accepted  

3. Exploring Resilience of the London Metro-rail system using Graph Theoretic 

Approaches, Scientific Reports, 2014. To be submitted.  

1.6 DOCUMENT STRUCTURE 

The background of the work, including a detailed review of prior research in the area is 

presented in Chapter 2.  Chapter 3, 4 and 5 focus on addressing the specific objectives. Chapter 3 

presents the background, methodology and results for the case study on critical infrastructure 

sectors in the U.S economy. Chapter 4 presents the background, methodology and results for the 
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case study on the Kalundborg Industrial Symbiosis network in Denmark. Chapter 5 presents the 

background, methodology and results for understanding the resilience of the London metro 

system. 

The overall implications of this work, as well as prospects for future work, are discussed 

in Chapter 6. Collected data and supporting information are available in the Appendices, with 

Appendix A providing data and assumptions for case study on the U.S. economy, Appendix B 

providing detailed information regarding the network analysis of the Kalundborg Industrial 

Symbiosis network, and Appendix C providing additional information for London Metro system 

case study. 
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2.0  BACKGROUND AND LITERATURE REVIEW 

2.1 DEFINING RESILIENCE OF COMPLEX SYSTEMS 

Figure 3. Ball and trough representation of a system [19]. 

The system modifies its equilibrium state as it goes from 1-4. System in snapshot 1 is resilient to changes, but in 

snapshots 2 and 3 it loses resilience, where even a small perturbation can change the state of the system. 

Resilience in complex systems is examined differently on the basis of the assumption regarding 

the presence of single or multiple equilibrium states in the system [19]. Just as noted in the 

differing perceptions of sustainability, one definition of resilience aims at stability of a system by 

promoting efficiency, constancy and predictability, features desired by engineers to design fail-

safe systems [19]. These systems are designed to have stability near a single equilibrium state, 
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and resilience is measured in terms of how quickly the system returns to its steady state after it is 

perturbed to move away from the equilibrium [19]. For instance, an assembly line of a car is 

designed to have a single steady state. If the linear design of the system aimed to provide 

maximum efficiency breaks down, resilience of the assembly line will be measured in terms of 

the time taken for it to recover its functionality [26]. This type of resilience is known as the 

engineering resilience. 

On the other hand, the second type of resilience called ecological resilience describes the 

behavior of dynamic systems by emphasizing persistence, change and unpredictability, features 

essential to design safe-to-fail systems [19]. Thus, contrary to engineering resilience, ecological 

resilience considers multiple equilibrium states as illustrated in Fig 3, and is defined as the 

magnitude of stress a system can experience and absorb before it moves to another equilibrium 

state [19]. Ecological systems are able to cope with stresses because of their robustness, similarly 

social systems are also able to cope and persist with change when considered in isolation. 

However, in reality these social and ecological systems are coupled, and dynamically interwoven 

with each other [26]. A disruption on either of these coupled complex systems can cascade to the 

other system, and trigger a change in its equilibrium state. Thus, one needs to look beyond 

robustness against known stresses [11], and develop the ability to adapt and self-organize in the 

face of unknown stresses [33]. The capability of the system to absorb disruptions while 

maintaining the structure, function and control components is the widely accepted definition of 

resilience, and is also known as the social-ecological resilience [13]. To arm decision makers 

with information on design of resilient, sustainable complex systems, it is essential to identify 

structural properties that are responsible for resilience using empirical data [34]. 
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2.2 RESILIENCE: RELATION TO SUSTAINABILITY 

To understand the relevance of resilience in the context of sustainability it is necessary to discuss 

the predominantly accepted definition of resilience. Resilience is frequently described as the 

capability of any system to absorb disruptions while maintaining its structure and function [15, 

20, 21, 35, 36]. It is the adaptability and plasticity of the system in response to stresses [15], 

irrespective of whether they arise endogenous or exogenous to the system. Thus, a resilient 

system is able to maintain its functionality by modifying its structure in response to stress. On 

the other hand, a system that is unable to maintain its structural cohesion when under stress, can 

hardly be sustainable [20, 21]. Therefore, the solution to the “wicked problem” of designing 

sustainable complex systems appertains to understanding the fundamentals of resilience. 

Even though consensus has reached on the significance of resilience to develop 

sustainability, there still exists difference in opinion regarding the influence these two concepts 

have on each other [13, 33, 37]. This disagreement is embedded in the definition of sustainability 

used. An accounting perspective on sustainability is synonymous to efficiency; where 

biophysical approaches such as life-cycle assessment (LCA), material flow analysis (MFA), etc. 

assess the impact in terms of consumption of natural resources or pollution prevention [35]. This 

approach on sustainability has resulted in studies arguing that resilience is either not an important 

feature of the system, or it is one of many responsible for sustainability [38]. On the other hand, 

others aspire to move away from the simple cause-effect relationship assumed by the accounting 

approach, and understand sustainability with respect to the system-wide interactions that result in 

complex dynamics [35]. Researchers applying a systems approach to sustainability either 

endorse resilience as a prerequisite for sustainability or consider them interchangeable [21, 39, 

40]. However, attempts are being made to integrate these differing perspectives on sustainability 
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assessment by building models of complex systems using their biophysical information like 

network environ analysis (NEA) [20, 41]. Such research ventures focused on understanding the 

nature of resilience of complex adaptive systems for the purpose of furthering sustainability are 

paramount. 

2.3 ILLUSTRATING COMPLEX SYSTEMS AS NETWORKS 

Lately, many fields of research are using complex networks to explore real-world systems such 

as life sciences- brain network [42], genome [43]; engineering- air transport network [44], power 

grid [45]; social sciences- twitter network [46]; and computer science- world wide web [47], to 

name a few. Many real-world systems have been described as models of complex networks, 

where nodes or vertices are system components connected by links or edges that are interactions 

between them, to understand the impact of network structure on the network dynamical behavior. 

Representing systems as networks not only allows visualization of the system, but also allows 

analysis of the structure of the system by using fundamentals from statistics and graph theory 

[48], which is required to study emergent properties like resilience and has been neglected in the 

studies of traditional disciplines (Figure 4). 
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Figure 4. Illustrating Complex Systems as Networks. 

Networks have often been used to model complex systems to visualize interactions between various 

components and study emergent properties. 

 

Growth of computerization has played a significant role in the emergence of complex 

networks. Prior to the age of computerization, analysis of complex topology was restricted to 

Erdös-Rényi (ER) random networks [48]. In 1950s Erdös and Rényi, mathematicians and 

founder of random graph theory, described a network with complex topology using a random 

graph [49]. Yet, due to lack of super-computational power and detailed topological information 

about large-scale real-world systems there was a period of lull in the field [50]. However, the 

emergence of big data analysis caused by increased computing power and computerization of 

data acquisition has stimulated widespread interest in identifying properties associated with 

different types of complex networks. This led to the discoveries of the small-world effect and the 

scale free network, which has shed light on the topological properties of many complex 

networks. 
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Development of the small-world effect and the scale-free network topology has led to 

considerable advances in the field of graph theory. Watts and Strogatz introduced the concept of 

small-world effect in 1998 [51]. This concept gets its name from the common phrase “What a 

small world!” often used by strangers when they meet for the first time, but happen to have a 

common friend. Analogously, in a small-world network, nodes are not connected directly to each 

other but most nodes can be reached indirectly from all other nodes by a small number of steps 

[50]. Which implies that each node has about the same number of connections, and as a 

consequence the connectivity or degree distribution peaks at an average value and decays 

exponentially. Thus, making it a homogenous network. Most social networks exhibit properties 

of small-world networks, but others like the brain network [52], network of cortical neurons [53], 

information systems [54] are few examples of small-world networks from literature. The 

specifics regarding properties of small-world networks are discussed in chapters 4 and 5. 

Many real world networks have also been identified with the scale-free topology. 

Connectivity or degree distributions for networks with scale free topologies follow a power-law 

form, irrespective of their size [48]. Power-law implies that most nodes in the network have very 

few connections with other nodes, while a handful of nodes have many connections in the 

network. Thus, a scale-free network topology is non-homogenous since all nodes do not have the 

same number of connections [50]. Moreover, Barabasi and Albert framed ‘the rich get richer’ 

model to propose that scale-free networks are self-organizing in nature [55, 56]. Since, most real 

networks are dynamically growing by addition of new nodes, in a scale-free network these new 

nodes preferentially attach to existing nodes with large number of connections [55]. Implications 

of degree distribution following a power law are discussed in chapters 4 and 5. 
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In addition, topological properties of systems can be generalized and compared on the 

basis of the difference in their network structures [51, 57, 58]. Recent studies have attempted to 

understand the contribution of network structure for robustness to identify the innate systemic 

vulnerability due to the pattern of interactions [1, 59]. For instance, a network with a scale-free 

topology tends to be robust to random failures/removal of nodes, however it is vulnerable to 

targeted attacks on the network [57]. If a network is unable to adapt to a shock that ultimately 

renders it dysfunctional, then the system is not resilient. Thus, identifying structural properties 

that reduce systemic vulnerabilities are key for understanding resilience and moreover, designing 

for resilience.  

Network analysis employs methods and metrics such as centrality and connectivity 

indices to understand the network structure and the underlying complex set of relationships 

among the nodes [60]. Since these metrics are able to quantify emergent properties of complex 

systems, network analysis provides good indicators for resilience assessment. However, it is 

noted that interpretation of these network metrics are context dependent [61]. Therefore, increase 

in connectivity might improve resilience for one system, but might decrease resilience for 

another scenario. Application of network analysis for understanding resilience of complex 

adaptive systems is at its initial stage [61, 62], but an increase is expected with progress in 

collection and availability of empirical data means greater model accuracy in the future. 

The three networks used as case studies represent diverse strains of complex systems 

with differing scales of magnitude and the relationship between interacting system components. 

At the national scale, the connectedness of the U.S economic network is examined to ascertain 

systemic vulnerability of CIS, while at a regional scale, the fragility of ad hoc IS networks are 

studied. Likewise, the investigation of urban transportation system further provides a unique 
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spatial perspective on resilience. In addition, urban metro/subway transit networks are a part of 

the economic transportation sector, which is one of the CIS in the economy. 

2.4 BACKGROUND: COMPLEX SYSTEMS USED AS CASE STUDIES 

Background and Motivation for selecting the three complex systems as case studies to assess 

resilience based on graph theoretic approaches is discussed next.  

2.4.1 Case Study 1: Critical Infrastructure sectors in the U.S. Economy 

Infrastructure assets, systems and networks that provide essential services and form the nation’s 

backbone are referred to as CIS. The U.S. Department of Homeland Security (DHS) identifies 16 

CIS whose incapacity due to hazards, ranging from natural disasters to cyber-attacks, would have 

a debilitating impact on the nation’s security, economy, health and safety [63]. The recent U.S. 

PPD 21 on Critical Infrastructure Security and Resilience recommends steps to manage risk and 

strengthen the security and resilience of CIS [30]. While the definition for resilience may vary 

across disciplines and systems, the PPD defines CIS resilience as “the ability to prepare for and 

adapt to changing conditions and withstand and recover rapidly from disruptions”. This report 

highlights the importance of building resilient CIS for improving the overall resilience of the 

economic system.  

According to a National Research Council report, natural disasters affecting the U.S. in 

2011 alone yielded close to $55 billion in economic damages [18]. The historical data on 

economic impacts of natural disasters worldwide exhibits an upward trend (illustrated in Figure 
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1), suggesting that this number will continue to soar [5]. Cascading impacts arising from 

increasing number of natural, man-made and technological disasters may continue to rise as 

complexity grows. There is an urgent need to identify, understand and analyze functional 

interdependencies and structural vulnerabilities in economic systems [3, 64-67]. 

2.4.1.1 Modeling Critical Infrastructure Interdependencies 

Many researchers have devoted themselves to the challenging task of modeling and simulating 

interconnectedness and interdependencies of complex CIS. They have indicated that before 

modeling interdependencies between CIS, it is necessary to identify and characterize the nature 

of their interactions. Zimmerman categorizes interdependencies as functional and spatial [68]. 

Functional interdependencies refer to situations in which infrastructure systems are dependent on 

one another for their operation (e.g. the functioning of the railroad system is dependent on 

communication systems). Spatial interdependencies occur due to geographic proximity of 

infrastructures (e.g. underground collocated lines of telecommunication, power, water, and 

sewage infrastructures can affect one another.). Zimmerman’s functional interdependencies 

broadly encompass the following classes of interdependencies categorized by Rinaldi: physical 

interdependencies, i.e. based on infrastructure outputs; cyber interdependencies; and logical 

interdependencies, such as banking, taxation, etc. [68, 69]. There are additional 

interdependencies types defined by other researchers [70-73]; however, the classification of 

interdependencies based on Rinaldi and Zimmerman are quite comprehensive. Also, while 

modeling spatial interdependencies between various CIS is equally essential, such a study must 

be done at a regional level with high-resolution data. 

Some studies have utilized empirical approaches to analyze interdependencies among 

CIS based on data from incident records (media reports, newspapers, official ex post assessment, 
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etc.  to quantify societal impacts caused by cascading failures [74-81]. Others have used agent 

based and system dynamics based approaches to model interdependencies among CIS as 

complex adaptive systems (CAS) that are able to handle the inherent complex behavior of CIS 

[82]. Some tools based on ABM and SD models include Aspen, Aspen-EE, CommAspen, and N-

ABLE developed by Sandia National Laboratories [83-89]. While the aforementioned methods 

have been extensively applied to understand the structure and behavior of CIS per se, researchers 

have not explored the possibility of using these methods for understanding the implications of 

CIS interdependencies on resilience of economic systems. Also, the above-mentioned 

methodology is restrictive because of the lack of CIS-related data, which hampers calibration of 

model parameters and functions, and inhibits validation of results. [90].  

Among approaches used to model CIS interdependencies, graph theory based approaches 

are one of the most frequently employed techniques to understand and quantify the coupling 

phenomena between different infrastructures as a set of nodes linked by edges [72, 91, 92]. 

Graph theory has proven useful for both providing topological understanding of CIS 

connectedness using graph level metrics and statistics, as well as for identifying individual 

infrastructure vulnerabilities based on node level metrics [92]. EIO models have also been used 

to model CIS interdependencies based on empirical economic data and understand the complex 

nature of economic relations between them [93, 94]. EIO models have been successfully used to 

analyze the impact of various disruptive events. Some examples include simulating the impact of 

terrorist attacks on Virginia’s interdependent transportation systems [95], the impact of high-

altitude electromagnetic pulse attack on different economic sectors [93], the reduction in demand 

of air transportation after terrorist attacks [96], the impact of the 2003 Northeast Blackout [97], 

the impact of hurricane Katrina on power transmission and telecommunication systems [98], the 
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economic impact of cyber-attacks on oil and gas sector [99], and the economic impact of Peak-

oil-induced increase in oil prices [100]. While EIO models have certain inherent limitations such 

as their linear nature and rigid structure, researchers argue that strengths of EIO models for 

assessing higher-order impacts of disruptions and ranking vulnerable interdependent 

infrastructure sectors outweigh their weaknesses [101, 102]. EIO models are particularly well 

suited for modeling infrastructure interdependencies as they are based on observed empirical 

data [73, 90, 103-105]. While these studies are able to determine cascading impacts and systemic 

vulnerabilities, more attention is needed to develop design strategies for improving resilience 

based on topological properties of infrastructure networks [106].  

2.4.1.2 Integrating Graph Theoretic Approaches with EIO data 

Recent studies have used IO data for national economies to analyze the overall economic 

structure using graph theory tools and techniques [107]. The available IO data on different 

countries have different levels of aggregation. For example, the U.S. IO network is divided into 

approximately 400 industrial sectors, while structured analysis (STAN) data provided by OECD 

comprises of merely 39 sectors. This is very important, because the analysis of IO data of the 

same country but with different levels of aggregation can lead to different conclusions, and 

models based on the more aggregated data has less predictive capability. For instance, studies 

that have assessed degree distributions of detailed U.S IO networks for different time periods 

have consistently concluded that connectivity of industrial sectors follow a power law [108, 

109], on the other hand McNerney’s study that utilizes coarser IO data compiled by OECD does 

not exhibit the same behavior [110]. Therefore, for credible modeling of cascading impacts and 

analysis of network structures it is necessary to use the highest resolution IO data available for 

the country’s economy.  
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 Xu and colleagues attempted to understand the interconnectedness of economic sectors 

and its implication on the functionality and resilience based on the impact of shocks on the U.S. 

economic IO tables [108]. Following their lead, Han and Goetz explored economic complexity 

of local economies of U.S. counties to predict resilience [109]. Studies focusing on cross-country 

comparison of network structure have used aggregated IO tables. McNerney, Fath and Silverberg 

compared the topology of industrial networks for twenty OECD nations in terms of their node 

and link size distributions and community structure, and found similar underlying network 

structures for most economies [110]. Contreras and Fagiolo [111] analyzed how shocks 

propagate in twenty two European economies based on aggregated IO data sets from Eurostat. 

Indeed, focus of researchers on robustness to estimate dependencies among industrial sectors of 

economic networks has helped understand resilience. However much work is still required to 

understand the nature and extent of interdependencies between specific CIS that amplify impacts 

caused due to perturbations, and its influence on economic resilience.   

The definition of social-ecological resilience-- the ability to absorb shocks by adapting 

and re-organizing for maintaining its structure, function and control components of the system, is 

applicable to economic systems as well.  In economic systems, adaptation and re-organization 

follow a number of recovery patterns shaped by exogenous forces like the markets or novel 

technological innovations, which are extremely difficult to model or predict. For this reason, 

resilience of economic networks tends to focus on the ability of the system to resist changes to its 

structure and remain at its equilibrium state during the initial decline, rather than recovery 

process.  The understanding behind this is that an economic system whose network structure 

causes greater cascading impacts is less resilient. Also, an economic system with a network 

structure that experiences smaller cascading impacts makes a faster recovery, and thus is more 
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resilient. Thus, identifying structural properties to reduce cascading impacts is a key for 

understanding resilience and moreover, designing for resilience. 

The focus is on understanding the implications of CIS interdependencies on resilience of 

economic systems. To accomplish this, a systems approach is adopted that combines the 

empirical economic input-output (EIO) data with graph theory based tools and techniques for 

industry-level interdependency analysis to advance our understanding of resilience in economic 

systems. This research is absolutely pivotal for understanding the network structure and system 

properties that decrease systemic vulnerability by reducing the cascading impacts propagating 

throughout the system, and ultimately build resilience of economic networks.  

2.4.2 Case Study 2: Industrial Symbiosis at Kalundborg, Denmark 

Recently, there has been a revival of interest in Industrial Symbiosis, or IS, – a mutually 

beneficial relationship between industries that achieve productive use of waste and by-products – 

due to its growing appreciation among policy makers for its ability to improve economic and 

environmental issues, that consequently promotes sustainable development [112]. IS is being 

pursued in both developing and developed countries of the world for stimulating sustainable 

development from a local to a global scale. A recent publication The Roadmap for a Resource 

Efficient Europe supports and encourages IS for maximizing resource consumption by all EU 

member countries, and is a core economic directive for the future. Likewise, Organization for 

Economic Cooperation and Development (OECD) recognizes IS as a tool for furthering green 

growth and eco-innovation, and recommends its application [113-114]. Asian economies such as 

China and India have been extensively implementing Eco-Industrial Parks (EIPs) [115-117]. 

Especially China has developed the largest EIP network by incorporating 15 National 
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Demonstration EIPs and 45 National Trial EIPs [115]. Thus, such widespread utilization and 

furtherance of IS by most economies in the world has engendered a demand for developing a 

sound theoretical framework of IS.  

2.4.2.1 Previous Research on Industrial Symbiosis parks 

Studies on foundations of IS have been performed since the early nineties; however, increasing 

waste disposal costs, environmental degradation and raw material scarcities have led to mounting 

interest in sustainable development in recent years. Much research has been carried out on 

genesis and evolution of IS networks [118], redefining the IS system and its system boundaries 

[112], and impacts of implementing IS networks [119] [115]. Moreover, other works have 

attempted to correlate social factors and performance of the IS system itself by looking at the 

coordination and organization of the actors and the information available to them for initiating 

synergies [120] [117] [116]. 

One of the oldest known examples of IS is the eco-industrial park in Kalundborg, 

Denmark. Industrial symbiosis at Kalundborg (KIS) creates an exchange network of waste, water 

and energy among companies based on contractual dependency. KIS began in the early 1960s 

and is one of the oldest known IS networks. It originated with a strategy to reduce exploitation of 

groundwater in the face of growing groundwater deficit in the area and increasing water demand 

by the industries; subsequently, it has developed from a water exchange network to a network 

with more than 20 different by-product synergies [121, 122]. 

In accordance with the definition of IS, the synergistic flow of by-product and waste 

streams between the power plant, the oil refinery, the district municipality, and other industries 

in the region of Kalundborg has not only led to an increase in the resource efficiency but also in 

the economic gains of the participating industries. Although such IS systems are efficient, 
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complex networks, a disturbance at even one industry may lead to a domino effect and cascading 

impacts on the rest of the network. Additionally, since most of the exchanges were established 

because of social interactions between managers and owners of industries at Kalundborg [123] 

[31], the network is not strategically planned and coincidental in nature which makes it 

vulnerable to unforeseen and catastrophic events. Several studies exist in the literature that 

focuses on the application of industrial ecology concepts to quantify resource savings and 

emissions reduction at the KIS network [31, 123] [121]. However, none of these studies have 

focused on examining the resilience of the highly interconnected and symbiotic industrial 

network in a rigorous quantitative manner. Resilience is the capability of the system to absorb 

disruptions before it changes its properties that controls its functionality. This property allows an 

IS network to endure the impact of unforeseen events [20].  

2.4.2.2 Modeling Industrial Symbiosis parks as Networks 

IS systems demonstrate self-organizing capability, similar to complex adaptive systems like 

natural ecosystems, to maintain their functionality to counter stresses [124]. Understanding 

resilience of such complex networks will aid in assessing the capacity of the system to retain its 

function by maintaining its structure while under stress [21]. However, there is a notable 

disparity in the understanding of resilience in the context of engineered systems. It has been 

argued that a close relationship exists between resilience and sustainability where the former 

concept is a prerequisite for the latter [21, 39, 40]. On the other hand, some researchers consider 

resilience equivalent to sustainability [15, 40, 125] and while a few others consider resilience 

inadequate for attaining sustainability in specific instances [15, 38]. However, among all the 

uncertainty surrounding the relationship between resilience and sustainability, the need for 

developing resilient and efficient IS networks for improving sustainability, is a certainty. 
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There also exists a rich body of literature in the area of network analysis. For example, 

concepts of Social Network Analysis have been employed to determine the morphology of KIS 

[126]. Network Environ Analysis (NEA), a system-oriented modeling tool that examines the 

structure and flows of materials in an ecosystem has also been used for Ecological Risk 

Assessment studies for prediction of possible ecological impacts arising from stresses on the 

system [127]. However, there has been little to no emphasis on applying the concepts of network 

analysis for understanding resilience. A simple cause-effect type of computation among the 

actors may neglect the information of indirect effects and system-wide properties arising due to 

the interactions [127] that will be assessed through a systems approach. Thus, a network 

perspective is useful for developing in-depth understanding and plugging gaps in the foundations 

of IS studies. 

This work attempts to bridge the gap between IS networks and their ability to cope with 

disruptions by adopting a networks approach. The 2002 snapshot of the water synergy network at 

Kalundborg is extensively used to reveal industries with the highest vulnerability, using network 

metrics like centrality indices and network efficiency, to design resilient IS systems for the 

future. The present work aims to deliberate on a universal theoretical framework for the 

advancement of resilient IS networks. 

2.4.3 Case Study 3: Transportation Infrastructure systems: Urban Metro systems 

Urban metro transit systems have greatly benefitted metropolitan areas in the past, both 

economically and environmentally, and will play an even more important role with the growth of 

megacities (cities with population of over 10 million) around the world. Cities account for no 

more than 1% of the Earth’s surface area, yet consume 75% of its natural resources and occupy 
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over 50% of the global population [128, 129]. Further, increasing trends of urbanization and 

changing spatial organization of cities point towards challenges for the urban ecosystem that are 

accompanied with growing dependence on an urban lifestyle [128, 130, 131]. There is a great 

necessity for creating sustainable and resilient urban infrastructures that are capable of 

supporting large percentages of the globe’s population.  

Public transportation infrastructure including metro systems have known to impact the 

economy through direct impacts such as direct cost savings for businesses and households due to 

reduced traffic congestion and shift in consumer spending due to cost savings for public 

transportation passengers, that indirectly encourage regional business growth [132]. In addition, 

environmental benefits of shifting urban travelers from privately owned vehicles to metro rail 

transportation are straightforward. Urban metro transit systems are successful in reducing traffic-

generated emissions of greenhouse gases caused by combustion of fossil fuels [133]. However, 

by 2050, it is estimated that two-thirds of the world’s population will live in urban areas. Such 

rapid urbanization tends to exert pressure on urban infrastructure and services that have not been 

able to grow at the same rate to support the increasing population [134]. Transportation 

infrastructure in megacities, especially in developing countries, is extremely vulnerable to 

congestion derived infrastructure stresses and environmental challenges.  For this reason, the 

development of resilient transit systems is crucial for long term sustainability of megacities in the 

future [135].  

2.4.3.1 Analyzing Large-scale Transportation systems via Graph theoretic approaches  

Graph theory has been extensively used for the investigation of transport networks. Road 

transport systems were the first to be researched with a graph theory approach mainly combined 

with an economic approach to assess the regional economic impacts of the US interstate highway 
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system and various freeways built in cities in the 1960s and 70s, prior to the era of 

computerization [136]. In this era, Garrison and Marble[137-139], and Kansky [140] pioneered 

the use of graph theory by creating specific indicators to analyze road transport networks. 

Recently there has been a return of graph theory for the study of road networks [141], with 

studies creating new indicators to measure properties of road transportation networks [142], 

understanding their robustness [143], and studying the impact of their network structure on travel 

distance, trip assignment and even mode choice [144]. A graph theoretic approach was not 

applied to public transportation networks until the 1980s [136]. Lam and Schuler [145] were the 

first to apply graph theory to public networks, but Vuchic and Musso [146] made the most 

significant contribution by creating network indicators specific for public transit systems such as 

directness of service, average inter-station spacing and line overlapping [133, 147]. 

Over the last 15 years, significant progress has been made in supplementing the 

quantification of reliability and robustness within large-scale transportation systems, and 

network analysis has emerged as the tool of choice [143, 146, 148]. Application of network 

analysis to metro systems has enabled quantification of topological properties that influence its 

resilience, as has been the case for complex systems in economics (trade networks, etc.) and 

engineering (electric grid, etc.), among others. Using network analysis, Latora and Marchiori 

identified the small-world property of the Boston transportation system, suggesting that the 

topology of the transportation network enmeshes desirable levels of interconnectivity and 

redundancy [54]. Previous studies have also adopted a networks approach to comprehensively 

compare various metro systems across the globe based on new network indicators [148-151]. 

Derrible and Kennedy applied new and existing metrics to make more decisive claims about the 

organization of the network that directly relate to the robustness, resilience and efficiency of 
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metro systems [148].  Ip and Wang also developed quantitative measures for resilience and 

friability of cities in the mainland China railway network [152]. Most of the above mentioned 

studies attempt to understand and identify network properties that influence reliability and 

robustness of metro systems based on its topology and geographic location. These studies have 

been unable to incorporate urban dynamics in terms of passenger flow patterns in these network 

models of metro systems to develop a comprehensive understanding of its resilience.  

For this reason, a novel graph theoretic approach is utilized to quantitatively assess the 

influence of the network structure, the spatial locations of specific network components, as well 

as the patterns of intra-urban movement, on the resilience of metro-rail infrastructure. 

Specifically, the comprehensive London underground metro system is examined as a case study 

for our analysis.  
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3.0  INTERCONNECTEDNESS AND INTERDEPENDENCIES OF CRITICAL 

INFRASTRUCTURE IN THE U.S. ECONOMY: IMPLICATIONS FOR RESILIENCE 

The following chapter is based on an article accepted in Physica A: Statistical Mechanics and its 

Applications with the citation: 

Chopra, Shauhrat S., and Vikas Khanna. “Interconnectedness and Interdependencies of Critical 

Infrastructures in the U.S. Economy: Implications for Resilience” Physica A: Statistical 

Mechanics and its Applications (2015). Accepted 

 

The chapter combines the manuscript and supporting information currently in print with 

Physica A: Statistical Mechanics and its Applications. Additionally, extraneous supporting 

information submitted with the manuscript appears in Appendix A.  
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3.1 INTRODUCTION 

Modern society is critically dependent on the stability and performance of complex infrastructure 

networks for almost every social and economic function. Infrastructure assets, systems and 

networks that provide essential services and form the nation’s backbone are referred to as critical 

infrastructure sectors, or CIS. DHS identifies a list of 16 CIS whose incapacity due to hazards, 

ranging from natural disasters to cyber-attacks, would have a debilitating impact on the nation’s 

security, economy, health and safety [63]. The far-reaching importance of CIS is a result of 

increasing interconnectedness between them (as is the case with energy supply, 

telecommunications and transportation), which may result in unpredictable consequences and 

risks. Additionally, individual industry sectors in an economic system are inherently 

interdependent and interconnected, and disruption on any single sector can trigger a ripple 

throughout the economy affecting sectors that are directly and indirectly interacting with the 

triggering sector [69]. 

In recent times, impacts arising from natural disasters like Hurricanes Katrina and Sandy, 

infrastructure failures like the Northeast blackout, epidemics like the H1N1 influenza, terrorist 

attacks like the 9/11, and social unrests like the Arab Spring have had large consequences across 

national and international boundaries [2-4]. Impacts from these events have been significantly 

amplified because of the interdependencies and feedback mechanisms between our society, the 

environment and the CIS [1]. According to a National Research Council report, natural disasters 

affecting the U.S. in 2011 alone yielded close to $55 billion in economic damages [18]. The 

historical data on economic impacts of natural disasters worldwide exhibits an upward trend, 

suggesting that this number will continue to soar [5]. Cascading impacts arising from increasing 

number of natural, man-made and technological disasters may continue to rise as complexity 
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grows. There is an urgent need to identify, understand and analyze functional interdependencies 

and structural vulnerabilities in economic systems [3, 64-67]. 

The recent PPD 21 on Critical Infrastructure Security and Resilience recommends steps 

to manage risk and strengthen the security and resilience of CIS [30]. While the definition for 

resilience may vary across disciplines and systems, the PPD defines CIS resilience as “the ability 

to prepare for and adapt to changing conditions and withstand and recover rapidly from 

disruptions”. This report highlights the importance of building resilient CIS for improving the 

overall resilience of the economic system.  

Economies are self-organizing, complex systems comprised of industrial sectors, firms, 

and consumers that interact with and react to one another [28]. Resilience for economic systems 

has been previously defined in terms of its structural robustness as the ability to maintain its 

functionality in response to disruptions [36, 108]. Based on this definition, key sectors/hubs for 

the economic system are identified that are a source of vulnerability to comment on its resilience. 

However, previous studies stop short of assessing the subsequent cascading impacts on rest of 

the sectors resulting from a disruption on one of these key sectors. To address this issue, the 

concept of ecological resilience is adapted to define resilience of complex industrial and 

infrastructure systems as their ability to resist structural and functional change, and minimize 

deviation from its original state during initial decline after disruption [19, 20, 32]. As per this 

definition, an economic system is not considered resilient if it suffers large cascading impacts 

because of its topology, which is governed by the patterns of interconnectedness and 

interdependencies between industrial sectors. 

Previous work has focused on the challenging task of characterizing, modeling, and 

simulating interconnectedness and interdependencies of complex CIS. Zimmerman categorizes 
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infrastructure interdependencies as functional or spatial [68]. Functional interdependencies are 

those in which infrastructure systems are dependent on one another for their operation (e.g. the 

functioning of the railroad system is dependent on communication systems). Spatial 

interdependencies occur due to geographic proximity of infrastructures (e.g. underground 

collocated lines of telecommunication, power, water, and sewage infrastructures can affect one 

another). While modeling spatial interdependencies between various CIS is equally essential, 

such a study must be done at a regional level with high-resolution data. The focus is restricted to 

understanding and quantifying functional interdependencies between CIS and other industry 

sectors. 

Previous work has focused on utilizing empirical approaches based on data from incident 

records (media reports, newspapers, official ex post assessment, etc.) to quantify CIS 

interdependencies [8, 74-81]. Other modeling and simulation techniques such as agent based 

modeling (ABM) and system dynamics (SD) have also been employed to model 

interdependencies and complex adaptive behavior of CIS [82]. Some tools based on ABM and 

SD models include Aspen, Aspen-EE, CommAspen, and N-ABLE developed by Sandia National 

Laboratories [83-85, 87, 89, 153]. While the above-mentioned methodologies are valuable, their 

application is restrictive because lack of CIS-related data hampers calibration of model 

parameters and functions, and inhibits validation of results [90].  

An attractive and alternative method for modeling CIS interdependencies is via the use of 

EIO model, originally developed by Nobel laureate Wassily Leontief.  Unlike other 

methodologies the EIO model is based on comprehensive empirical data published by national 

and international agencies such as Bureau of Economic Analysis (BEA) in the U.S. and 

Organization for Economic Co-operation and Development (OECD) globally. The EIO model 
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divides the economy of a particular region into industries or sectors and tracks the monetary 

transactions between them. It is a static and linear model of all purchases and sales between 

economic sectors for a specific time period based on the technological recipe of production. EIO 

models are useful for modeling short-term cascading impacts caused by perturbations on the 

interconnected industry sectors, and identifying functional interdependencies between them [94, 

154-156]. 

At the core of an EIO model is the transaction table also known as the flow or transaction 

matrix (Z) that accounts for all payments to and from a sector in any given year (shown in Table 

1). It is represented as zij where sector j pays sector i the monetary value of the goods and 

services provided by sector i to sector j. In addition to the inter-industry transactions, sector i also 

sells fi worth of goods to the consumers as final demand. The value added, vi contains 

information on employee compensation, profit of business owners, and government tax paid by 

sector i. The column at the right and the row at the bottom represent the total throughput of each 

sector in monetary terms, Xi. The direct requirements matrix A, a normalized Z matrix containing 

direct coefficients aij = zij /Xj, represents the inputs required by a sector as resources from all 

other sectors to produce one dollar of output.  For a changed final demand Fnew, the direct 

economic activity is A x Fnew, while the total economic activity is calculated by  

        (1) 

The term (I – A)-1 is called the Leontief inverse or the total requirements matrix. The above-

mentioned equation is the demand driven model useful in modeling shocks that affect the final 

demand F of an industry. Similarly, to assess cascading impacts of a disruption that reduces total 

output of sectors, a mixed-model or supply-constrained model has been developed [157]. This 

model is further discussed in the methods section (Chapter 3.2).  
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Table 1. Tabular representation of the economic input-output (EIO) model 

EIO models have been successfully used to analyze the impact of various disruptive 

events. Some examples include simulating the impact of terrorist attacks on Virginia’s 

interdependent transportation systems [95], the impact of high-altitude electromagnetic pulse 

attack on different economic sectors [156], the reduction in demand of air transportation after 

terrorist attacks [96], the impact of the 2003 Northeast Blackout [97], the impact of hurricane 

Katrina on power transmission and telecommunication systems [98], the economic impact of 

cyber-attacks on oil and gas sector [99], and the economic impact of Peak-oil-induced increase in 

oil prices [100]. While EIO models have certain inherent limitations such as their linear nature 

and rigid structure, researchers argue that strengths of EIO models for assessing higher-order 

impacts of disruptions and ranking vulnerable interdependent infrastructure sectors outweigh 

their weaknesses [101, 102]. EIO models are particularly well suited for modeling infrastructure 

interdependencies as they are based on observed empirical data [73, 90, 103-105]. IO based 
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framework has also been coupled with subjective information from sector-specific domain 

experts about infrastructure dependencies for critical infrastructure risk analysis [158].  

Recent work has analyzed the overall economic structure by applying graph theory 

methods to EIO data [107]. These studies identified key industries that form the backbone of the 

economic network (industries and transaction between them represented as nodes and edges) at 

different levels of aggregation [108, 110, 159]. For instance, Xu and colleagues identify certain 

critical sectors in the 2002 benchmark U.S. EIO network whose removal has a great impact on 

the economy [108]. Recent work by Contreras and Fagiola examined shock propagation using 

diffusion models in aggregated EIO networks from different European economies to demonstrate 

high vulnerability of highly densely connected economies [111]. EIO models have also been 

integrated with P-graph approach to determine optimal allocation of resources in an economic 

system under climate change induced disaster condition [160]. These studies represent important 

contributions and essential first steps toward understanding resilience of EIO networks based on 

interconnectedness of industrial sectors. While this prior research has identified hub industries 

(that can be considered CIS) and explored the implications of the EIO network structure on 

resilience, much work is still needed to understand the nature and extent of interdependencies 

between specific CIS that amplify impacts caused due to perturbations and its influence on 

economic resilience. 

Understanding patterns of connections and vulnerabilities in networks is essential in 

order to restrict cascading impacts, or systemic vulnerabilities, especially in densely 

interconnected networks [1]. Representing EIO tables as networks permits analysis of network 

structure by using fundamentals from statistics and graph theory [48]. There are instances in the 

literature where EIO networks at different production levels have been described as small-world 
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and scale-free structures [107, 161, 162]. Networks with small-world topologies are homogenous 

in nature, where each node has about the same number of connections, and as a consequence the 

connectivity or degree distribution peaks at an average value and decays exponentially. 

Connectivity or degree distributions for networks with scale free topologies are heterogeneous in 

nature and follow a power-law form, irrespective of its size [48]. While Carvalho identifies 

power-law behavior for out-degree distribution as well as small-world property in the 

commodity-by-commodity U.S. EIO network, a detailed graph-theory based topological analysis 

of the U.S. EIO inter-industry transaction network including investigation of statistical properties 

and their implications for resilience have largely gone unassayed [161].  

The goal of our present work is to understand the implications of CIS interdependencies 

on resilience of economic systems. To this end, the underlying topology of the U.S. economic 

network is analyzed by identifying patterns of interconnectedness and interdependencies between 

the economic sectors. The CIS interdependencies are also modeled by simulating hypothetical 

disruptions on CIS and quantifying the resulting cascading impacts on the economic network. To 

accomplish these objectives, a systems approach is adopted that combines the empirical 

economic input-output data with graph theory based tools and techniques for industry-level 

interdependency analysis to advance our understanding of resilience in economic systems. 

 

The rest of the chapter is organized as follows. The materials and methods section 

describes the methodologies applied to determine the topological properties of the U.S. EIO 

networks. It also describes the IO technique utilized to simulate hypothetical shocks on CIS, and 

the specific graph theory algorithm used to detect sub-community structure in the U.S. economic 

network. In addition, this section also describes the statistical method used for understanding the 
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network topology. The results and discussion section presents results on the U.S. EIO model 

based interdependency analysis of CIS, and the topological properties of the U.S. EIO network. 

It also discusses the implications of these results for resilience in the U.S. economic network. 

The conclusion section summarizes the main findings, and provides strategic suggestions based 

on the analysis.  

3.2 MATERIALS AND METHODS 

3.2.1 Construction of the economic network from IO tables 

EIO data is converted into graphs by creating adjacency matrices for our analysis. An adjacency 

matrix is a ‘n x n’ matrix whose (i, j) entry is 1 if the ith and jth node are connected to the each 

other, and 0 if they are not, for a network with ‘n’ number of nodes. Such a matrix would 

represent an un-weighted and undirected graph, which can be converted to a weighted-directed 

graph if magnitude and direction of the flow between ith and jth node is known. 

The 2007 version of the make and use tables for the U.S. economy published by the 

Bureau of Economic Analysis (BEA), a division of U.S. Department of Commerce, are utilized 

to create the ‘389x389’ industry-by-industry transaction matrix [163].  Miller and Blair described 

a general methodology to construct symmetric IO tables from the make and use tables [157], 

while Guo and his colleagues have provided a detailed algorithm for specifically deriving U.S. 

EIO tables [164]. A complex weighted-directed network is constructed by considering the 

industrial sectors as nodes and the monetary transactions between them as edges. Additionally, 

an unweighted-directed network is also constructed by disregarding the weights of the flows 
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between the nodes to analyze the connectivity of sectors. To the best of our knowledge, the 2007 

U.S. benchmark IO accounts are the most recent version and have not been examined from a 

graph-theoretic perspective by other studies. 

 

3.2.2 Network topology of the economic network 

Network topology is the structural organization or the overall pattern of connectedness of the 

system components (nodes and edges). In real-world networks, there are a number of common 

recurring patterns of connections that have a profound effect on the way these complex systems 

behave. Below the procedure for analyzing the topology of the U.S. EIO network is discussed by 

separately looking at its unweighted and weighted forms. Topological analysis of both these 

configurations provides unique insights on interconnectedness and interdependency patterns of 

industrial sectors. 

3.2.2.1 Unweighted EIO network analysis 

Degree distributions of the unweighted network is analyzed to determine topological features. 

Degree ki of node i is the total number of connections that node i has with other nodes. Degree 

distribution is the probability distribution p(k) of node degrees in a network. In terms of 

probability, p(k) is the probability that a randomly chosen node has a degree k. For instance, a 

regular lattice network topology, where all nodes have the same number of edges, will have a 

degree distribution plot with a single sharp spike at the average degree. Degree distribution 

analysis of an unweighted network helps to determine whether the network is small world or 

scale free. If a degree distribution follows a power law of the form p(k) α k-ε, where ε is a 
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constant parameter of the distribution known as the scaling factor, then the network is considered 

to have a scale-free topology. If degree distribution peaks at an average and decays 

exponentially, then it is likely to be a small world network [50]. However, the degree distribution 

analysis for small world is not customary, because it is not as reliable as methods based on graph 

theory metrics. 

Watts and Strogatz introduced the concept of small-world effect in networks, 

characterized by a small characteristic path length- the average shortest path length for the 

network, and a high clustering coefficient- a measure of clustering in the network [51]. For this 

reason, nodes in a small world network are not connected directly to each other but most nodes 

can be reached indirectly from all other nodes by a small number of steps [50]. Expanding on 

this understanding to real-world systems, Latora and Marchiori asserted that in physical terms 

the flow of information in a small world network is extremely efficient [54]. For this reason, 

efficiency of information propagation is computed at both global (network) and local (node) 

levels. A high value for these measures will suggest a small-world topology. Global efficiency 

refers to the overall network efficiency, while local efficiency is the average efficiency of each 

node’s sub-graph comprised of its neighbors. Both these metrics are described in greater detail in 

Appendix A.  

3.2.2.2 Weighted EIO network analysis 

In parallel with the analysis of degree distributions of the unweighted U.S. EIO network, 

statistical analysis of industry throughput or strength distributions provides insights from the 

weighted network. Strength si of node i is the sum of weights of edges connected to node i. 

Strength distribution is the probability distribution p(s) of strength in a network, and 

characterizes the spread of strengths for all industrial sectors in the EIO network. Power-law or 
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other heavy-tailed distributions are specifically tested to check whether they are a good fit for the 

industrial strength data. A good fit with these distributions would suggest that there are a handful 

of dominant industries involved in large transactions, while the majority of industrial sectors are 

involved in transactions of far smaller size. In order to verify whether the strength data follows a 

power-law, a statistical framework is adopted that estimates the scaling factor, ε, by using 

maximum likelihood estimation (MLE) in tail region of the distribution (above some lower 

bound smin) The scaling factor, ε, for power-law distributions mostly lies in the range of 2 < ε < 

3, however this is not a rule [165]. For this reason a comprehensive power-law detection 

methodology is employed, which is discussed in detail in the Appendix A. 

3.2.3 Simulating Hypothetical disruptions on CIS 

Hypothetical shocks are simulated on select CIS to quantify the impact of initial disruptions on 

CIS on the rest of the U.S. economic network, and subsequently, to understand 

interconnectedness and interdependencies between CIS. CIS as defined by the U.S. DHS are first 

mapped to the relevant sectors of the U.S. IO model as shown in Table 8 in Appendix A. It must 

be noted that multiple IO sectors may comprise a single CIS (for instance energy CIS includes 

Petroleum refineries sector, Oil and gas extraction sector, and Electric power generation, 

transmission, and distribution sector). For the purpose of our present study, disruptions on 

critical IO sectors are modeled that represent each CIS. Both demand and supply driven models 

have been utilized for modeling disruptions that impact final demand or the value-added 

component of the industry sectors. However, these are restrictive in modeling disruptions that 

cause a direct reduction in the total output of the disrupted sectors due to sudden shocks, like 

natural disasters, shortage of a key resource, or facility closure [166]. The mixed-model IO 
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methodology is utilized to assess the short-term direct and indirect impacts on unconstrained 

sectors caused by reduction in output of certain supply-constrained sectors in the economy. 

These supply-constrained sectors are the ones that experience the shock in the form of sudden 

reduction in their economic throughput. 

Earliest mention of mixed-model IO methodology for economic impact assessment was 

by Stone [167]. Based on this previous work, Johnson and Kulshreshtha proposed a detailed 

methodology to exogenize a given set of outputs [168, 169]. Mixed-models have been used 

previously for various purposes. Examples include the work by Leung and Pooney to study the 

impact of a new fishery policy on the Hawaiian economy [170]. Papadas and Dahl applied the 

mixed IO methodology to determine the importance of 16 distinct U.S. farm commodities for the 

U.S. economy [169]. More recently, mixed models have also been extended for assessing macro-

economic effects of Peak Oil phenomena on different economies [166]. The extensive 

application of the mixed-model IO methodology on distinct industry types, including agriculture, 

mining, fisheries and petroleum sector, provides justification for our adoption of this 

methodology to simulate shocks on disparate CIS [171-175]. 

Methodologically, Miller and Blair describe in detail the mixed model as a modification 

of the demand-driven model shown in equation 1 by exogenously specifying the final demand 

for non-supply constrained sectors, and endogenously specifying the total throughput of sectors 

that experience supply constraint (or the sudden shock) [157]. Subsequently, using basic algebra 

for partitioned matrices, equation 2 is derived. There are n sectors in the economy; out of which 

the first k sectors are endogenous elements, and the last (n − k) sectors are exogenous elements.  

     (2)  
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is the k-element column vector of elements F1 through Fk, representing exogenous final 

demands of non-supply constrained sectors. 

is the (n − k) element column vector of elements Xk−1 through Xn, representing exogenous 

total outputs of the supply-constrained sectors.  

 X is the k-element column vector of elements X1 through Xk, the total output of non-supply 

constrained sectors (to be estimated). 

F is the (n − k) element column vector of elements Fk−1 through Fn, the final demand of supply-

constrained sectors (to be estimated). 

P is the k × k matrix containing the elements from the first k rows and the first k columns in (I − 

A).  

R is the (n − k) × k matrix containing elements from the last (n − k) rows and the first k columns 

in (I − A).  

Q is the k × (n − k) matrix of elements from the first k rows and the last (n – k) columns in -(I − 

A).  

S is the (n − k) × (n − k) matrix of elements from the last (n − k) rows and columns of -(I − A).  

Equation 2 is rearranged as: 

        (3)  

where 

         (4) 

and 
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         (5) 

The total output (X) for the first k, supply constrained sectors and the final demand (F) 

for the last n-k, non-supply constrained sectors is determined using 

       (6)  

The term inoperability (qi) is defined as the normalized degraded production to quantify 

the fractional degradation or deviation from the normal state of an industry sector. 

        (7)  

The value of qi falls between 0 and 1, where 0 means no change in economic activity and 

1 means total disruption of the system. This concept is similar to the one introduced by Haimes 

and Jiang to measure the impact of the disruption on the infrastructure systems [154]. 

Inoperability aids in ranking the industry sectors in terms of their vulnerability to the disruption 

[176]. 

3.2.4  Community detection in U.S. economic network 

The graph theoretic concept of modularity-based community detection is applied to identify 

natural fault lines in the U.S economic IO network along which it separates. Previously, studies 

have applied this methodology to identify clusters in economic IO networks [110]. Community 

detection is utilized to further our understanding of the overall pattern of connectedness of 

economic sectors, and its effect on resilience of the economic system. Combining insights from 

community detection with the mixed-model IO methodology helps assess vulnerability of 
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individual communities to disruptions on individual CIS. This is determined by mapping the 

economic impact suffered by individual sectors to their respective communities. Based on this 

information and the knowledge of connection patterns in modularity-based community 

structures, interdependencies of CIS and the systemic vulnerability arising from tightly coupled 

CIS are understood. Identifying industrial communities within the larger economic structure 

helps determine the extent of coupling between each CIS, which is very important, because 

greater coupling of CIS may amplify cascading impacts of initial shocks on any industrial sector. 

While there are many different methods to find communities [177, 178], here 

communities are detected based on modularity optimization method for directed-weighted 

networks developed by Leicht and Newman [179]. Modularity optimization method identifies 

communities by maximizing Q, the modularity function, which is defined as 

Q= (fraction of intra-community edges) – (expected fraction of such edges). 

This definition of modularity signifies that a cluster or community is valid when there are 

more edges inside a community than what is expected by chance for a random network. 

Therefore, modularity based community detection works on the premise that connections within 

a community are denser, and sparser between them.  

Many clustering techniques have utilized the concept of modularity for identifying 

clusters in large networks [178]. Since modularity optimization is a NP-complete problem, 

developing an algorithm for maximizing modularity is a challenging task [177]. The spectral 

optimization methodology, an accurate and fast algorithm to maximize the value of Q, is used to 

find the best division of the U.S. economic network [179]. The expression of modularity, Q, for 

the directed-weighted economic network reads   

    (8) 
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where, Aij is the weight of an edge from node j to node i, si is the strength of inflows for node i, sj 

is the strength of outflows for node j, m is the total number of edges in the network. δ is the 

Kronecker delta symbol that is equal to 1 if nodes i and j are in the same community (Ci = Cj), 

and 0 otherwise. Spectral optimization technique for modularity maximization assigns nodes to 

different communities based on the sign of the eigenvector, corresponding to the largest positive 

eigenvalue of the modularity matrix B, whose elements are 

        (9) 

In order to identify the natural fault lines in the network by identifying natural groupings 

of nodes, the repeated bisection graph-partitioning algorithm is applied [179]. This method starts 

by dividing the network in two and then repeating the division while optimizing for maximum 

modularity of the communities. A good division of a network results in a high modularity score, 

thus Q is maximized over all possible divisions of the economic network to identify communities 

of industrial sectors. 

3.3 RESULTS AND DISCUSSION 

3.3.1 Topological properties of the U.S. economy 

Frequency distributions of total, in, and out degrees (Figure 22 in the Appendix A) of the 

unweighted-directed U.S. economic network suggest that high fraction of the nodes have a high 

degree, which implies that the U.S. economic network is densely interconnected since a sizeable 

fraction of industrial sectors in the economy are directly connected to most other sectors. This 
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explains the low characteristic path length, l, of 1.212 and the high clustering co-efficient, c, of 

0.790 for the network, which are requisites for a small-world topology. These values also 

compare well to a synthetically generated small-world network of the same size (lSW = 1.245 and 

cSW = 0.755). In addition, both global efficiency and local efficiency for our network is extremely 

large at 0.966 and 0.975 respectively. High interconnectedness of the industrial sectors causes 

these efficiency measures for our network to be close to 1. Based on these findings one can 

conclusively claim that the U.S. EIO network has a small-world topology. Since most industrial 

sectors in an economic system are highly functionally interdependent, it is not surprising that the 

U.S. EIO network exhibit a small-world effect. Incidentally, previous studies on unweighted 

local firms and international trade economic IO networks have also argued that they are small 

world topologies [107, 162].  

Figure 5. Cumulative Distribution Function of Total-strength and the maximum likelihood power-

law fit for 2007 US economic input-output (EIO) weighted network. 
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A small-world network topology for the U.S. EIO network implies that a disturbance or 

failure at any industrial sector would get transmitted to rest of the sectors in less than 2 steps 

(since the characteristic path length, l, is 1.212). For instance, a shock on a seemingly 

unimportant sector like Dry-cleaning and Laundry services impacts the rest of the sectors in the 

economy, even though the effect might be negligible. In addition, such a shock would be 

responsible for a reduction in the overall economic throughput. While this insight is based on the 

topological assessment of the unweighted U.S. EIO network, the weighted network is analyzed 

to determine the overall pattern of interdependencies among sectors in the US economy. 

Frequency distributions of total, in, and out strength (Figure 23 in Appendix A) for 

weighted EIO network indicate that most industrial sectors have a low total-weighted degree, and 

an extremely small number of sectors including CIS have very high weighted degree. While a 

visual inspection of U.S. EIO network total strength distribution suggests a power law (Figure 5), 

additional statistical testing using maximum likelihood estimation and goodness-of-fit (GOF) 

rules out power-law as the underlying distribution (p-value in Table 2). A similar result is 

observed for in-strength, however, out-strength distribution does follow a power law as per the 

GOF test presented in the Appendix A. 
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Table 2. Underlying strength distributions in the U.S. economic input-output (EIO) network.  

Statistics including the p-value for the goodness of fit test with power-law model, log likelihood ratios for the four 

alternate models and the p-value for each of the genera likelihood ratio tests (LRT), are presented to determine the 

model that best fits the data. 

 

Figure 6. Robustness analysis of the 2007 U.S. economic input-output (EIO) network.  

Targeted removal represents attacks on influential sectors based on highest total weighted degree, while 

random removal represents accidental failures of sectors. 
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Table 2 presents the results of generalized likelihood ratio test (GLRT) comparing the 

power-law distribution with four alternate distributions: lognormal, exponential, stretched 

exponential (Weibull) and power-law with exponential cut-off. Results for the GLRT depicted in 

Table 2  suggest that power law with an exponential cut-off is a better fit for total strength, in-

strength and out-strength distributions for 2007 U.S. economic IO network. Previous assessment 

of empirical data has revealed that most real world networks tend to deviate from pure power-

law distributions [165]. Additionally, it has been noted that networks whose distributions follow 

a pure power-law exhibit similar network based insights to networks with heavy-tailed 

distributions like power-law with exponential cut-off [165]. While the presence of power-law in 

unweighted networks suggests a scale-free topology, there is no evidence in the literature 

suggesting that weighted networks whose strength distribution follows a power-law exhibit 

scale-free behavior as well. It has been argued that scale-free networks tend to be robust against 

random failures but are vulnerable to targeted attacks on key nodes [57].  The results of 

robustness analysis for the weighted U.S. EIO network are presented in Figure 6. The results in 

Figure 6 suggest high vulnerability of the U.S. EIO network as indicated by the degradation in 

the total weighted strength of the network to targeted removal of sectors with highest total 

strength, compared to removal of sectors that are randomly chosen. This result indicates that 

while the system is extremely vulnerable to shocks on a few extremely influential industrial 

sectors like CIS, at the same time the U.S. EIO network is robust to shocks on most other nodes 

because of their low importance.  

Methodology used to assess the robustness of the U.S. EIO network has a few 

shortcomings that one should bear in mind. Firstly, since robustness is understood in terms of the 

impact of systematic removal of industrial sectors on the original network, the cascading impacts 
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resulting from node removal at each step are not considered. Secondly, the economic system’s 

adaptive response to node removals is not considered in our robustness analysis. While both 

these are valid criticisms of the methodology, result for robustness analysis (Figure 6) is able to 

provide the “vulnerable, yet robust duality” of the economic system. These shortcomings could 

be addressed using more dynamic models to capture the adaptive response of the system, but is 

beyond the scope of our current work.  
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3.3.2 Disruptive scenarios on CIS 

Figure 7. Top 10 industrial sectors experiencing greatest direct and indirect economic impacts due to 

disruption of $10 million on a. Food & Agriculture CIS (Grain farming) and b. Energy CIS (Electric power 

generation, transmission, and distribution) CIS. 

CIS are highlighted in blue. Results for two of the seven CIS are presented here, while the results for the 

remaining CIS are included in the Appendix A. 

 

Figure 7 shows the top 10 industry sectors suffering the highest economic impact because of a 

hypothetical shock of $10 million on two CIS, food and agriculture and energy CIS. It is 

interesting to note that three CIS are amongst the top 10 sectors that suffer the highest economic 

impact because of an initial economic shock of $10 million on the food and agriculture CIS. The 

results in Figure 7 highlight the tight coupling and interdependence of the food and agriculture 
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CIS with energy CIS (oil and gas extraction and petroleum refineries) and finance CIS (monetary 

authorities and depository credit intermediation). Similar results are observed for an initial shock 

of $10 million on the electric power generation transmission, and distribution CIS. The results in 

Figure 7 also show the direct (due to direct linkages between the industries) and indirect (due to 

indirect linkages) impacts for the various industry sectors. Additional results for hypothetical 

disruptions on the remaining CIS are presented in the Appendix A (Figure 25). Moreover, sectors 

vulnerable to disruptions on CIS are identified in terms of inoperability, and are presented in the 

Appendix A as well (Figure 26).  

Figure 8. Impacts, both direct and indirect, of hypothetical shock of $10 million on CISs on the rest of the 

U.S. economy (based on 2007 U.S. EIO network). 

 

Figure 8 presents the economy-wide impacts arising from an initial $10 million shock on 

individual CIS. The results in Figure 8 indicate that initial shocks on Agriculture (Grain farming) 

and Energy (Petroleum refinery) CIS have the largest impacts on the economy, even surpassing 

the initial economic shock of $10 million on these individual CIS. A sector whose disruption 
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causes high cascading impacts signifies that it is highly interdependent and critical for others 

sectors in the economy. Identification of industrial sectors that trigger widespread economic 

impacts throughout the system may allow creation of policy measures aimed towards protection 

of structurally significant industrial sectors that can compromise the resilience in economic 

systems.  

It is worth noting that the U.S. EIO model used in this work has its own inherent 

limitations. Some of these include the linear and static nature of the model and the lack of any 

potential adaptation due to market forces following a sudden shock. However, the numbers 

presented in Figure 7 and Figure 8 are not meant to be predictive in nature and the results of 

disruptive scenarios provide an understanding of the interdependencies and interconnectedness 

between CIS and other sectors in the U.S. economy. Furthermore, it has been argued that since 

IO models are static in nature, they are unable to account for feedback effects. However, insights 

from these models are still informative to understand the short-term effects of disruptions before 

any adaptation due to market forces and/or policies occur. 
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3.3.3 Community structure of the U.S. EIO network 

Figure 9. Community structure of the 2007 U.S. economic input-output (EIO) network. 

Five distinct communities are detected. This is just a schematic representation; in real life this network exhibits 

greater complexity. 

 

Partitioning of the U.S. economic IO network yields 5 industrial communities made up of 

industry sectors that are closely associated. Even though the clustering algorithm comes from 

applied mathematics, specifically graph theory, its application to economic networks enables us 

to identify industrial communities that make sense from an economic perspective. Community 

detection methodology based on modularity is able to detect the natural fault-lines, and clusters 

the industrial sectors into the following communities: 1) Service sectors 2) Energy and 

Petroleum related sectors 3) Manufacturing and Resource extraction sectors 4) Financial and 

Healthcare sectors and 5) Agriculture and agriculture related sectors. 
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Table 3. Cascading impacts of disruptions on CIS on Industrial communities. 

Communities that suffer the highest cascading impacts and do not contain the disrupted CIS are represented in bold. 

CIS are located in these five industrial communities as shown in Figure 9. CIS that are 

present within the same community are strongly interconnected to each other. For example, 

energy and transportation CIS, healthcare and finance CIS, and information technology and 

telecommunication CIS are extremely interdependent and tightly coupled. Results from the 

mixed IO model based hypothetical economic shocks is combined with the results from 

community detection to determine which industrial communities experience the greatest 

cumulative cascading impacts due to disruptions on each of the CIS. These results are shown in 

Table 3. The community that contains the disrupted CIS is expected to experience the highest 

cumulative cascading impacts because of its closer association with industry sectors within the 

community. While this is true for most CIS, this is not the case for food and agriculture and 

healthcare CIS. As can be seen from Table 3, the community experiencing the highest cascading 
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impacts because of a disruption on the food and agriculture CIS is the energy and petroleum 

related sectors. This suggests the strong coupling and interdependence between food and 

agriculture CIS and the energy and petroleum related sectors. This finding is further 

corroborated and consistent with the results presented in Figure 7 where the two energy CIS (oil 

and gas extraction and the petroleum refineries sectors) are among the top 10 sectors that are 

most affected due to the disruptions on food and agriculture CIS. Such high level of 

interdependency results in amplification of impacts throughout the economy and increasing 

systemic vulnerability.  

Additionally, service sectors community experience the highest cascading impacts 

because of a disruption on the healthcare CIS. Such insights on the interconnectedness and 

interdependencies are useful for identifying specific CIS that unintentionally increase systemic 

vulnerability in economic networks. In addition to reducing interdependencies between CIS, 

securing and protecting sectors that are a source for systemic vulnerability is essential for 

building resilience in the U.S. economic system.  

3.4 CONCLUSIONS  

The methodology presented in this paper integrates EIO modeling with a graph-theoretic 

framework to understand the implications of interconnected and interdependent CIS on the 

resilience of the U.S. economy. This framework identifies CIS interdependencies that play a 

significant role in amplification of impacts from the initial disaster. There is an urgent need to 

understand structural and functional interdependencies between infrastructure systems for 

improving disaster resilience of economic systems. This work adds to the rapidly growing body 
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of literature that utilizes quantitative models for improving post-disaster recovery and 

reconstruction, and evaluating pre-hazard preparedness and mitigation strategies [90, 102, 103, 

180, 181]. While previous work has focused on creating and refining mathematical models for 

critical infrastructures analysis, our work provides a fundamental understanding of the structure 

of CIS within the U.S. economic network and its implications for economic resilience. 

 Increasing instances of large-scale economic impacts triggered by natural and 

technological disasters has motivated international, national and local policymakers to 

understand the relationships between critical industry sectors for the development of resilient 

economic systems. Topological analysis of the unweighted U.S. EIO network reveals its small-

world properties, while the weighted case demonstrates that economic throughput for sectors 

follows a power-law with an exponential cutoff distribution. For an unweighted economic 

network, small world property implies that a shock will transmit throughout the economy quickly 

since it is densely interconnected. However, an unweighted economic network disregards the 

strengths of these interconnections between industrial sectors; thus, topological properties of the 

weighted economic network are more informative. Power-law with an exponential cutoff 

distribution of industrial sector strength for the weighted economic network indicates that there 

are a few CIS involved in bulk of the economic transactions, and the economic network may be 

extremely vulnerable to shocks and disruptions on these key CIS. This attribute of the economic 

network is also clearly evident from the hypothetical disruptions on CIS that show high 

cascading impacts throughout the U.S. economic network. On combining insights from 

hypothetical disruptions with community detection, it is observed that excessive 

interconnectedness and interdependencies of CIS result in high systemic vulnerability of the 

economic network.  
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Since the U.S. economic system is a self-organizing, decentralized network, it is 

impractical to suggest a network topology as a panacea for developing resilient economic 

networks. There are examples of network topologies in the literature that assure resilience, 

however these topologies are applicable to planned systems. An economic system is complex 

and evolves over time in response to market forces, technological innovation, and policy 

decisions. Out of these approaches, policy directives could act as feasible measures for 

advancing resilience building. Comprehensive analysis of the structural organization of CIS and 

the overall economy is critical for improving resilience of the economy. This information can 

guide policymakers to design new policies that reduce systemic vulnerability of economic 

networks, and reevaluate policies that might indirectly increase coupling between CIS. 

Another reason for reducing interdependencies between CIS comes from the work of 

Carlson and Doyle on Highly Optimized Tolerance [182]. The HOT framework claims that 

robustness of complex systems that exhibit “robust, yet fragile” behavior (with throughput 

distribution following power-laws) is not a matter of chance but must be managed by using 

design strategies [183]. Similar to the U.S. economic system, a HOT system is robust, but at the 

same time they have a probability (although very low) of experiencing catastrophic cascading 

impacts due to perturbation on influential system components such as CIS. For this reason, 

robustness barriers must be created around CIS based on the understanding of interdependencies 

between them. Based on our analysis, policymakers should place robustness barriers to restrict 

cascading failures within the U.S. economy.   

Finally, in addition to the national imperative of understanding the inherent 

interdependency of CIS in economic systems to develop a resilient U.S. economy, it plays an 

important role globally as well. The 2009 global financial crisis has exposed the vulnerabilities 
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in the global economic system by producing the first decline in global GDP since World War II. 

Since the U.S. economy is the biggest sub-system of the global economic system, any sort of 

economic disruption in the U.S. may adversely affect the rest of the economies [184].  Thus, the 

urgency to limit U.S. economy’s systemic vulnerability, and ultimately developing resilient U.S. 

economic system is unprecedented.   
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4.0  UNDERSTANDING RESILIENCE IN INDUSTRIAL SYMBIOSIS NETWORKS: 

INSIGHTS FROM NETWORK ANALYSIS 

The following chapter is based on an article submitted in Journal of Environmental Management 

with the citation: 

Chopra, Shauhrat S., and Vikas Khanna. "Understanding resilience in industrial symbiosis 

networks: Insights from network analysis." Journal of environmental management 141 

(2014): 86-94. 

 

The chapter combines the manuscript and supporting information to be published in 

Journal of environmental management. Additionally, extraneous supporting information 

submitted with the manuscript appears in Appendix B. 
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4.1 INTRODUCTION 

Industrial Symbiosis- a mutually beneficial relationship between industries that achieves 

productive use of waste and by-products- promotes sustainable development by providing 

economic benefits while minimizing environmental degradation caused by the participating 

industries. IS was investigated with much curiosity from the 1925-1960’s in the field of 

Economic Geography [185-188] to understand geographically localized synergies of by-

products, however it fell out of the radar until appreciation for its ability to mitigate 

environmental impacts rekindled a renewed interest many decades later [189]. Growing interest 

in the field of IS and attempts to develop theoretical approaches to understand the resilience of IS 

networks is being pursued with equal vigor in both developing and developed countries of the 

world. The Roadmap for a Resource Efficient Europe supports and encourages all European 

Union (EU) member countries to employ IS for maximizing resource efficiency [112, 190]. 

Similarly, Organization for Economic Cooperation and Development (OECD) recognizes IS as a 

tool for fostering green growth and eco-innovation and recommends its application [113, 114]. 

Moreover, developing economies from Asia such as China and India have been extensively 

exploring and experimenting with Eco-Industrial Parks (EIPs) [115-117].  

While IS networks are highly complex and resource efficient with substantial economic 

and environmental benefits to the participating industries, they can also be vulnerable to 

unanticipated perturbations. A disturbance affecting even one industry (or node in the system) 

may lead to a domino effect, resulting in cascading impacts on the rest of the network [36, 120]. 

Additionally, since most synergies in an IS network may be a result of social interactions 

between managers and owners of industries, the resulting network may not be strategically 

planned and be coincidental in nature, which makes it vulnerable to unforeseen and catastrophic 
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events [31, 117, 123, 191]. The need for understanding the theoretical framework of IS for 

guiding their resilient design has been identified, but has only received limited attention [192, 

193]. Resilience has drawn attention in studies aimed at advancing risk adaptation in supply 

chain management [194, 195] and to ascertain mechanisms promoting resiliency in ecological 

networks [13, 15, 19, 26]. Zhu and Ruth compare and contrast the concept of resilience in 

ecological systems and supply chains to inform its application for IS systems [62]. Borrowing 

the understanding of ecological resilience, resilience is defined in this case as the capability of a 

system to absorb disruptions while maintaining its structure and function [20, 21, 35, 36]. This 

property allows an IS network to absorb known or unknown stresses that would otherwise 

disintegrate the system and leave the participating industries dysfunctional. 

Past research on IS has focused primarily on genesis and evolution of IS networks [31, 

121, 123, 124, 196, 197], defining the IS system and its boundaries [123] and the impacts of 

implementing IS networks [119, 198-200]. Most of these studies adopt a biophysical approach to 

quantify resource savings and emissions reductions in IS systems by applying the concepts of 

industrial ecology [31, 121, 123]. Amongst biophysical approaches, life cycle assessment (LCA) 

is frequently being used as a decision making tool to estimate and compare the environmental 

impacts of various synergetic exchanges in an IS context. [201-206]. There have also been 

attempts to recognize the importance of social factors for coordination and organization of actors 

for initiating synergies [116, 117, 120]. Social Network Analysis is one such technique applied 

on Kalundborg IS to understand its organizational framework [126]. Furthermore, research on 

the design of IS for specific regions and industry types, for instance modeling coal-chemical IS 

in China, has provided a viable option to mitigate emissions and achieve high value-added 

utilization of resources [114]. However, except for Zhu and Ruth’s recent work on robustness of 
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IS networks to removal of industries from the network, none of the other studies have focused on 

studying the resilience of highly interconnected and symbiotic industrial network in a rigorous 

quantitative manner [62]. There still exists a void in the resilience assessment of IS systems, 

since most of the synergies are “strictly business” and ad-hoc in nature that may render the 

system fragile and highly vulnerable to perturbations [121, 196].  

IS systems demonstrate self-organizing capability, similar to complex adaptive systems 

like natural ecosystems, to maintain their functionality to counter stresses [124]. Understanding 

resilience of such complex networks will aid in assessing the capacity of the system to retain its 

function by maintaining its structure while under stress [21]. However, there is a notable 

disparity in the understanding of resilience in the context of engineered systems. It has been 

argued that a close relationship exists between resilience and sustainability where the former 

concept is a prerequisite for the latter [21, 39, 40]. On the other hand, some researchers consider 

resilience equivalent to sustainability [15, 40, 125] and while a few others consider resilience 

inadequate for attaining sustainability in specific instances [15, 38]. However, among all the 

uncertainty surrounding the relationship between resilience and sustainability, the need for 

developing resilient and efficient IS networks for improving sustainability, is a certainty. 

Most existing methods for sustainability assessment including those based on life cycle 

thinking employ biophysical approaches to quantify the resource flows and environmental 

impact of products and processes. However, these methods assume a simple cause-effect 

relationship and may ignore the indirect effects due to the system-wide interactions between the 

network components [192, 193]. On the other hand, network analysis employs methods and 

metrics such as centrality or connectivity indices to understand the network structure and the 

underlying complex set of relationships among the nodes [62]. However, network analysis has 
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not been applied extensively to enhance understanding of resilience in engineered networks. This 

gap is bridged by integrating the concepts of network theory with information about resource 

flows to understand resilience and vulnerabilities in industrial symbiotic networks. The 

Kalundborg Industrial Symbiosis (KIS) located in Kalundborg, Denmark is the focus of this 

study due to availability of public information for this Eco-Industrial Park. The 2002 snapshot of 

the water synergy network at KIS is studied, due to availability of data for this period, to reveal 

industries with the highest vulnerabilities, using network metrics like centrality indices and 

network efficiency, and suggest strategies for designing resilient future IS systems. In addition, 

the evolution of the Kalundborg industrial symbiosis network is explored, and time trends in 

node-level metrics and connectivity indices are analyzed for gaining an understanding of the 

resilience. This work aims to deliberate on a network-based approach for understanding 

resilience in IS networks and plugging the gaps in foundational framework for IS. 

The rest of the article is organized as follows. Section 2 provides a detailed description of 

the IS at Kalundborg. It also describes the metrics and the methods used to assess vulnerabilities 

in the system through disruptive scenarios, the evolution of resilience over time, and calculation 

of hypothetical economic and ecological savings resulting from synergistic exchanges. Section 3 

presents the results of the study. A discussion of the results and strategies for the design of 

resilient IS system is in Section 4. Lastly, a summary of the main findings is provided in Section 

5. 
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4.2 MATERIAL AND METHODS 

4.2.1 System Description 

IS at Kalundborg, Denmark consists of a synergistic network of waste and by-product streams 

among companies based on contractual dependency [31, 191]. KIS originated in the early 1960s 

as a strategy to reduce exploitation of groundwater in the region in the face of a growing 

groundwater deficit and an increasing water demand by the industries [207]. Subsequently, it has 

developed from a water exchange network to a network with more than 30 different by-product 

synergies [121, 122]. The synergistic flow of by-product and waste streams between the power 

plant, the oil refinery, the district municipality, and other industries in the region of Kalundborg 

has not only led to an increase in the resource efficiency but also to the economic gains of the 

participating industries [121, 191, 198].  

 



 67 

Figure 10. 2002 Kalundborg Industrial Symbiosis- Water synergy system. 

Flows expressed in 1000 m3. 

 

As shown in Figure 10, IS at Kalundborg includes disparate industries such as the Asnaes 

power plant, the Statoil refinery, the Novo Group- a pharmaceutical company, as well as the 

local municipality that exchange by-product and resources amongst themselves. Since not all 

participating industries require the same quality of water, the water synergy network includes 

raw water from surface water and groundwater, as well as used industrial water in the form of 

wastewater and cooling water. The power plant, the refinery and the pharma group primarily use 

groundwater and surface water from Lake Tisso for industrial purposes. In addition power plant 

uses seawater from the Kalundborg Sea as cooling water for electricity production. 

Subsequently, wastewater and the cooling water is reused as well as recycled within industries to 

reduce the extraction of groundwater and surface water. For instance, wastewater and cooling 
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water from Statoil refinery, as well as salty cooling water, boiler feed water, and steam from the 

Asnaes power plant are channeled to industries that present a requirement for the corresponding 

grade of water quality.  The cooling water is stored at the power plant buffer, which is 

responsible for treatment and recycling of wastewater for daily operations. The cogeneration 

plant provides the Novo group facility and the Statoil refinery with steam and electricity by 

converting cooling water sourced from the sea. Moreover, Asnaes power plant delivers waste 

heat trapped in the cooling water to the local municipality for residential heating.  In addition, the 

availability of heated cooling water also benefits the fish farm. If these by-product and waste 

streams were not symbiotically exchanged in the system, these resources would be considered a 

waste, and the subsequent increase in demand for virgin resources would over burden the already 

exploited and depleted natural capital of the region  

Bearing in mind that KIS originated primarily as a water synergy network, over time it 

has evolved into a complex system with multiple industries exchanging around 30 distinct by-

products. These by-products synergies include resources like wastewater, sludge, fly ash, drain 

water, straw, sea water, etc. and highly processed resources like bioethanol, C5/C6 sugars, sulfur 

fertilizers, gas, heat, gypsum, lignin, etc. The complete KIS network is considered including all 

by-product synergies to understand the trend in systemic resilience from 1960-2010. The study 

also analyzes the water exchange network for understanding the impact of stresses on the system, 

since the physical flow data is available for these synergies.  
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Figure 11. 2002 Water Network- weighted and directed used for analysis. 

Nodes in blue represent sources of water and nodes in red represent the industries. 

 

The industries and sources of water are considered as nodes and the symbiotic exchanges 

between them are depicted as edges of the water network. To visualize and analyze the KIS 

water network, an adjacency matrix representing the structure and interconnectedness in the 

network is constructed. Details of the adjacency matrix are available in the Appendix B (Figure 

27). A weighted and directed adjacency matrix accounting for the magnitude and direction of 

flow is constructed and used for vulnerability analysis, a network based approach to identify and 

rank vulnerabilities in the system. By considering water and steam exchanges between the nodes, 

a 9-node water network shown in Figure 11 is constructed using actual reported data for the year 

2002 [121]. This visualization is made using ORA software [208]. A series of un-weighted and 

directed networks were created to represent the multiple by-product exchanges between the 

industries for determining and understanding the trend in resilience of the KIS system over time.  
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4.2.2 Network metrics 

Table 4. Network metrics utilized for the Kalundborg Industrial Symbiotic System 

 

Table 4 presents a summary of network metrics utilized in this study to understand the network 

structure and topology of the IS system at Kalundborg. Centrality measures like degree centrality 

(in-degree and out-degree), betweenness centrality and stress centrality are used that provide 

information regarding the most central nodes in the system based on different structural 

properties of the network such as neighborhood interactions and shortest-path analysis [48, 209]. 

Additionally, hypothetical disruptive scenarios are introduced on the IS system, a method similar 

to the approach taken by Albert and co-workers to assess the overall impact on the network 

through removal of network components [57]. Reduction in throughputs of critical nodes or 

industries due to disruptive scenarios may impact the network efficiency and integrity of the 
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system to a larger extent compared to other nodes in the network. In addition, network 

efficiency, another metric, considers weights of the synergistic exchanges as well as the network 

topology, and ranks the industries on the basis of their importance in the network [210-212]. This 

is discussed in detail next. 

4.2.3 Vulnerability analysis of the KIS water network by simulating partial and complete 

disruptions.  

In order to understand the vulnerabilities and assess the resilience of the water network, the 

change in network efficiency for the 2002 snapshot of the water network is calculated in 

response to partial and complete disruptions. A partial disruption is defined as an untargeted 

disruption on a node like pipeline damage, shortage of a resource, minor technical failures, 

drought, etc. that causes a short-lived impact and leads to reduction in total flow in the system. 

10% reduction in the annual input and output exchanges of Asnaes power plant, Statoil refinery, 

surface water from Lake Tisso and the groundwater nodes are simulated. On the other hand, the 

analysis is restricted to 10% reduction in the seawater withdrawal by other industries at KIS and 

a disruption is not applied on the flow of water from the industries to the sea since a decrease in 

the flow of treated water to the sea is not likely to limit the withdrawal levels. 

The scenario of complete disruption is also analyzed which is defined as a targeted 

disruption, such as deliberate attacks on critical nodes of the system, or an untargeted disruption, 

like unexpected economic collapses such as bankruptcy, and natural disasters such as storms and 

droughts that are frequent in Denmark, possibly leading to an irreparable amount of damage to 

the nodes (industries). A 100% reduction in the input and output water flows is simulated for 

Asnaes power plant, Statoil refinery, surface water from Lake Tisso and the groundwater nodes. 
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Similar to the partial disruption scenario, the simulation is restricted to reduction of output flows 

from the Sea node to other industries. 

Changing input/output flows from an industry in the system will affect input and output 

flows from the industries upstream and downstream of that industry since it will limit the supply 

and reduce the productivity of the overall system. To determine the cascading effect on the 

network caused by the disruption scenarios on an industry, the ratio of change in the total output 

of the disrupted node is calculated and thereby calculating the effect it has on the subsequent 

industries in the network. Cascading effects due to disruption of industries causes change in the 

flows between the nodes of the network, thus bringing down the productivity of the whole 

network. The efficiency of the original network topology is compared with the disrupted 

network’s topology to gain insights on the importance of different nodes in the network, and 

understanding of the robustness of the water synergy network to disruptions. The network 

efficiency measure described in Table 4 is developed specifically keeping IS networks in mind 

and its details are in Appendix B. Centrality calculations for the IS network is performed using 

SocNetV [213]. 

4.2.4 Evolution of the KIS from 1960 to 2010 

The time-series data is analyzed for KIS from 1960 to 2010 available from the Kalundborg 

Symbiosis Institute to determine the trends in interconnectedness and the network topology 

[122]. The goal of this analysis is to shed light on the evolution of KIS network and gain an 

understanding of possible strategies for designing resilient industrial symbiosis networks. Using 

available data for KIS network configuration, directed and un-weighted networks representing 

different byproduct synergies are prepared. These include networks for water, energy, materials, 
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and combined material and energy synergies for the four time periods: 1960-79, 1980s, 1990s 

and 2000-10.  

Water-flow network considers water and steam based interactions in the network 

(wastewater, cooling water, etc.). Similarly, energy-flow network is constructed by taking all the 

different energy exchanges between the industries (like steam, gas, etc.). The material-flow 

network represents all by-product and waste exchanges between industries other than water and 

energy streams. The total-flow network is also constructed by including all three types (water, 

energy, and material flow) of exchanges at KIS. In general, an increase in the number of 

exchanges is observed over the years; however, in certain instances interactions are withdrawn 

for they might have become economically unviable over time, or an improvement in technology 

has avoided the synergies. The time trends are analyzed in these symbiotic networks in terms of 

the network topology and changes in node-level metrics: in-degree, out-degree, stress and 

betweenness centrality for KIS. Detailed network representation of KIS for the four time periods 

are available in Appendix B (Figure 29). 

4.2.5 Hypothetical savings made by the industries in the KIS 

The resulting monetary savings due to the biophysical exchange of waste and by-products at KIS 

are quantified for the year 2002. Two types of hypothetical savings are computed; the first one 

includes profit earned (savings made) by the industry as a result of participating in industrial 

symbiosis, while the second type monetizes preservation of virgin natural raw materials due to 

substitution by by-products and waste streams from the neighboring industries. 

The direct economic gains made by the industries are accounted for by breaking down the 

synergies into ‘Giveaways’ and ‘Priced’. ‘Giveaways’ as the name suggests are synergies that 
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occur without the recipient paying a price for them. In such a transaction, the donor industry 

saves resources and economic capital involved in the treatment of the waste or by-product, while 

the recipient industry saves economic capital that would have been used to procure virgin raw 

materials or inputs. On the other hand, ‘priced’ exchanges have a price linked to the exchange of 

the by-products. The donor industry sells the treated by-product and earns a profit on it, while the 

recipient industry saves on the price of the by-products that cost considerably lower than the 

virgin raw materials. The classification of synergies as “Giveaways” and “Priced” is adopted 

from the data provided by Jacobsen for KIS for the year 2002 [121]. The assumption that by-

product streams cost a flat 50% of the substituted raw material’s price is also based on the same 

study [121]. All the savings made by an industry, as a donor or a recipient, are added to compute 

the total monetary savings made by the industry. The economic savings made by each industry 

are compared to the total unweighted degree, which includes both the in-degree as well as the 

out-degree, for each of the nodes in the network. 

A monetary value is also attached to natural resources avoided due to the use of waste or 

by-product streams for each of the industries. The price of substituted raw materials for each of 

the industries is calculated by summating all the waste or by-product streams accepted by them. 

For instance if an industry used wastewater instead of $1000 worth of groundwater, the industry 

saved $1000 worth of natural resources. Detailed data on market prices of commodities and 

resource flows used for quantifying the hypothetical savings is available in Appendix B (Table 

12). Monetary value of avoided natural resource consumption by each of the participating 

industries is also provided in the Appendix B (Table 10). 
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4.3 RESULTS 

4.3.1 Network Analysis of the 2002 KIS Water network 

Figure 12. Network based node-level metrics for 2002 snapshot of the Kalundborg Industrial Symbiosis 

system. 

Figure 12 presents the node-level metrics for the 2002 snapshot of the KIS water network. The 

results in Figure 12 illustrate the importance of various industries in the network as indicated by 

several network metrics for the water network. An apparent trend is visible as Asnaes power 

plant has the highest in-degree, out-degree, stress, and betweenness centrality suggesting its high 

importance in the system.  
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 Both, Asnaes power plant and the sea have high degree centralities because of the 

largeamounts of in- and out-flow from these nodes. The power plant receives large quantities of 

water from the sea and directs steam, cooling water, and wastewater to other nodes in the 

network. The sea has a high in-degree because it receives discharge water from most of the 

industries in the network, and has a high out-degree because it is responsible for the supply of 

cooling water to the power plant, which accounts for 99% of all the water being supplied 

from the three water sources: the lake, the sea, and groundwater. Other nodes in the system 

like the Statoil refinery, the Novo group (pharmaceutical company), the Kalundborg Public 

works, Fish farm to name a few, have a comparatively much lower importance in the network 

as conveyed by degree, stress, and betweenness centrality.  

Asnaes power plant also emerges as the most centrally located node in the network based 

on stress and betweenness centrality as well indicating the critical nature of the industry, thus 

a point of vulnerability for the IS network. It is worth mentioning that Asnaes power plant 

help facilitate the water exchange between the sea and other industries in the KIS water 

synergy network, hence reflected in its high betweenness and stress centrality. While 

Kalundborg Sea has high degree centralities, its stress and betweenness centralities are 

relatively lower primarily because it is either an origin or destination node for most 

water streams. From resilience perspective, identifying and securing the vulnerable nodes 

such as the Asnaes power plant against disruptions is critical for developing robust symbiotic 

networks.  
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4.3.2 Importance of nodes based on complete disruption 

Figure 13. Importance of nodes based on network efficiency after permanent removal of nodes from the KIS 

Water Network. 

System is vulnerable to attack on nodes with high importance. Importance is dimensionless and scaled to 1. The 

results for partial removal scenario are in Appendix B. 

 

Figure 13 presents the results for the importance of nodes on the basis of change in network 

efficiency after their complete removal from the KIS water network. The robustness of the KIS 

water network is determined by evaluating the dependence on particular nodes to maintain the 

structure and function of the network. The complete removal of Asnaes power plant and the 

input from the sea as a result of targeted or untargeted disruption has a higher impact on the 

structure of the network than the removal of Statoil refinery, surface water, or ground water. 

Since, the sea solely supplies water to Asnaes power plant that accounts for 99% of the water 
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consumed by the power plant, the disruption on either of the two nodes affects the other directly. 

This explains the high importance of these nodes as shown in Figure 13 based on the disruption 

scenarios. 

With the removal of the Asnaes power plant only 7 of the 20 previously existing 

synergistic water flows were maintained. On the other hand, complete removal of inputs from the 

sea greatly reduces the flows between the nodes. In comparison, complete removal of nodes such 

as the Statoil refinery, surface, and ground water sources does not cause large gaps in the system, 

but still moderately reduces the amount of water exchanges in the network. Similar results are 

observed for the short-lived disruption scenario with Asnaes Power plant and the Sea emerging 

as the influential nodes and other nodes like Statoil refinery, surface water, and ground water 

exhibiting negligible importance in the network. The results for short-lived disruptions are 

available in the Appendix B. It is interesting to note the similarities in the results based on node-

level metrics (Figure 12) and importance based on network efficiency (Figure 13) with Asnaes 

power plant and Sea emerging as the most important and critical nodes in the water synergy 

network. 
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4.3.3 Evolution of KIS network 

Figure 14. Evolution of Betweenness Centrality of the industries/nodes for water synergies at KIS. 

 

Figure 14 presents the time trends in betweenness centrality for the KIS water synergy network. 

Result based on the shortest-path based centrality index demonstrates a gradual decrease in the 

betweenness centrality of nodes for water, energy, materials, and total flows network over time, 

signifying that KIS network is becoming less vulnerable to network disintegration caused by 

single points of failure. Furthermore, the results indicate an even distribution of the betweenness 

centrality over time, which represents decreasing vulnerability of nodes, and increasing 

interconnectedness in the KIS system. Trends for stress centrality, normalized in-degree and out-

degree for water, energy, materials, and total flows network are available in the Appendix B and, 

demonstrate similar findings. 
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The results for absolute in-degree and out-degree show an increasing trend over time for 

the water, energy, materials, and total flow networks. This is an expected finding since the KIS 

network has increased in size over time, both in terms of the number of participating industries 

and the interactions between them. Thus, these results suggest an increase in diversity of the 

types of industries, caused by an increase in the number of nodes in the network, and 

redundancy, caused by an increase in the number of similar by-product interactions for the 

industries over time. In contrast to the results for absolute in-degree and out-degree, normalized 

in-degree and out-degree show a downward trend, suggesting a decrease in vulnerability and a 

greater interconnectedness of industries in the KIS. Decreasing vulnerability, increasing 

redundancy, and diversity are important properties that have been previously suggested for 

building resilience [20, 35]. Additional results for the time trends in degree, stress, and 

betweenness centralities are available in Appendix B. 
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4.3.4 Savings made by the Industries in KIS.  

Figure 15. Comparison of hypothetical savings made by the industries for year 2002 and the total degree 

centrality for each of the industries in the system. 

 

Figure 15 shows a plot of the total hypothetical savings made by the industries versus the total 

degree centrality. Some similarities are observed in the savings made by the industries in the KIS 

water network and their corresponding total degree centrality. Asnaes power plant, Novo group, 

and Statoil refinery have relatively high total degree centrality and also higher hypothetical 

savings. However, similar relationship is not observed for other industries, such as Gyproc and 

Farm. 

It is important to keep in mind that the monetary value of the natural resource avoided 

due to the exchanges of waste streams and by-products is attributed as savings. The calculations 

of these savings are based on the market price of the substituted raw material. Industries like 
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Novo group, Statoil refinery and the municipality avoid the use of natural gas for steam 

generation by utilizing excess steam from the Asnaes power plant, thus, generating the highest 

monetary natural resource savings and also reduced environmental burdens. The reason behind 

the lack of a strong relationship between hypothetical savings and total degree centrality is also 

the quality of resource being exchanged by the industries. For example, the monetary value of 

natural gas is very different from the monetary value of wastewater. Nonetheless, the results in 

Figure 15 indicate that waste and by-product exchanges in an IS network are not only 

environmentally friendly but also economically viable for the industries in the long term. In 

addition, by-product synergies and symbiotic relationships between industries may aid them to 

offset their dependence on virgin natural resources and raw materials, and consequently be both 

environmentally and economically beneficial. 

4.4 DISCUSSION 

This work focused on studying the network properties of KIS with specific application to the 

water synergies. Using metrics based on network theory and disruptive scenarios of short-term 

failure and removal of nodes, structural vulnerabilities are identified in the KIS water network, a 

concept perceived as an antonym to resilience. A system with high vulnerabilities will inevitably 

have low resilience. On the other hand, resilience is an emergent property of the system that 

ensures functionality by adapting to disruptions on the system. The structural durability of an IS 

system is pivotal for ensuring its overall functionality. For instance, an IS network that loses its 

cohesiveness due to vulnerabilities, may fail and disintegrate, rendering the system 

dysfunctional. In the Kalundborg network, the Asnaes power plant emerges as the highest 
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vulnerable node from a network topology perspective, calling for greater efforts to secure the 

node as it may have the largest cascading impact on the network, thus threatening its 

functionality. Researchers have argued that an increase in vulnerability of nodes may correlate 

with a decrease in resilience or adaptive capability of the network [13, 14]. Time trends for the 

KIS network topology revealed decreases in betweenness centrality of most nodes indicating that 

the network may be becoming less susceptible to single points of failure. However, due to 

absence of quantitative details on resource flows between industries for different time periods 

additional research is needed to make concrete claims about the overall resilience of the KIS 

network.  

Nonetheless, snapshots of the KIS network over time are able to shed light on the 

evolution of the network to its current state. From the available data, it is notable that the size of 

the IS network has steadily increased, both in terms of the number of industries in the region and 

the synergetic exchanges between them. However, the results for absolute in and out degree 

change over the years presented in the Appendix B suggest that most of the new industries 

joining the KIS tend to primarily have synergetic exchanges with the Asnaes Power plant. 

Asnaes Power plant is also the most critical node as per the analysis presented in this work, and 

has the most number of synergetic interactions in the KIS network at any given period from 

1960-2010. This property of “rich get richer” is called preferential attachment where new nodes 

in a network preferentially attach to more central nodes than to less central ones. Preferential 

attachment model of network formation results in a network structure that has a power-law 

degree distribution [55]. These networks tend to be robust to random removal of nodes, but are 

vulnerable to targeted removal of central nodes [57]. Small size of the KIS network restricts our 

investigation of degree distribution to comment on whether the KIS network follows a power-
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law distribution. However, analysis of our results for permanent disruption scenario suggests that 

the system is vulnerable to disruption on nodes with high degree centrality, complimenting with 

the findings of a recent study by Zhu and Ruth on the robustness of industrial ecosystems using 

generalized industrial ecosystem models [62]. Thus, identifying and safeguarding nodes that are 

extensively connected and have high amounts of by-product and waste flows in the system are 

necessary to ensure resilience to unknown stresses. 

The analysis presented in our work provides some insights regarding strategies and 

guidelines for designing resilient IS systems. Firstly, seeing that resilience is a planned and 

strategically designed feature of a network, a multi-level deliberation of environmental, 

ecological, social, and economical aspects must be accounted for in a specific IS system. 

Moreover, since resilience is the ability of a system to respond to change, a systems-level 

understanding of the possible stochastic processes and perturbations is critical for developing 

adaptive capacity in an IS network. The results from the analysis of evolution of KIS network, 

where a decrease in vulnerability arising from single points of failure were noted, exhibited an 

increase in the number of participating industries and the interactions among them.  This 

suggests that by increasing redundancy (more exchanges of similar resources) in the network, it 

may be possible to decrease vulnerability across nodes in the network. Redundancy in an IS 

context is maximized by encouraging multiple connections in the network, which means that 

more distinct industries with similar commodity synergies may aid in absorbing the impact of 

degradation of an industry in the network [190]. An increase in redundancy of synergies and 

industries in an IS may axiomatically promote resilience by favoring flexibility or plasticity of 

the network that provides alternative opportunities for synergies if a node or edge is removed, 
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thus ensuring the adaptive capability of the IS. An IS with more number of industries with 

similar synergistic pathways provides flexibility to the network [190]. 

Another important trait that can aid in the design of a resilient IS network is the concept 

of multifunctionality. In the context of IS, multifunctionality refers to the ability to provide 

multiple functions and benefits from the same system [18, 214]. As shown by the hypothetical 

savings calculations in this paper, an IS system provides benefits in the form of economic 

profitability to the industries in the region as well as environmental benefits in the form of 

resource conservation. In addition, it also provides other broader social, environmental, and 

economic benefits to the region such as employment, reduced industrial emissions, etc. in the 

region. With many governments and international consortiums like OECD and EU beginning to 

realize these benefits of IS and promoting it, stakeholders such as industry owners, local 

community, regional policy-makers, environmental planners, etc., must be included in the 

genesis, planning, implementation, and evaluation of IS systems. Such an approach can enhance 

the adaptability of the system to disruptions through collective social-industrial initiatives, thus 

permitting the IS to be more resilient to the constant flux that the society, technology, and the 

ecology will be invariably going through [190]. An example of this approach is seen in the 

planning and coordination efforts undertaken by facilitators such as the Symbiosis Institute and 

the Environmental club, and the small, tightly knit community at Kalundborg, who have together 

fostered the system to adapt to the steadily increasing number of participating industries and the 

fluctuating number of synergetic exchanges. These modifications in the network structure of KIS 

are due to the changes in management of the industries and the technological advancements 

made by the participating industries [121, 122, 207]. Thus, multifunctionality as a design 
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objective endows social embeddedness to the IS, which increases its ability to adapt to risk that 

may otherwise cripple it [117, 197, 215].  

Finally, natural ecosystems exemplify a useful context in which to understand resilience. 

An ecosystem maintains its panarchy by readily re-configuring itself in response to stressful 

states, considering that the primary motive of ecological resilience is functionality [15, 216]. On 

the other hand, most man-made systems are governed by the concept of engineering resilience 

with a single equilibrium steady state that may maximize efficiency but is not fail-proof in the 

long run. Design patterns and structural features of natural ecosystems provide a convincing case 

that ecological networks can provide insights for building resilient engineered systems. An 

example from the literature regarding the fundamentals of ecological resilience of a system by 

Walker and co-workers describes the issue of grazing on the semi-arid grassland ecosystem of 

East and South Africa [15, 217]. Due to the dependence of varied species of herbivores on these 

grasses, a dynamic balance between various grass species is maintained to withstand intensive 

grazing and drought conditions. One set of grass species, with a higher photosynthetic rate, is 

able to provide the grazing herbivores the desired nutrients, whereas the other set of grass species 

are deep rooted but less productive in terms of available biomass for grazing, thus able to 

withstand grazing and drought pressures. The diverse set of grass species together are able to 

maintain a homeostatic balance to meet the functionality to provide grazing opportunities, since 

the grass species with high productivity are able to provide for the herbivore, and the drought 

resistant species is able to counter overgrazing and drought conditions. Thus, together these 

diverse species are able to serve both functions: productivity and drought protection. In the 

context of IS networks, also known as industrial ecosystems in the literature, the composition of 

industries also plays a role in building resilience. Increase in heterogeneity of critical nodes may 
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lead to decrease in vulnerability, and increase in flexibility, redundancy, and multi-functionality 

of the system. 

4.5 CONCLUSION 

Resilience as an emergent property of a system’s ability to absorb stress is vital for any system 

attempting to be sustainable, and more so in the case of systems comprised of tightly coupled 

components. IS networks are such highly interconnected systems where a disruption at even one 

industry can limit the productivity of all other participating industries, resulting in cascading 

impacts on the network. By adopting a network theory approach for KIS network, industries that 

are sources of systemic vulnerability are identified, and disruptions are simulated to assess the 

ability of the system to maintain its functionality. Also, on observing the evolution of KIS, the 

addition of diverse industries and exchange of redundant commodities between them resulted in 

decreasing vulnerability and single points of failures. Moreover, industries that are involved in 

greater number of symbiotic exchanges tend to incur greater economic benefits from IS. 

Reflecting on the insights offered by this study, features such as diversity, redundancy, and 

multifunctionality should be deliberated on while designing for resilient IS systems. With 

increasing adoption of IS and availability of empirical data, the aim is to further expand the 

theoretical framework for design of resiliency in complex, self-organizing systems. 
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5.0  EXPLORING RESILIENCE OF URBAN TRANSPORTATION 

INFRASTRUCTURE: A CASE STUDY OF LONDON METRO SYSTEM 

5.1 INTRODUCTION 

Figure 16. Map of the London Metro Network [218]. 

 

On August 14th, 2003, contact between an Ohio power-line and an overgrown tree resulted in an 

estimated $6 billion impact on the U.S. Economy [219]. What happened in between was an 

electric grid failure known as the Northeast Blackout that affected other dependent critical 

infrastructures responsible for communication, transportation and water supply for 55 million 
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people [6]. Other recent events like Hurricanes Katrina, Rita and Sandy, the Indian Ocean 

tsunami, and the Tohuko, Japan earthquake and tsunami have also exemplified the vulnerability 

of our modern, highly interconnected society and economy to isolated incidents whose impacts 

are amplified and observed across national and international boundaries [1]. The threats that 

accompany a highly advanced and interconnected society and economy are convoluting [219-

221]. Moreover, the modern society is increasingly dependent on the stability and performance 

of a complex system of interdependent infrastructure assets that form the nation’s backbone. The 

U.S. Department of Homeland Security identifies 16 such CIS whose disruption would result in 

catastrophic impacts on the nation’s economy and security [222]. Additionally, the PPD 21 on 

Critical Infrastructure Security and Resilience has highlighted the necessity of understanding the 

resilience of these expanding, large-scale and interconnected systems to disruption and disasters 

[223]. 

Developing resilient large-scale, critical infrastructures is not only a national imperative, 

but is critical for addressing the threat of natural disasters and man-made disruptions on 

communities locally as well as globally. On a microcosmic scale, consideration of how 

effectively urban infrastructures can supplement the creation and preservation of sustainable 

urban areas is of equal importance. This is demonstrated through increased urbanization and 

disproportionate consumption of natural resources within urban boundaries. Cities account for no 

more than 1% of the Earth’s surface area, yet consume 75% of its natural resources and occupy 

over 50% of the global population [128, 129]. Further, increasing trends of urbanization and 

changing spatial organization of cities point towards challenges for the urban ecosystem that are 

accompanied with growing dependence on an urban lifestyle [128, 130, 131]. There is a great 
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necessity for creating sustainable and resilient urban infrastructures that are capable of 

supporting large percentages of the globe’s population.  

A singular avenue for improvement of urban infrastructures exists within the 

transportation sector.  As population and spatial boundaries of cities expand, commuters become 

increasingly reliant on transportation infrastructure. Moreover, the increasing number of extreme 

events and pressures of congestion make existing infrastructure vulnerable. Specifically, public 

transportation infrastructures like metro rail-systems that provide environmental and economic 

benefits for urban regions, must be capable of enduring heightened levels of stress [135]. 

Moreover, with spatial organization of major cities becoming more polycentric in nature [224, 

225], it is essential to develop resilience strategies specifically for polycentric cities. Not only are 

urban planners from major cities promoting polycentric spatial organization for urban 

sustainability, but literature also demonstrates that cities from emerging economies in Asia, 

Africa and South America are growing in a polycentric fashion as well [226]. Analysis is 

required to both ensure that existing transportation networks are capable of withstanding and 

containing unexpected perturbations, and develop heuristic strategies for the creation of more 

resilient networks in the future. 

Over the last 15 years, significant progress has been made in supplementing the 

quantification of reliability and robustness within large-scale transportation systems, and 

network analysis has emerged as the tool of choice [143, 146, 148]. Application of network 

analysis to metro systems has enabled quantification of topological properties that influence its 

resilience, as has been the case for complex systems in economics (trade networks, etc.) and 

engineering (electric grid, etc.), among others. Using network analysis, Latora and Marchiori 

identified the small-world property of the Boston transportation system, suggesting that the 
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topology of the transportation network enmeshes desirable levels of interconnectivity and 

redundancy [54]. Previous studies have also adopted a networks approach to comprehensively 

compare various metro systems across the globe based on new network indicators [149-151, 

227]. Derrible and Kennedy applied new and existing metrics to make more decisive claims 

about the organization of the network that directly relate to the robustness, resilience and 

efficiency of metro systems[148].  Ip and Wang also developed quantitative measures for 

resilience and friability of cities in the mainland China railway network [152]. However, 

majority of these studies have attempted to identify and understand network properties that 

influence reliability and robustness of metro systems based on its topology and geographic 

location. These studies have been unable to incorporate urban dynamics in terms of passenger 

flow patterns in these network models of metro systems to develop a comprehensive 

understanding of its resilience.  

In order to bridge this gap in the literature, a novel network approach is developed in this 

study to quantitatively assess the influence of the network structure, the spatial locations of 

specific network components, as well as the patterns of intra-urban movement, on the resilience 

of metro-rail infrastructure. Specifically, the comprehensive London underground metro system 

is examined as a case study for our analysis. The London metro system is one of the most 

frequented and longstanding of its kind, accounting for 268 stations across 11 metro lines and 1.2 

billion annual passengers [228]. Further, due to the polycentric organization of London, the 

London Underground acts as a paradigmatic case study, representative of what existing and 

developing world metro systems may resemble in future years [229]. Transport for London’s 

(TFL) Rolling Origin and Destination Survey (RODS)–a passenger questionnaire that documents 

metro journey behavior of the London Underground–is used to compile passenger data that fully 
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describes the network’s passenger flow at five durations throughout the day [230]. The survey 

data, along with knowledge of the sequential organization of the London Underground’s lines 

and stations, are used to take a multifaceted and weighted approach to comment on the resilience 

of the metro network. 

Since there is a lack of consensus regarding the definition of resilience in the academic 

literature, it is imperative to state the definition of resilience employed in this study right at the 

onset. The term “resilience” tends to have different interpretations for different areas of study. 

The more traditional definition, known as engineering resilience, refers to a system or 

component’s resistance to disruption and the speed of its return to an equilibrium state [26]. 

However, ecological resilience is quantified by the magnitude of disruption that can be endured 

by the systems before a change in its equilibrium state is noted [19, 26]. Since it is extremely 

difficult to accurately predict the direct and indirect consequences of a disruption on a complex, 

large-scale system, quantifying resilience in terms of the recovery time required for a system to 

return to its equilibrium state is even more difficult. For this reason the definition used in this 

study is a reworking of ecological resilience for industrial and infrastructure systems [32]. 

Henceforth, resilience in this paper refers to the ability of a system to maintain its structure and 

function in the face of perturbations. 

5.1.1 Construction of the London Metro System Model 

Metro systems are modeled as networks for studying the topological properties and local 

vulnerabilities, where metro stations are considered nodes and rail connections between them are 

edges. London metro system data on passenger flow and station connectivity is converted into 

networks by creating adjacency matrices.  An adjacency matrix is a ‘n x n’   matrix (in this case 
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n = 268) whose (i, j) entry is 1 if the ith and jth node are connected to the each other, and 0 if 

they are not, for a network with n number of nodes. Such a matrix would represent an 

unweighted and undirected network, which can be converted to a weighted-directed network if 

magnitude and direction of the flow between ith and jth nodes is known. The London metro 

system is modeled as both an unweighted-undirected (UWud) network based on the station 

connections, and a weighted-directed (Wd) network based on the passenger flow information 

available from RODS.  

5.2 METHODS  

The methodology adopted to examine network properties and vulnerabilities of the London 

metro system for understanding the implications on resilience is described next.  

5.2.1 Topological analyses of the London Metro networks 

In real-world large-scale networks, there are a number of common recurring patterns of 

connections that have a profound effect on the way these complex systems behave. The 

procedure for analyzing the topology of the London metro system by separately examining the 

UWud and Wd networks is discussed below. Topological analyses of both these configurations 

provide unique insights on the resilience of the London metro system. 

For topological analysis of the UWud London metro network, the first step is to examine 

whether the network exhibits a small-world effect. Watts and Strogatz introduced the concept of 

small-world effect in networks, characterized by a small characteristic path length- the average 
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shortest path length for the network, and a high clustering coefficient- a measure of clustering in 

the network [51]. For this reason, nodes in a small world network are not connected directly to 

each other but most nodes can be reached indirectly from all other nodes by a small number of 

steps [50]. In addition to the methodology proposed by Watts and Strogatz, other methodologies 

are also employed from the literature to determine small-world properties for real networks. 

Expanding the Watts and Strogatz approach to real world networks, Latora and Marchiori 

asserted that in physical terms the flow of information in a small world network is extremely 

efficient [54]. For this reason, efficiency of information propagation is computed at both global 

(network) and local (node) levels as a second methodology for small world detection. A high 

value for these measures will suggest a small-world topology. Global efficiency refers to the 

overall network efficiency, while local efficiency is the average efficiency of each node’s sub-

graph comprised of its neighbors. The third method used to detect small world effect in the 

UWud London metro network also uses the network metrics considered by Watts and Strogatz. 

In this approach, the characteristic path length аnd the clustering coefficient for the UWud 

London metro network is compared with those of a synthetically generated small network with 

the same edge density. If the values for characteristic path length аnd clustering coefficient of 

both the networks are notably similar, then one can conclude that the UWud London metro 

network may exhibit small-world tendencies. The mathematical details for each of the metrics 

used by the three approaches are described in Appendix C (Table 14). 

The network topology of the Wd London metro network is analyzed by constructing 

probability distributions p(s) of passenger strength for each station. By constructing these 

strength distributions for the networks, the spread of passenger flow for all stations in the 

London metro network is characterized. Strength distributions for the three time snapshots (am 
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peak, mid-day and pm peak) are examined to check whether they follow a power law. If strength 

distributions follows a power law of the form p(s) α s-ε, where ε is a constant parameter of the 

distribution known as the scaling factor, then it would suggest that there are a handful of critical 

stations that contribute a large fraction of passenger flow, while the majority of stations serves a 

far smaller percentage of the passengers. In order to verify whether the strength data follows a 

power-law, a statistical framework is adopted that estimates the scaling factor, ε, by using MLE 

in tail region of the distribution (above some lower bound smin). The scaling factor, ε, for power-

law distributions mostly lies in the range of 2 < ε < 3, however this is not a rule [165]. The 

mathematical formulations behind this comprehensive power-law detection methodology are 

discussed in detail in Appendix C. 

5.2.2 Robustness analysis of the London metro network 

Robustness analysis is useful to understand the network topology on the basis of node removal. It 

also allows us to observe the inherent vulnerability of the system due to connectivity pattern of 

the nodes. The robustness of London metro Wd network is investigated by determining the 

impact of systematic targeted and random disruptions of stations on overall connectivity and 

passenger flow of the network. The impact of systematic node removal on the network is 

measured using network level graph theory metrics. The degradation in total passenger strength 

of the London metro network caused due to targeted and random removal of stations is 

specifically measured. As an example, targeted removals may signify terrorist attacks affecting 

the most influential stations, and random removals represent natural disasters, track failures, or 

regular maintenance work in the metro system. 
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5.2.3 Graph theory based metrics developed to analyze vulnerabilities 

A geospatial model of the London metro network is developed that incorporates the station 

connectivity and the passenger traffic data with the geographical location.  

Disruption scenarios are created for identifying nodes that are sources of functional 

vulnerability for the metro network. The geospatial model of the London metro is used to 

identify vulnerability of a station in terms of its capability to displace passengers to neighboring 

stations within a set radius of 1.6 km after its disruption. Studies have claimed that commuters 

are comfortable walking 400 meters to access public transportation, and do not prefer using 

public transportation if they have to walk more than 400 to reach the transit access point, be it a 

metro station or a bus stop [231]. For this particular reason, a linear function is used to determine 

the percentage of people displaced, where the inherent understanding is that the closer the 

proximity, the higher the passenger displacement. In order to determine the distribution of 

passenger displacement between the neighboring stations, a closeness index was developed for 

each of the neighboring stations based on their distance from the disrupted station. In this way, 

the station inoperability that measures the percentage of passenger flow degraded due to failure 

of each station is computed. The derivation for the equation used to calculate station 

inoperability is provided in the Appendix C.  

Edges that are a source of structural and functional vulnerability are also identified within 

the London metro network. To measure the structural vulnerability, a metric called the 

redundancy, r, is created which measures the change in the number of connected node pairs after 

an edge failure in the network. Breadth first search algorithm is used for counting the number of 

connected node pairs in the network, and the number of connected node pairs in the network is 

calculated after disruption of each edge. This metric is calculated for the UWud London metro 
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network. Edge failure that results in a low redundancy indicates the system’s low resilience to 

shocks on that particular edge. Redundancy, r, is defined as 

       (10)  

PG represents the number of connected node pairs in graph G, which is n(n-1)/2 for a connected 

undirected network where n is the number of nodes. While PG|g is the number of connected node 

pairs remaining in graph G after removal of an edge, g. 

Similarly, a metric called the fracture coefficient, fc, is created to determine the functional 

vulnerability of an edge in terms of the extent of fracture caused by its removal. This metric is an 

extension of the fragmentation metric developed by Borgatti [232]. While Borgatti’s 

fragmentation metric was created for identifying key nodes in a social network, the fracture 

coefficient uses the same concept to identify edges that are points of vulnerability for the rest of 

the metro network. Unlike the redundancy metric used for determining structural vulnerability, 

the Wd London metro network with data on passenger flow between metro stations is used to 

identify the functional vulnerabilities in the context of urban dynamics. Fraction coefficient, fc, is 

defined as follows, 

  (11)  

SC1 signifies the total strength of nodes in component 1, SC2 is the total strength of nodes in 

component 2 and ST is the total strength of all nodes in the London metro network. An edge with 

a high fraction coefficient signifies that its removal will result in two large components, and 

cause a high reduction in passenger flow due to the disruption. Thus, high fracture coefficient for 

an edge signifies that system is functionally vulnerable to its disruption, which suggests low 

resilience.  
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5.2.4 Community detection within London Metro network 

By further understanding the pattern of passenger commutes, insights regarding the station 

dependencies are derived that can help assess the cascading impacts throughout the system 

resulting from disruptions. For this reason, sub-communities comprising of stations are detected 

within the Wd London metro system. The modularity optimization method developed by Leicht 

and Newman for Wd networks is used to identify sub-communities [179]. Modularity based 

community detection identifies sub-communities by maximizing the modularity function, Q, is 

defined as follows 

Q= (fraction of intra-community edges) – (expected fraction of such edges). 
 

It works on the premise that connections will be denser within a community and sparser 

between communities. A high modularity value for a community translates into a valid 

community division indicating there are more connections inside a community than what one 

would expect by chance for a random network. Specifically, the spectral optimization technique 

is used to maximize the modularity for community detection [179]. In addition, the repeated 

bisection graph-partitioning algorithm is employed to identify natural groupings of nodes in the 

network. This method starts by dividing the network in two, and then repeating the division 

while optimizing for maximum modularity of the communities. A good division of a network 

results in a high modularity score, thus Q is maximized over all possible divisions of the 

economic network to identify communities of industrial sectors. Mathematical details of the 

spectral optimization algorithm and the underlying equations are in the Appendix C. 
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5.3 RESULTS 

5.3.1 Topological analyses of the London Metro networks 

Table 5. Results for small-world detection in the UWud London Metro system using three methodologies. 

C and L refer to clustering coefficient and characteristic path length respectively. Subscript real refers to the UWud 

London Metro network, ER (Erdős–Rényi model) refers to a random network, and SW refers to a synthetically 

generated small-world network. EGlobal and ELocal refer to global efficiency and local efficiency of the UWud London 

Metro network respectively. 

Network topology, the structural organization or the overall pattern of connectedness of system 

components (nodes and edges), of the London metro system is examined to understand its 

implication on the resilience of the entire system. The results for the three approaches used to 

detect whether the UWud London metro network exhibits small-world properties are presented in 

Table 5. All three approaches suggest that the UWud version of the London metro is not a small-

world network. Small-world transportation networks have high connectivity and redundancy that 

allows them to be fault-tolerant, like the air transportation networks. However, the topology of 

the London metro network does not allow it to be robust to disruptions that would result in 

negligible impacts for small world transportation networks.  
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Figure 17. (a.) Total passenger strength distribution for am peak snapshot; and (b.) Robustness analysis for 

the London metro system. 

Topological analysis of the Wd London metro network based on probability distributions 

p(s) of passenger strength for each station determines whether the distribution follows a power 

law. Result for power law detection using statistical tests including maximum likelihood 

estimation and goodness-of-fit (GOF) for strength distribution at am peak is presented in Figure 

17.a. The total passenger strength distribution for the am peak snapshot follows a power law, and 

similar results are noted for passenger strength distributions during pm and mid-day snapshots 

that are presented in the Appendix C (Figure 37). Power law for the passenger strength 

distribution for different time periods in the day indicates that while a relatively small number of 

passengers depend on majority of the metro stations, an extremely small number of stations are 

responsible for a large part of the passenger traffic. These critical stations are a primary source of 

vulnerability, and shocks on them may render the London metro system dysfunctional.  
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5.3.2 Robustness analysis of the London metro network 

In order to verify the robustness of the London metro network to shocks on these critical stations, 

the impact on the overall passenger strength is measured due to systematic, targeted and random, 

removal of stations. The result of robustness analysis for the Wd London metro network is 

presented in Figure 17.b. This result suggests high vulnerability of the London metro network as 

indicated by the sharp degradation in the total passenger strength of the network to targeted 

removal of stations responsible for the highest passenger traffic, compared to removal of sectors 

that are randomly chosen. While the system is extremely vulnerable to shocks on a few key 

stations, the London metro network does exhibit robustness to shocks on most other nodes 

because of their low importance in terms of passenger traffic.  

5.3.3 Graph theory based metrics developed to analyze vulnerabilities 

After understanding the implications of the London metro network topology on its resilience, 

specific nodes and edges are identified that are sources of structural and functional 

vulnerabilities in the metro network. Through the use of disruptive scenarios, the resilience of the 

network is assessed in terms of its vulnerability to removal of specific nodes, and edges. These 

disruptions in our scenarios do not cause a complete shutdown of the metro line that they are a 

part of.   
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Figure 18. Functional vulnerability of 15 most critical stations from the London Metro System. 

The distance within which passengers displace to adjacent stations is 1.6 km, and the number in the bracket refers to 

the respective station inoperability. 

 

The functional vulnerability of nodes in the metro system is calculated in terms of its 

functional flexibility, ability of the commuters to reach their destination even after node failure. 

Figure 18 presents station inoperability, the reduction in percentage of commuters using the 

metro system after disruption of a specific node, for the fifteen most critical stations, which is 

calculated based on the number of passengers displaced to stations within a 1.6 km radius during 

am peak. It is evident that the critical stations (stations responsible for high passenger flow) are 

able to mitigate the vulnerability to an extent by displacing passengers to stations nearby. 

However, there is room for improvement in this regard as the station inoperability is high (close 

to 1) for critical stations like Canary Wharf, Stratford etc. Similar results are observed for other 

time snapshots as well. 
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Figure 19. Structural vulnerabilities of edge failure are identified based on redundancy, r.  

The number suggests the ranking of the vulnerable edges. 

 

In addition to finding specific nodes that are a source of vulnerability, edges that are a 

source of structural and functional vulnerability are identified in the London metro network. 

Figure 19 ranks the top 15 edges that are sources of structural vulnerability in the UWud London 

metro network based on the redundancy metric, r. It is important to note that edges with lower 

redundancy are larger sources of vulnerability for the system. Figure 19 demonstrates that edges 

in peripheral lines that have no loops tend to be large sources of structural vulnerability.  
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Figure 20. Functional vulnerabilities of edge failure are identified based on fracture coefficient, fc. 

The number suggests the ranking of the vulnerable edges. 

 

Similarly, to identify edges that are sources of functional vulnerability, fracture 

coefficient, fc, for each edge in the Wd London metro network is computed. Figure 20 identifies 

top 15 edges with the highest fc for the London metro system in the am peak hours. Again, it is 

noted that edges with functional vulnerability (with high fc) are on lines with no loops; however 

since fc considers passenger flow data as well, the ranking for the most vulnerable edges differ. 

Removal of an edge with either low r or high fc results in the fragmentation of the London Metro 

system into two sub-networks. Thus, these edges are a source of vulnerability for the metro 

system as their removal has the highest impact. Additional fc results for pm peak and mid-day 

Wd London metro network snapshots are presented in the Appendix C. Ranking of structural 

vulnerability, in terms of r, and functional vulnerability, in terms of fc, for all edges are also 

presented in the Appendix C. 
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5.3.4 Community detection within London Metro network 

Figure 21. Result for community detection in the London metro system for AM peak hours. 

 

Using the modularity-based community detection approach, sub-communities are identified 

within the Wd London metro network. The result for community detection for the am peak 

snapshot is presented in Figure 21, while results for mid-day and pm peak can be found in the 

Appendix C (Figure 38). The results suggest that sub-communities spread across metro lines and 

regional boundaries. Also it is interesting that the number of sub-communities and their 

composition varies for different snapshots. There are seven sub-communities for am peak 

snapshot, eight sub-communities for mid-day snapshot, and just five sub-communities for pm 

peak snapshot of the London metro system. Insights from community detection enable us to 

identify stations that are most likely to be impacted due to a disruption on the London metro 
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system. If a station is disrupted, passenger flow between stations within its community will be 

affected. 

5.4 DISCUSSION  

A comprehensive, multi-pronged approach was applied to analyze the network structure, spatial 

locations and passenger flow for understanding London metro’s resilience. This approach has 

been able to understand the influence of both global properties, such as understanding the 

topology and identifying communities, and local properties, such as identifying and ranking most 

vulnerable nodes and edges, on its resilience. Unlike previous studies that have compared 

various metro systems from across the globe to explore their robustness and resilience [148, 

151], this study aims to provide a more in depth examination of potential patterns of 

vulnerability within the London metro.  

Topological analysis of the London metro system indicates that the Tube is bereft of high 

levels of fault-tolerance, a property of small-world transportation networks like air transportation 

networks[44]. While the engineering and design of a metro system does not allow for small-

world topology, which has been suggested by previous studies as well, relatively more small-

world metro systems with higher connectedness will result in an improvement in its resilience. 

Additionally, analysis of passenger strength distribution for power-law, and subsequent 

robustness analysis based on targeted attacks and random failures establish the disproportionate 

vulnerability of the London metro to disruption of certain stations that behave like hubs. 

Polycentric patterns of movement within London render the functionality of the network highly 

reliant on a few critical stations that account for large amounts of passenger flow and hardly 
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reliant on an overwhelming majority of smaller stations.  Considering the potential impact of 

shocks on these critical stations on the metro systems functionality, it is undesirable to have such 

an imbalance among the vulnerability of stations from a resilience perspective. 

In order to amend the topology of the London metro for building resilience, it is essential 

to identify critical stations (nodes) and the rail connections between them (edges) that are a 

source of vulnerability, and subsequently securing them. Shocks on nodes and edges that cause 

the largest reduction in the functionality, i.e. number of commuters, are the largest sources of 

vulnerability for the system. These critical stations can mitigate vulnerability by displacing 

passengers to other stations in their vicinity, and in turn having low station inoperability. In the 

case of the London metro system, a few critical stations are able to relatively mitigate their 

vulnerability to other stations. Our analysis also identifies critical stations with high station 

inoperability, whose vulnerability needs to be further reduced, for instance by connecting these 

stations with feeder buses.  

Additionally, edges that are largest sources of functional and structural vulnerabilities 

were identified based on the two metrics developed in this study- fracture coefficient and 

redundancy respectively. While both methods indicate that edges on metro lines with no loops 

are significantly more vulnerable, edges with high structural vulnerability differ from those with 

high functional vulnerability. This information allows transportation planners to prioritize 

modifications to the metro system for reducing edge vulnerability. Edges with high structural 

vulnerability should be the focus of the network structure improvements if the intra-urban 

movement patterns evolve rapidly, whereas to improve resilience in the short term edges with 

high functional vulnerability must be targeted.  Moreover, the ranking provided for both nodes 
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and edges that are points of vulnerability for the London metro system helps develop a blueprint 

for building resilience based on the available resources and budget of the transport authority.  

The results of modularity-based community detection for the London metro system 

showed a pattern of interdependence that is counter-intuitive as communities of stations spread 

across regional boundaries and station lines. Community detection provides an understanding of 

interdependence that isn’t purely constrained by a spatial or anecdotal conceptualization of the 

network. This allows for a more quantified estimation of the impact of station disruption on the 

network at different times of the day, therefore allowing improved disaster preparedness and 

relief. Without this information, responders could be misinformed about which stations may be 

affected, subsequently delaying the recovery process of the network.  

The insights from our novel networks framework assists transport planners and urban 

policymakers in their efforts to improve resilience of metro system. Developing resilience 

strategies for metro systems require additional assessment of system specific variables and 

challenges. For this reason, this article does not compile a list of specific alterations for a more 

resilient London metro system. As such, the analysis is tempered with the intention of providing 

policymakers with resources to make vital decision. However, future extrapolation of this work 

depends on open distribution of infrastructure data similar to RODS by Transport for London. 

Subject to availability of data, further examination of the overall multi-modal transportation 

system of London can provide additional insights for developing resilient urban transportation 

infrastructure for cities with polycentric spatial organization.  In addition, similar ‘systems’ 

approaches are necessary for improving the organization of critical infrastructure assets in order 

to continually maintain their structure and function in the face of disruptions. 
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6.0  CONCLUSIONS 

Resilience as a concept has been gaining popularity in the recent past, but fundamental network 

properties that contribute towards resilience of complex systems are still not well understood. 

This works demonstrates it is imperative to recognize the overall network structure of 

connections and dependencies, identify sources of vulnerability, and develop specific strategies 

to make them more resilient and functional after a disaster. Garnering this information about a 

complex system is not a trivial task, and a systems approach is vital for assessing the resilience 

of large-scale complex engineered systems.  

The graph theoretic framework developed and presented here is a useful approach to 

design strategies that improve resilience and reduce inherent vulnerability of both new and 

existing large-scale complex system of different sizes and spanning different spatial scales. The 

framework has been applied to study the resilience of an individual infrastructure system in an 

urban setting, a network of distinct industries representing different infrastructure sectors at a 

regional level, and a national economy in terms of its network of critical infrastructure sectors. 

While three case studies have been used to describe the utility of this model, it can be further 

integrated with alternate modeling techniques to quantify resilience of other infrastructure 

systems, in the same way IO models were incorporated.  

Another major accomplishment of this approach is that it equips policy makers with 

essential information necessary to go beyond risk management, and explore avenues to 
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incorporate risk adaptation in these complex systems. A segment of the literature emphasizes the 

use of decision analytic approaches to improve resilience of infrastructure systems. However, 

designing resilience building strategies based on expert judgment can only enable the creation of 

fail-safe infrastructure systems. In order to design safe to fail infrastructure systems, one needs to 

exploit the capability of data driven analytics for creating safe-to-fail complex systems. The 

graph theoretic approaches discussed here significantly rely on availability of data regarding 

complex systems that is expected to grow remarkably in the future. Utilizing data analytics to 

identify points of vulnerability and ranking risks in complex systems is more reliable for decision 

making, rather than depending on subjective methods that do not take into account the complex 

dependencies into account. Insights from this methodology can help prioritize and systematize 

resilience-building strategies depending on the type and extent of disruption caused due to an 

extreme event. 

6.1 RESILIENCE INSIGHTS 

Results from application of the graph theoretic framework on the three distinct case studies 

suggest that resilience strategies may not be generalized across complex systems. For instance, 

on one hand, this work highlighted that greater interdependence and interconnectedness between 

critical infrastructures sectors negatively impacts the resilience of the U.S. economy. On the 

other hand, research exploring the resilience of Kalundborg Industrial Symbiosis network 

suggests that increasing complexity by adding more industries and commodities being 

exchanged can benefit its ability to cope with stress. Another example of this fact is while 

network structure of an EIO network and a transportation system may exhibit small world 
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properties, the topological property does not have the same implication for their resilience. Small 

world property of the EIO network has a negative impact on its resilience, as it tends to have 

large cascading impacts, on the other hand, the same topological property for a transportation 

system, like aviation system, has a positive impact on its resilience as it increases fault-tolerance 

as a result of high redundancy and interconnectivity.  

Strategies and recommendations to build resilience might even differ among similar types 

of systems. For instance, the insights for improving resilience of the London Metro system may 

not be applicable to metro systems with a different network structure and passenger flows from 

cities with contrasting spatial organizations. However, results from a metro system in a 

polycentric city can loosely be applied to metro systems from other polycentric cities if detailed 

data on passenger flow is not available. However, for accurate results and creating effective data-

driven tactics to build resilience, it is beneficial to apply this framework to complex systems 

separately.  

While it is clear that each of these systems require a unique strategy for building 

resilience, testing for power laws and applying metrics to identify for points of vulnerability in 

the system provide similar insights for different systems. The strength distribution of economic 

size of industries in the U.S. EIO network and the strength distribution of passengers flow at 

different stations in the London metro network follow a power law, which suggests that a few 

nodes are extremely critical for these system in comparison to other nodes. This insight is 

common for both systems, and can inform creation of plans for protecting specific points of 

vulnerability for the system. Table 6 provides a synthesis for the network properties and their 

implications for resilience for the three case studies.  
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Table 6. Synthesis of insights for improving resilience of each of the three complex systems explored 

as case studies. 

Here n refers to the number of nodes in the network, L refers to its characteristic path length and C refers to 

its clustering coefficient. 

Case 
Studies 

Network Statistics Network topology Insights for improving 
resilience n 

 
L C Weighted 

network 
Power-law 

strength 
distribution 

Unweighted 
network 

Small-World 
network 

1. CIS in 
2007 U.S. 
EIO network 

389 1.212 0.790 Yes Yes Reduce coupling between 
industrial sectors with high 
interdependency in order to 
alleviate cascading impacts  

2. IS network 
at 
Kalundborg, 
Denmark 

9 1.911 0.444 Not 
Applicable 

since network 
is small 

Not Applicable 
since network is 

small 

Increase diversity in types of 
participating industries, increase 
redundancy of resource 
exchanges, and build 
multifunctionality of the system 

3. London 
Metro-rail 
network 

268 18.426 0.035 Yes No Reduce sources of node 
(stations) and edge (the 
connections between stations) 
structural and functional 
vulnerabilities through strategic 
interventions 

 

6.2 FUTURE WORKS 

The quantitative framework described here for assessing resilience of complex systems is not 

computationally challenging to implement, and should be applied to study other complex 

systems. The scope of this approach for assessing resilience of infrastructure and other 

engineered complex systems is tremendous since the topic is heavily under-researched, relative 

to its significance.  
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This work is not only useful for understanding and quantifying resilience of 

infrastructure, but also applicable for enhancing community resilience to reduce impacts of 

disasters. The level of disaster preparedness of a community can be assessed in terms of 

resilience of the infrastructure that it depends on. Additionally, this framework can be adapted 

and utilized to complement traditional methodologies used in research areas like disaster 

management and adaptation to global environmental change. Out of prevention, mitigation, 

preparedness, response and recovery issues within disaster management, majority of the efforts 

have been focused on post disaster response and recovery. However, over the past few years, 

concerted effort has been made to strengthen pre-disaster prevention, mitigation and 

preparedness. The graph theoretic framework presented here can be utilized for the development 

of a systematic and comprehensive risk management process for disaster risk reduction.  

There are a number of avenues to extend this work in the future. The work on 

understanding the implications of high coupling between CIS in the U.S. EIO network on its 

resilience (Chapter 3) should be extended to study other economic networks, like the Indian EIO 

network, for understanding whether insights from one economic system is translatable to others. 

Additionally, application of this methodology to regional EIO networks of specific states would 

provide additional useful information for regional policy makers. Also, disaggregating industrial 

sectors in the EIO tables, like the electricity generation sector into electricity production from 

different energy sources, can result in greater resolution data, which may provide more practical 

insights for resilience building.  

 The industrial symbiosis work described in the networks presented in Chapter 4 can be 

extended to study other emerging industrial symbiosis parks from across the world. With 

increasing adoption of IS and availability of empirical data, the aim is to further expand the 
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theoretical framework for design of IS resiliency. Application of this model to other systems will 

not only validate the resilience building strategies identified in the study, it will also help identify 

other strategies that due to regional variation, or the types of industries involved. 

The work on understanding resilience of the London metro system has immense potential 

for being extended to study other urban single and multi-modal transportation systems, but also 

study resilience of other urban infrastructure systems like water and energy distribution systems. 

The approach and metrics developed to understand and improve resilience of the London metro 

system must be further applied to metro systems from other parts of the world. Since London is a 

polycentric city, it will be interesting to apply this methodology to a monocentric city and 

understand how the recommendations for building resilience change. Also, the next logical step 

is to investigate the resilience of London’s multi-modal transportation system, which includes 

various modes of public transportation available like the metro, bus light rail and tram systems 

overlapped on one another. Also, application of this methodology to investigate other urban 

infrastructure systems can inform urban planners regarding resilience building. 

Overall, there is plenty of scope for extending the graph theoretic approach presented in 

this thesis to other complex systems. It will be particularly interesting to investigate the network 

attributes that contribute towards resilience of national and international aviation and trade 

networks, among others. Since this approach can be applied to systems across spatial scales, this 

methodology is particularly suited and useful for developing a generic resilience assessment tool 

that can be used to model different complex systems, and explore their resilience to disruptions, 

natural or otherwise.  
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APPENDIX A 

SUPPORTING INFORMATION FOR CASE STUDY 1: CRITICAL 

INFRASTRUCTURE SECTORS IN THE U.S. ECONOMIC NETWORK 

A.1 CRITICAL INFRASTRUCTURE SECTORS 

U.S. Presidential Policy Directive [223] on Critical Infrastructure Security and Resilience 

establishes a national policy to manage risk and develop resilience (the capability to absorb 

disruptions while maintaining structure and function) of critical infrastructure sectors [30]. This 

directive lists 16 CIS similar to the one whose incapacity due to hazards, ranging from natural 

disasters to cyber-attacks, would have a debilitating impact on the nation’s security, economy, 

health and safety. 
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Table 7. 16 CIS and their respective sector specific agencies as per the PPD. 

Critical Infrastructure Sectors Sector-Specific Agency 

Chemical Department of Homeland Security 

Commercial Facilities Department of Homeland Security 

Communications Department of Homeland Security 

Critical Manufacturing Department of Homeland Security 

Dams Department of Homeland Security 

Defense Industrial Base Department of Defense 

Emergency Services Department of Homeland Security 

Energy  Department of Energy 

Financial Services  Department of the Treasury 

Food and Agriculture U.S. Department of Agriculture 

Department of Health and Human Services 

Government Facilities  Department of Homeland Security 

General Services Administration 

Healthcare and Public Health  Department of Health and Human Services 

Information Technology Department of Homeland Security 

Nuclear Reactors, Materials, and 

Waste 

Department of Homeland Security 

Transportation Systems  Department of Homeland Security 

Department of Transportation 

Water and Wastewater Systems  Environmental Protection Agency 

 

Since CIS like Emergency services sector, Defense Industrial Base sector and 

Government Facilities sector are very broadly defined and cannot be identified as specific 

sectors in the economy, the analysis is restricted to seven economically significant CIS. To 

understand interdependency between CIS the impact of disruptions is examined on each of the 

IO sectors corresponding to the chosen CIS. IO sectors with the highest throughput are chosen as 

CIS for further analysis. 
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 Table 8. IO sectors corresponding to the 7 chosen CIS. 

 

A.2 INPUT-OUTPUT TABLES 

The 2007 version of the Input Output tables for the US economy available from Bureau of 

Economic Analysis in the form of make (industry-by-commodity) and (commodity-by-industry) 

use tables are used. Using this data the [389 X 389] industry-by-industry matrix is prepared that 

allows us to visualize economic systems as graphs. This industry-by-industry square matrix can 

be perceived as an adjacency matrix. By considering the industrial sectors as nodes and the 

monetary transactions between them as edges, a complex weighted-directed network for further 

analysis of the US economy is constructed.  Unweighted-directed network is also constructed by 

disregarding the weights of the flows between the nodes to analyze the connectivity of sectors. 

IO sectors representing the CIS Critical Infrastructure Sectors  
Grain farming Agriculture CIS 

Petroleum refineries 

Energy CIS 
Oil and gas extraction 

Electric power generation, transmission, 
and distribution 

Air transportation Transportation CIS 

Monetary authorities and depository credit 
intermediation 

Finance CIS 

Data processing hosting and related 
services 

IT CIS 

Wired telecommunications carriers Communications CIS 
Hospitals Healthcare and Public Health CIS 
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a. b. 

c. 

A.2.1 Network Topology of the U.S. EIO network 

Insights on the overall topological interconnectedness of the US economy using frequency 

distribution based on in and out degree of both unweighted and weighted U.S. economic 

network. Moreover, a principled statistical framework is applied that combines maximum 

likelihood estimation with goodness-of-fit tests based on the KS statistic for power-law detection 

in weighted-directed US economic network for the year 2007. 

Figure 22. Frequency distribution of unweighted a. Total-degree b. Out-degree and c. In-degree for the 

2007 U.S. Economic IO network. 

The histogram suggests that majority of the industrial sectors are involved in monetary exchange of some 

sort with most other sectors in the economy. 
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a. b. 

c. 

 

Figure 23. Frequency distribution of a. Total strength b. Out strength and c. In strength for the 

weighted 2007 US EIO network. 

The histogram suggests that while most industrial sectors are involved in negligible amounts of monetary 

transaction, only a small number of industrial sectors are involved in extremely large amounts of inter-industrial 

financial exchanges. 
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Figure 24. Cumulative Distribution function of a. In strength and b. Out strength, and the maximum 

likelihood power-law fit for 2007 US Economic IO weighted network. 

Power law is ruled out as a good fit. 
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A.3 TOPOLOGICAL ANALYSIS 

A.3.1 Detecting Small-world behavior 

Global efficiency and local efficiency is used to determine whether the network at hand exhibits 

small-world behavior. Latora and Marchiori developed this framework to detect small-world 

phenomena [54].   

Global efficiency, EGlobal, of a network, G, refers to the overall network efficiency, which 

is computed based on the following formula, 

∑
∈≠−

=
Gji ij

Global dNN
E 1

)1(
1        (12) 

where dij is shortest path lengths between all nodes pairs i and j, and N is the number of nodes in 

the network.  

Local efficiency, ELocal, refers to the average efficiency of each node’s sub-graph, Gi, 

comprised of its neighbors. It is computed by making a slight modification to the global 

efficiency formula as follows, 
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i
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where Gi is the sub-graph of the neighbors of node i. 

 

A.3.2 Analysis of Power-law distributions  

The following steps are used to analyze power-law distribution in U.S. economic IO network 

[165]: 
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Estimate the parameters kmin and ε for the degree distribution. To estimate the scaling 

factor ε accurately, kmin needs to be accurately estimated. In most cases, empirical data that tends 

to follow a power-law distribution does so only for values of k greater than a lower bound kmin; 

therefore, all values below the kmin are discarded.  If a very low or a very high kmin is chosen, the 

estimate for the scaling factor ε will be biased. To estimate the kmin accurately, the Kolmogorov-

Smirnov (KS) statistic is chosen. Using the KS test the value of kmin is estimated that makes the 

degree distribution of U.S. economic network fit best to the power law model. The KS statistic is 

used to quantify the maximum distance D between cumulative distribution functions of two non-

normal distributions as follows:  

        (14) 

Here s(k) is the CDF of the node degrees for the U.S. economic network with the smallest 

kmin, and p(k) is the CDF for the power law model that best fits the data in the region k ≥ kmin. A 

value of kmin is picked that minimizes the value of D, the distance, between the empirical and the 

synthetic distributions.  

The method of maximum likelihood estimation (MLE) is used to estimate the scaling 

factor ε for the known lower bound estimate. Maximum likelihood estimation is an estimation 

technique for finding model parameters that are most consistent with the observed data [233]. 

The following maximum likelihood estimator of the scaling factor is derived for continuous 

distributions [165]: 

,        (15) 

where ki is the degree of nodes that have ki ≥ kmin, and n is the number of such nodes.  
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Compute the goodness-of-fit between the data and the power law using the Kolmogorov-

Smirnov test. A goodness-of-fit test is used to test the hypothesis that the strength distribution for 

U.S. EIO network fits power law distribution. To begin with, the degree distribution is fit to the 

power law and calculate the KS statistic mentioned above in step 1. Then, synthetic data sets that 

follow power law are generated with scaling factor and lower bound parameters that are equal to 

those found for the concerned economic networks. The KS statistic is calculated for each of the 

synthetic data sets relative to its power law model.  The fraction of instances when the resulting 

KS statistic is greater than the KS statistic for the U.S. economic network represents the p-value. 

If the resulting p-value is greater than the user specified α (α= 0.1), the power law is a plausible 

hypothesis for the data, otherwise it is rejected. However, one should not depend on the p-value 

alone to decide whether the distribution follows a power law, since there might be other alternate 

distributions that might fit the degree distribution for the U.S economic IO networks better. 

Use likelihood ratio test to compare whether other alternate distributions fit the U.S. 

economic network data better than power law. Likelihood ratio test computes the likelihood of 

data under the alternate distribution against the likelihood of the data under the null distribution 

(i.e. power law), and a greater likelihood signifies a better fit with the alternate distribution. 

Thus, the sign of the log-likelihood ratio serves as an indication whether or not the alternative is 

favored over the power-law model. Vuong’s method is used to decide whether the likelihood 

ratio is considerably far from zero [234]. This method also provides a p-value indicating whether 

the likelihood ratio is statistically significant or not. If the p-value is considerably small (p < 0.1) 

then the sign of log-likelihood ratio is not a matter of chance, and can be relied upon. 
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A.4 DISRUPTIVE SCENARIOS APPLIED ON CIS 

To understand interdependency between CIS, the impact of hypothetical disruption in the form 

of reduction in throughput of CIS by $10 million is examined. 

Figure 25. Industrial sectors experiencing greatest cascading impacts in $ millions due to disruption. 
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Figure 26. Industrial sectors experiencing greatest inoperability, calculated in terms of percentage-degraded 

production, due to reduction of throughput for each CIS by 10%. 

CIS sectors are highlighted. 

 

 



 126 

A.5 COMMUNITY STRUCTURE OF THE U.S. EIO NETWORK 

 

Table 9. List of industrial sectors comprising the communities found using the modularity based community 

detection methodology. 

Community 1: Service sectors 
Telephone apparatus manufacturing 
Manufacturing and reproducing magnetic and optical media 
Dental equipment and supplies manufacturing 
Dental laboratories 
Printing 
Support activities for printing 
Medicinal and botanical manufacturing 
Pharmaceutical preparation manufacturing 
Biological product (except diagnostic) manufacturing 
Newspaper publishers 
Periodical Publishers 
Book publishers 
Directory, mailing list, and other publishers 
Software publishers 
Motion picture and video industries 
Sound recording industries 
Radio and television broadcasting 
Cable and other subscription programming 
Wired telecommunications carriers 
Wireless telecommunications carriers (except satellite) 
Satellite, telecommunications resellers, and all other 
telecommunications 
Data processing, hosting, and related services 
Internet publishing and broadcasting and Web search portals 
Real estate 
Automotive equipment rental and leasing 
Consumer goods and general rental centers 
Lessors of nonfinancial intangible assets 
Legal services 
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Table 9 (continued) 
Custom computer programming services 
Other computer related services, including facilities management 
Accounting, tax preparation, bookkeeping, and payroll services 
Management consulting services 
Environmental and other technical consulting services 
Scientific research and development services 
Advertising, public relations, and related services 
Marketing research and all other miscellaneous professional, 
scientific, and technical services 
Photographic services 
Veterinary services 
Management of companies and enterprises 
Office administrative services 
Facilities support services 
Business support services 
Investigation and security services 
Other support services 
Employment services 
Travel arrangement and reservation services 
Elementary and secondary schools 
Junior colleges, colleges, universities, and professional schools 
Other educational services 
Offices of physicians 
Offices of dentists 
Offices of other health practitioners 
Outpatient care centers 
Medical and diagnostic laboratories 
Home health care services 
Nursing and community care facilities 
Residential mental retardation, mental health, substance abuse and 
other facilities 
Individual and family services 
Child day care services 
Performing arts companies 
Spectator sports 
Promoters of performing arts and sports and agents for public 
figures 
Independent artists, writers, and performers 
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Table 9 (continued) 
Museums, historical sites, zoos, and parks 
Amusement parks and arcades 
Gambling industries (except casino hotels) 
Other amusement and recreation industries 
Accommodation 
Full-service restaurants 
Commercial and industrial machinery and equipment repair and 
maintenance 
Personal and household goods repair and maintenance 
Personal care services 
Dry-cleaning and laundry services 
Other personal services 
Community 2: Energy and Petroleum related sectors 
Greenhouse, nursery, and floriculture production 
Oil and gas extraction 
Coal mining 
Drilling oil and gas wells 
Other support activities for mining 
Electric power generation, transmission, and distribution 
Natural gas distribution 
Water, sewage and other systems 
Nonresidential maintenance and repair 
Office machinery manufacturing 
Electric lamp bulb and part manufacturing 
Doll, toy, and game manufacturing 
Office supplies (except paper) manufacturing 
Stationery product manufacturing 
Petroleum refineries 
Asphalt paving mixture and block manufacturing 
Other petroleum and coal products manufacturing 
Petrochemical manufacturing 
Industrial gas manufacturing 
Other basic inorganic chemical manufacturing 
Other basic organic chemical manufacturing 
Plastics material and resin manufacturing 
Soap and cleaning compound manufacturing 
Toilet preparation manufacturing 
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Table 9 (continued) 
All other chemical product and preparation manufacturing 
Plastics pipe, pipe fitting, and unlaminated profile shape 
manufacturing 
Polystyrene foam product manufacturing 
Food and beverage stores 
Air transportation 
Rail transportation 
Water transportation 
Pipeline transportation 
Scenic and sightseeing transportation and support activities for 
transportation 
News syndicates, libraries, archives and all other information 
services 
Commercial and industrial machinery and equipment rental and 
leasing 
Computer systems design services 
Waste management and remediation services 
Electronic and precision equipment repair and maintenance 
Private households 
Federal general government (nondefense) 
Federal electric utilities 
State and local general government 
State and local government passenger transit 
State and local government electric utilities 
Other state and local government enterprises 
Community 3: Manufacturing and Resource extraction sectors 
Forestry and logging 
Iron, gold, silver, and other metal ore mining 
Copper, nickel, lead, and zinc mining 
Stone mining and quarrying 
Other nonmetallic mineral mining and quarrying 
Health care structures 
Manufacturing structures 
Power and communication structures 
Educational and vocational structures 
Highways and streets 
Commercial structures, including farm structures 
Other nonresidential structures 
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Table 9 (continued) 
Single-family residential structures 
Multifamily residential structures 
Other residential structures 
Sawmills and wood preservation 
Veneer, plywood, and engineered wood product manufacturing 
Millwork 
All other wood product manufacturing 
Clay product and refractory manufacturing 
Glass and glass product manufacturing 
Cement manufacturing 
Ready-mix concrete manufacturing 
Concrete pipe, brick, and block manufacturing 
Other concrete product manufacturing 
Lime and gypsum product manufacturing 
Abrasive product manufacturing 
Cut stone and stone product manufacturing 
Ground or treated mineral and earth manufacturing 
Mineral wool manufacturing 
Miscellaneous nonmetallic mineral products 
Iron and steel mills and ferroalloy manufacturing 
Steel product manufacturing from purchased steel 
Alumina refining and primary aluminum production 
Secondary smelting and alloying of aluminum 
Aluminum product manufacturing from purchased aluminum 
Primary smelting and refining of copper 
Primary smelting and refining of nonferrous metal (except copper 
and aluminum) 
Copper rolling, drawing, extruding and alloying 
Nonferrous metal (except copper and aluminum) rolling, drawing, 
extruding and alloying 
Ferrous metal foundries 
Nonferrous metal foundries 
All other forging, stamping, and sintering 
Custom roll forming 
Crown and closure manufacturing and metal stamping 
Cutlery and handtool manufacturing 
Plate work and fabricated structural product manufacturing 
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Table 9 (continued) 
Ornamental and architectural metal products manufacturing 
Power boiler and heat exchanger manufacturing 
Metal tank (heavy gauge) manufacturing 
Metal can, box, and other metal container (light gauge) 
manufacturing 
Hardware manufacturing 
Spring and wire product manufacturing 
Machine shops 
Turned product and screw, nut, and bolt manufacturing 
Coating, engraving, heat treating and allied activities 
Valve and fittings other than plumbing 
Plumbing fixture fitting and trim manufacturing 
Ball and roller bearing manufacturing 
Ammunition, arms, ordnance, and accessories manufacturing 
Fabricated pipe and pipe fitting manufacturing 
Other fabricated metal manufacturing 
Farm machinery and equipment manufacturing 
Lawn and garden equipment manufacturing 
Construction machinery manufacturing 
Mining and oil and gas field machinery manufacturing 
Other industrial machinery manufacturing 
Plastics and rubber industry machinery manufacturing 
Semiconductor machinery manufacturing 
Vending, commercial laundry, and other commercial and service 
industry machinery manufacturing 
Optical instrument and lens manufacturing 
Photographic and photocopying equipment manufacturing 
Air purification and ventilation equipment manufacturing 
Heating equipment (except warm air furnaces) manufacturing 
Air conditioning, refrigeration, and warm air heating equipment 
manufacturing 
Industrial mold manufacturing 
Metal cutting and forming machine tool manufacturing 
Special tool, die, jig, and fixture manufacturing 
Cutting and machine tool accessory, rolling mill, and other 
metalworking machinery manufacturing 
Turbine and turbine generator set units manufacturing 
Speed changer, industrial high-speed drive, and gear manufacturing 
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Table 9 (continued) 
Mechanical power transmission equipment manufacturing 
Other engine equipment manufacturing 
Pump and pumping equipment manufacturing 
Air and gas compressor manufacturing 
Material handling equipment manufacturing 
Power-driven handtool manufacturing 
Other general purpose machinery manufacturing 
Packaging machinery manufacturing 
Industrial process furnace and oven manufacturing 
Fluid power process machinery 
Electronic computer manufacturing 
Computer storage device manufacturing 
Computer terminals and other computer peripheral equipment 
manufacturing 
Broadcast and wireless communications equipment 
Other communications equipment manufacturing 
Audio and video equipment manufacturing 
Other electronic component manufacturing 
Semiconductor and related device manufacturing 
Printed circuit assembly (electronic assembly) manufacturing 
Electromedical and electrotherapeutic apparatus manufacturing 
Search, detection, and navigation instruments manufacturing 
Automatic environmental control manufacturing 
Industrial process variable instruments manufacturing 
Totalizing fluid meter and counting device manufacturing 
Electricity and signal testing instruments manufacturing 
Analytical laboratory instrument manufacturing 
Irradiation apparatus manufacturing 
Watch, clock, and other measuring and controlling device 
manufacturing 
Lighting fixture manufacturing 
Small electrical appliance manufacturing 
Household cooking appliance manufacturing 
Household refrigerator and home freezer manufacturing 
Household laundry equipment manufacturing 
Other major household appliance manufacturing 
Power, distribution, and specialty transformer manufacturing 
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Table 9 (continued) 
Motor and generator manufacturing 
Switchgear and switchboard apparatus manufacturing 
Relay and industrial control manufacturing 
Storage battery manufacturing 
Primary battery manufacturing 
Communication and energy wire and cable manufacturing 
Wiring device manufacturing 
Carbon and graphite product manufacturing 
All other miscellaneous electrical equipment and component 
manufacturing 
Automobile manufacturing 
Light truck and utility vehicle manufacturing 
Heavy duty truck manufacturing 
Motor vehicle body manufacturing 
Truck trailer manufacturing 
Motor home manufacturing 
Travel trailer and camper manufacturing 
Motor vehicle gasoline engine and engine parts manufacturing 
Motor vehicle electrical and electronic equipment manufacturing 
Motor vehicle steering, suspension component (except spring), and 
brake systems manufacturing 
Motor vehicle transmission and power train parts manufacturing 
Motor vehicle seating and interior trim manufacturing 
Motor vehicle metal stamping 
Other motor vehicle parts manufacturing 
Aircraft manufacturing 
Aircraft engine and engine parts manufacturing 
Other aircraft parts and auxiliary equipment manufacturing 
Guided missile and space vehicle manufacturing 
Propulsion units and parts for space vehicles and guided missiles 
Railroad rolling stock manufacturing 
Ship building and repairing 
Boat building 
Motorcycle, bicycle, and parts manufacturing 
Military armored vehicle, tank, and tank component manufacturing 
All other transportation equipment manufacturing 
Wood kitchen cabinet and countertop manufacturing 
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Table 9 (continued) 
Upholstered household furniture manufacturing 
Nonupholstered wood household furniture manufacturing 
Other household nonupholstered furniture 
Institutional furniture manufacturing 
Office furniture and custom architectural woodwork and millwork 
manufacturing 
Showcase, partition, shelving, and locker manufacturing 
Other furniture related product manufacturing 
Ophthalmic goods manufacturing 
Jewelry and silverware manufacturing 
Sporting and athletic goods manufacturing 
Sign manufacturing 
All other miscellaneous manufacturing 
Breweries 
Tobacco product manufacturing 
Fiber, yarn, and thread mills 
Fabric mills 
Textile and fabric finishing and fabric coating mills 
Carpet and rug mills 
Curtain and linen mills 
Other textile product mills 
Apparel manufacturing 
Leather and allied product manufacturing 
Pulp mills 
Paper mills 
Paperboard mills 
Paperboard container manufacturing 
Paper bag and coated and treated paper manufacturing 
Sanitary paper product manufacturing 
All other converted paper product manufacturing 
Asphalt shingle and coating materials manufacturing 
Synthetic dye and pigment manufacturing 
Synthetic rubber and artificial and synthetic fibers and filaments 
manufacturing 
Paint and coating manufacturing 
Adhesive manufacturing 
Printing ink manufacturing 
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Table 9 (continued) 
Plastics packaging materials and unlaminated film and sheet 
manufacturing 
Laminated plastics plate, sheet (except packaging), and shape 
manufacturing 
Urethane and other foam product (except polystyrene) 
manufacturing 
Other plastics product manufacturing 
Tire manufacturing 
Rubber and plastics hoses and belting manufacturing 
Other rubber product manufacturing 
Wholesale trade 
Motor vehicle and parts dealers 
General merchandise stores 
Other retail 
Truck transportation 
Couriers and messengers 
Warehousing and storage 
Architectural, engineering, and related services 
Specialized design services 
Automotive repair and maintenance 
Death care services 
Federal general government (defense) 
Postal service 
Community 4: Financial and Healthcare sectors 
Residential maintenance and repair 
Surgical and medical instrument manufacturing 
Surgical appliance and supplies manufacturing 
In-vitro diagnostic substance manufacturing 
Transit and ground passenger transportation 
Monetary authorities and depository credit intermediation 
Nondepository credit intermediation and related activities 
Securities and commodity contracts intermediation and brokerage 
Other financial investment activities 
Insurance carriers 
Insurance agencies, brokerages, and related activities 
Funds, trusts, and other financial vehicles 
Owner-occupied dwellings 



 136 

Table 9 (continued) 
Services to buildings and dwellings 
Other ambulatory health care services 
Hospitals 
Community food, housing, and other relief services, including 
rehabilitation services 
Religious organizations 
Grantmaking, giving, and social advocacy organizations 
Civic, social, professional, and similar organizations 
Other federal government enterprises 
Community 5: Agriculture and agriculture related sectors 
Oilseed farming 
Grain farming 
Vegetable and melon farming 
Fruit and tree nut farming 
Other crop farming 
Beef cattle ranching and farming, including feedlots and dual-
purpose ranching and farming 
Dairy cattle and milk production 
Animal production, except cattle and poultry and eggs 
Poultry and egg production 
Fishing, hunting and trapping 
Support activities for agriculture and forestry 
Dog and cat food manufacturing 
Other animal food manufacturing 
Flour milling and malt manufacturing 
Wet corn milling 
Soybean and other oilseed processing 
Fats and oils refining and blending 
Breakfast cereal manufacturing 
Sugar and confectionery product manufacturing 
Frozen food manufacturing 
Fruit and vegetable canning, pickling, and drying 
Fluid milk and butter manufacturing 
Cheese manufacturing 
Dry, condensed, and evaporated dairy product manufacturing 
Ice cream and frozen dessert manufacturing 
Animal (except poultry) slaughtering, rendering, and processing 
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Table 9 (continued) 
Poultry processing 
Seafood product preparation and packaging 
Bread and bakery product manufacturing 
Cookie, cracker, pasta, and tortilla manufacturing 
Snack food manufacturing 
Coffee and tea manufacturing 
Flavoring syrup and concentrate manufacturing 
Seasoning and dressing manufacturing 
All other food manufacturing 
Soft drink and ice manufacturing 
Wineries 
Distilleries 
Fertilizer manufacturing 
Pesticide and other agricultural chemical manufacturing 
Plastics bottle manufacturing 
Limited-service restaurants 
All other food and drinking places 
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APPENDIX B 

SUPPORTING INFORMATION FOR CASE STUDY 2: RESILIENCE OF INDUSTRIAL 

SYMBIOSIS NETWORKS 

The goal of our study to understand resilience of Industrial Symbiotic networks by applying a 

networks approach, and provide strategies to design sustainable IS networks. 

B.1 METHODOLOGY 

The famous Industrial Symbiosis at Kalundborg is used as a case study. Kalundborg Industrial 

Symbiosis (KIS) encompasses exchange of several by-product synergies like gypsum, fly ash, 

etc. among various industries. The 2002 snapshot of the water synergy network at Kalundborg is 

used exclusively because of the unavailability of physical flow data for other by-products. With 

all the interactions known between the industries, an IS can be considered a network where 

symbiotic water exchanges are depicted as edges and industries and sources of water are 

considered as nodes of the water network. To visualize and analyze the KIS water network, [n x 

n] matrix is constructed whose (i, j) entry is 1 if the ith node is connected to the jth node, and 0 if 

they are not, for a network with n number of nodes. This matrix is known as the adjacency 
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matrix for an un-weighted graph, which can be converted to a weighted graph if the magnitude 

of the flows between ith and jth node is known. The adjacency matrix for the 2002-snapshot of 

the KIS- water synergy network is provided in the figure below.  

A weighted and directed adjacency matrix is constructed from the quantified flows of 

water between the industries for the network analysis. On the other hand, un-weighted directed 

graphs are used to determine the evolution of the structure of the network, and in turn, determine 

the trend in resilience of the system over time. 

 

Figure 27. Adjacency matrix for the weighted-directed 2002 water synergy network at Kalundborg.  

The exchange of water between industries is presented in m3. 

B.1.1 Network Efficiency Metric 

The Latora and Marchiori (LM) network measure is defined as  

            (16) 

where E is the measure of efficiency of the network, n is the number of nodes present in the 

network G and dij represents the geodesic distance between the nodes i and j [211, 212], This 

measure was developed to determine the efficiency of  information exchange on the basis of 

network topology.  

Another network efficiency measure, developed from the LM measure, is the Nagurney 
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and Qiang [235] measure that considers flow of information between the components to 

determine the efficiency of networks like transportation, power grid, internet and supply chain 

networks. It is defined as 

                      (17) 

where ε measures the network efficiency or performance of a network with a topology G and the 

demand vector d. In addition, ηW is the number of O/D pairs in the network, and dω and λω 

represent the final demand/flow and equilibrium disutility for the O/D pair ω∈W, respectively 

[235]. 

Building upon the LM and NQ network efficiency measures, a measure suitable to 

compute the efficiency of an IS network is derived. 

Under certain assumptions, LM and NQ measures are equitable as shown in the following 

expression   

                (18) 

Since our system satisfies the assumption that there exists a positive demand for water in 

the 2006 KIS Water Network, the above equation is used to adapt the network efficiency 

measure to our system. The dω is equated to 1 to denote that all nodes in the system have 

beneficial interactions, which is true in the case of IS networks. This alleviates the problem 

caused by equilibrium disutility in our system by estimating the equilibrium disutility term λω 

from NQ as dij from the LM measure as both are inherently defined as shortest-paths in the 

system [235]. Moreover, the term ηW is used as the divisor in our efficiency measure because 
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including all O/D pairs is computationally meaningless for calculating network efficiency since 

some of the O/D pairs might be not be a part of the network after removal of a node.  

However, the derived network efficiency measure (equation 4) expects a network with 

smaller weights to have a higher efficiency, which is not true for a network like ours. Unlike a 

transport network where shorter weights in the form of distance or time taken to travel between 

nodes means higher network efficiency, in an IS network greater synergetic flows between 

industries are more appropriate for achieving greater network efficiency. For this reason the 

reciprocal term (1/dij) is used in the following expression for computing efficiency of an IS 

network.  

        

       (19) 
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B.2 ADDITIONAL RESULTS 

B.2.1 Disruptive Scenarios on the 2002 Water Network  

Figure 28. Importance of nodes based on decrease in network efficiency because of short-lived or partial node 

disruption scenario. 

These results are similar to permanent disruption scenario discussed in the main paper. 

B.2.2 Evolution of IS network from 1960-2010 

The KIS network has evolved over time to include more industries and by-product and waste 

synergies as seen in the following figures. The complexity of KIS network has increased from 

1960 to 2010 with the increase in the number of industries and interactions between them. 
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Figure 29. Evolution of IS network from 1960-2010. 

 

Figure 30. Evolution of absolute In-degree for the Water synergies. 
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Figure 31. Evolution of the normalized In-degree for the Water network. 

Discussion on evolution based on changing in-degree of the network at different time 

snapshots. Since the number of nodes and edges has increased over time, an increase in the 

absolute in-degree and a decrease in the normalized in-degree for all four by-product synergy 

networks is observed. 

Figure 32. Evolution of absolute Out-degree for Water synergies. 
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Figure 33. Evolution of normalized Out-degree for Water synergies. 

 

 Discussion on evolution based on changing out-degree of the network at different time 

snapshots.  Similar to trends noted in In-degree of KIS networks over time. Increasing absolute 

in-degree results in greater diversity and flexibility in the system, and decreasing normalized in-

degree suggests reduction in the vulnerability of the nodes over time. Both these traits signify a 

relative increase in resilience.  

Figure 34. Evolution of the normalized Stress Centrality for the Water network. 
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Figure 35. Evolution of Betweenness Centrality for Water Synergies. 

 

Both Betweenness and Stress centrality have a decreasing trend for each of the nodes in 

the systems suggesting that the vulnerability is more equitably distributed over time, and no one 

node emerges as a critical node that might be responsible for the collapse of the complete 

system.  

B.2.3 Hypothetical Savings from 1960-2010 

Table 10. Ecological Savings made by each industry in KIS network. 

0
10
20
30
40
50
60
70
80
90

100

Kalundborg
Forsying

Asnaes
Powerplant

Novo Nordisk Statoil Waste Water
treatment

60's-70's 80s 90s 2000s



 147 

 

Table 11. Industrial Savings made by each industry in KIS network. 

 

Table 12. Market price for commodities replaced by waste and by-products synergies. 

Commodities replaced by 
by-product and waste 
synergies 

Price Units Source 

Nitrogen 321.76 $/ton USGS [236] 
Phosphorous 41.25 $/ton USGS [236] 
Gypsum 5.36 $/ton USGS [236] 
Clay 23.3 $/ton USGS [236] 
Vanadium 11.63 $/kg USGS [236] 
Nickel 17.91 $/kg USGS [236] 
Soya pills 231 $/ton United Soybean 

board [237] 
Sulfur 33 $/ton USGS [236] 
Fish (Trout) 2000 $/ton FAO [238] 
Steam (Natural Gas boiler) 4.31 $/GJ US-EIA [239] 

 

Table 10 and Table 11 are the results for hypothetical industrial and ecological savings by 

each industry in the network. Table 12 provides the market price for commodities that were 

replaced by by-products and waste resources for quantifying the monetary value of natural 

resources avoided through IS.  
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Figure 36. Value of natural resource preserved by each industry in the KIS 2002 network. 

 

Table 13. Resource flow data  used for Hypothetical Savings analysis [121]. 

 



 149 

APPENDIX C 

SUPPORTING INFORMATION FOR CASE STUDY 3: RESILIENCE OF LONDON 

METRO SYSTEM 

C.1 TOPOLOGICAL ANALYSIS OF THE LONDON METRO NETWORK 

C.1.1 Network Metrics used for Small-World detection 

Table 14. Network metrics utilized for the Topological Small-World Analysis of the London Metro Network. 

Network Metric and Type Formula Definition 

Global Clustering Coefficient 
[48]  𝐶𝐶𝑊𝑊𝑊𝑊 =

1
𝑛𝑛
�

𝑅𝑅𝑖𝑖
𝑘𝑘𝑖𝑖 − 1

𝑛𝑛

𝑖𝑖=1

 

where, 
n = number of nodes in the network 
ki = the degree of node i 
Ri = redundancy (or average degree of the 
subgraph of node i, not including node i) 

Global clustering coefficient 
averages the local clustering 
coefficient across the 
network. The local 
clustering coefficient 
estimates the propensity of 
the network to form 
connected clusters or 
triangles. 
 

Average Shortest Path Length 
 
[48] 

𝑙𝑙 =
1
𝑛𝑛2
�𝑑𝑑𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖

 

where, 
n = number of nodes in the network 
dij = geodesic path length from nodes i to j 

The average shortest path 
length averages the average 
number of edges between 
every pair of nodes in the 
network. 
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C.1.2 Analysis of Power-law distributions 

The same methodology described in Appendix A.3.1. The following steps to analyze power-law 

distribution of passenger distribution in the London Metro network [165]: 

1. Estimate the parameters kmin and ε for the degree distribution. To estimate the scaling 

factor ε accurately, first estimate the kmin accurately. In most cases, empirical data that tends to 

follow a power-law distribution does so only for values of k greater than a lower bound kmin; 

therefore, all values below the kmin are discarded.  If a very low or a very high kmin is chosen, the 

estimate for the scaling factor ε will be biased. To estimate the kmin accurately, the Kolmogorov-

Smirnov (KS) statistic is chosen. Using the KS test the value of kmin is estimated that makes the 

degree distribution of U.S. economic network fit best to the power law model. The KS statistic is 

used to quantify the maximum distance D between cumulative distribution functions of two non-

normal distributions as follows:  

Table 14 (continued)   

Local Efficiency 
 
[54]  

 𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙 = 1
𝑁𝑁(𝑁𝑁−1)

∗ ∑ ( 1
𝑛𝑛𝑖𝑖(𝑛𝑛𝑖𝑖−1)1)

∗ ∑ 1
𝑑𝑑𝑗𝑗𝑗𝑗

)𝑗𝑗𝑗𝑗𝑖𝑖  

where, 
djk = the geodesic path length from all node 
pairs within the subgraph of the neighbors 
of node i  
ni = the number of nodes within the 
subgraph of the neighbors of node i 
N = the number of nodes in the network 

Efficiency is the inverse of 
the geodesic path length 
between all pairs of nodes 
of a set group of nodes. 
Local efficiency evaluates 
the average efficiency of the 
subgraph of nodes 
neighboring a node i, and 
averages it across the 
network.  

Global Efficiency 
 
[54] 

 

𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =
1

𝑁𝑁(𝑁𝑁 − 1)
∗�

1
𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

 

where, 
dij = the geodesic path length between all 
pairs of nodes in the network 
N = the number of nodes in the network 

Global efficiency evaluates 
the average efficiency of all 
nodes i within the network. 
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        (20) 

Here s(k) is the CDF of the passenger strength dependent on each station for the London 

metro network with the smallest  kmin, and p(k) is the CDF for the power law model that best fits 

the data in the region k ≥ kmin. A value of kmin is picked that minimizes the value of D, the 

distance, between the empirical and the synthetic distributions.  

The method of maximum likelihood estimation (MLE) is used to estimate the scaling 

factor ε for the known lower bound estimate. Maximum likelihood estimation is an estimation 

technique for finding model parameters that are most consistent with the observed data [233]. 

The following maximum likelihood estimator of the scaling factor is derived for continuous 

distributions [165]: 

,        (21) 

where ki is the degree of nodes that have ki ≥ kmin, and n is the number of such nodes.  

2. Compute the goodness-of-fit between the data and the power law using the Kolmogorov-

Smirnov test. A goodness-of-fit test is used to test the hypothesis that the passenger strength 

distribution for London metro fits power law distribution. To begin with, the degree 

distribution is fit to the power law and calculate the KS statistic mentioned above in step 1. 

Then, synthetic data sets are generated that follow power law with scaling factor and lower 

bound parameters that are equal to those found for the concerned economic networks. The KS 

statistic is calculated for each of the synthetic data sets relative to its power law model.  The 

fraction of instances when the resulting KS statistic is greater than the KS statistic for the 

passenger flow in the London metro network represents the p-value. If the resulting p-value is 

greater than the user specified α (consider α= 0.1), the power law is a plausible hypothesis for 

the data, otherwise it is rejected.  
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C.1.3 Results from Topological analysis of the London metro network 

Figure 37. a. Total passenger strength distribution for mid-day snapshot; and b. Total passenger strength 

distribution for pm peak snapshot. 
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C.2 MATHEMATICAL DESCRIPTION OF COMMUNITY DETECTION 

For determining industrial communities in our study the modularity based clustering approach 

for directed networks was used. Modularity, Q, for directed-weighted networks is defined as  

 

   (22) 

 

where, 

           (23) 

and 

- Aij is 1 if there is an edge from node j to node I, and zero otherwise  

- m is the edges in the network 

- ki is the in-degree (number of incoming edges) for node i 

- kj is the out-degree (number of outgoing edges) for node j 

- δij is the Kronecker delta symbol 

- ci is the community node i is assigned 

- cj is the community node j is assigned 

The spectral optimization methodology to find the best division of the economic network 

by maximizing the value of Q [179]. The modularity matrix, B, is an n x n matrix with elements 

Bij. The algorithm for modularity maximization in simple terms assigns nodes to different 

communities based on the sign of the eigenvector, corresponding to the largest positive 

eigenvalue, of the modularity matrix. The above mentioned community detection algorithm of 

modularity maximization divides the network into exactly 2 communities. In order to identify the 
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natural fault lines in the network by identifying natural groupings of nodes, the repeated 

bisection graph-partitioning algorithm is applied. This method basically starts by dividing the 

network in two and then repeating the division while keeping in mind the aim to maximize the 

modularity for the entire network. A good division of a network results in a high modularity 

score, thus Q is maximized over all possible divisions of the economy to identify true industrial 

communities[179]. 

Using this method, communities within the London Metro network are identified. Results 

for community at different time periods are presented below. 
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C.2.1 Communities Indentified in the London Metro networks 

Figure 38. Sub-communities identified within the London Metro system at different time periods of the day. 

Seven communities identified at AM peak, eight communities identified at PM peak and five communities identified 

at Mid-day. 
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C.3 DERIVATION OF STATION INOPERABILITY 

The following outlines our derivation of the station inoperability, which quantifies the fraction of 

passengers that are not displaced to neighboring stations in light of a malfunction where a station 

is no longer operating. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑐𝑐𝑟𝑟 = 𝑙𝑙𝑡𝑡/𝑙𝑙𝑖𝑖      (24) 

Where: 

𝑙𝑙𝑖𝑖 = length from malfucntioning station to station i (in km) 

𝑙𝑙𝑡𝑡 = total length in km of all neighboring stations j = �lj
j

 

Relative closeness refers to how close neighboring station “i” is to the malfunctioning 

station compared to the other stations that neighbor the malfunctioning station. If cr is high, the 

station is relatively close. If cr is low, the station is relatively far away. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑐𝑐𝑡𝑡 = ∑ 𝑙𝑙𝑡𝑡
𝑙𝑙𝑖𝑖𝑖𝑖  (25) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  𝑐𝑐𝑝𝑝 = 𝑐𝑐𝑟𝑟
𝑐𝑐𝑡𝑡

=
𝑙𝑙𝑡𝑡
𝑙𝑙𝑖𝑖�

∑ 𝑙𝑙𝑡𝑡
𝑙𝑙𝑖𝑖�𝑖𝑖

= 1
𝑙𝑙𝑖𝑖∗∑ 1

𝑙𝑙𝑖𝑖�𝑖𝑖
(26) 

The relative closeness of station i is divided by the summed closeness (the sum of the 

relative closeness of each station within the sub-graph of the malfunctioning station) to 

normalize the value between zero and one, called the percentage closeness. If cp is 1, station i is 

infinitely close to the malfunctioning station. If the cp is 0, station i is infinitely far away from the 

malfunctioning station. 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =  𝑑𝑑𝑓𝑓(𝑙𝑙𝑖𝑖) = �
−1

1.6 𝑘𝑘𝑘𝑘
∗ 𝑙𝑙𝑖𝑖 + 1, 𝑙𝑙𝑖𝑖 < 1.6 𝑘𝑘𝑘𝑘
0, 𝑙𝑙𝑖𝑖 ≥ 1.6 𝑘𝑘𝑘𝑘

   (27) 
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Next, a distance factor is added to predict how far passengers are willing to walk or 

commute through other means to displace to an alternate station. Literature suggests that most 

people are willing to walk 400 m to accommodate for public transportation [231]. Assuming that 

some commuters are already walking distances to reach the malfunctioning station, a 

conservative estimate that at a 400 m distance, 75% of passengers will be displaced is used. This 

creates a regression of linear form according the function outlined by df(li). If df(li) = 1, station 

i is 0 km away from the malfunctioning station and 100% of passengers will displace to i. If 

df(li) = 0, station i is 1.6 km or more away from the malfunctioning station and 0% of 

passengers will displace to i. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝e𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ∑ �𝑐𝑐𝑝𝑝 ∗ 𝑑𝑑𝑓𝑓(𝑙𝑙𝑖𝑖)�𝑖𝑖     (28) 

The distance factor is multiplied by the percentage closeness to calculate what percentage 

of passengers will displace to a particular station i. This is then summed across all stations “i” in 

the sub-graph to find the total percentage of passengers that will displace, which quantifies the 

percentage passenger retention.  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1.00 − ∑ �𝑐𝑐𝑝𝑝 ∗ 𝑑𝑑𝑓𝑓(𝑙𝑙𝑖𝑖)�𝑖𝑖       (29) 

To find the percentage of passengers that do not displace (inoperability), the percentage 

passenger retention is subtracted from 1.00. 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑃𝑃𝑀𝑀.𝑆𝑆. ∗ �1 − ∑ �𝑐𝑐𝑝𝑝 ∗ 𝑑𝑑𝑓𝑓(𝑙𝑙𝑖𝑖)�𝑖𝑖  �   (30) 

Where: 

PM.S. = passenger strength of malfunctioning station 

In order to quantify the overall number of passengers that will no longer ride the metro, 

the inoperability is multiplied by the normal amount of passengers that use the London Metro. 
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C.4 RANKING OF EDGES WITH HIGHEST STRUCTURAL AND FUNCTIONAL 

VULNERABILITY 

Table 15. Redundancy (structural vulnerability) of edges between station s and station t. 

Edges with r < 1 are listed below. 

Station s Station t Redundancy, r 

Stratford Leyton 0.861 

Leyton Leytonstone 0.868 

Bow Road Mile End 0.894 

Bow Road Bromley-by-Bow 0.901 

Bromley-by-Bow West Ham 0.907 

Paddington Warwick Avenue 0.907 

Plaistow West Ham 0.914 

Maida Vale Warwick Avenue 0.914 

Plaistow Upton Park 0.921 

Acton Town South Ealing 0.921 

Camden Town Kentish Town 0.921 

North Harrow Pinner 0.921 

Kilburn Park Maida Vale 0.921 

East Ham Upton Park 0.928 

Northfields South Ealing 0.928 

Kentish Town Tufnell Park 0.928 

Northwood Hills Pinner 0.928 

Kilburn Park Queen's Park 0.928 

Barking East Ham 0.935 

Boston Manor Northfields 0.935 

Camden Town Chalk Farm 0.935 
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Table 15 (continued)   

Stockwell Clapham North 0.935 

Archway Tufnell Park 0.935 

Northwood Northwood Hills 0.935 

Kensal Green Queen's Park 0.935 

Barking Upney 0.942 

Finsbury Park Manor House 0.942 

Boston Manor Osterley 0.942 

Belsize Park Chalk Farm 0.942 

Clapham Common Clapham North 0.942 

Archway Highgate 0.942 

Moor Park Northwood 0.942 

Kensal Green Willesden Junction 0.942 

Becontree Upney 0.949 

Fulham Broadway West Brompton 0.949 

Hounslow East Osterley 0.949 

Manor House Turnpike Lane 0.949 

Clapham Common Clapham South 0.949 

Belsize Park Hampstead 0.949 

East Finchley Highgate 0.949 

Hanger Lane North Acton 0.949 

Harlesden Willesden Junction 0.949 

Becontree Dagenham Heathway 0.956 

Fulham Broadway Parsons Green 0.956 

Hounslow Central Hounslow East 0.956 

Eastcote Rayners Lane 0.956 

Turnpike Lane Wood Green 0.956 

Balham Clapham South 0.956 
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Table 15 (continued)   

East Finchley Finchley Central 0.956 

Golders Green Hampstead 0.956 

Hanger Lane Perivale 0.956 

Harlesden Stonebridge Park 0.956 

Dagenham East Dagenham Heathway 0.963 

Parsons Green Putney Bridge 0.963 

Hounslow Central Hounslow West 0.963 

Eastcote Ruislip Manor 0.963 

Bounds Green Wood Green 0.963 

Brent Cross Golders Green 0.963 

Balham Tooting Bec 0.963 

Greenford Perivale 0.963 

Stonebridge Park Wembley Central 0.963 

Dagenham East Elm Park 0.970 

East Putney Putney Bridge 0.970 

Finsbury Park Seven Sisters 0.970 

Arnos Grove Bounds Green 0.970 

Hatton Cross Hounslow West 0.970 

Ruislip Ruislip Manor 0.970 

Brent Cross Hendon Central 0.970 

Tooting Bec Tooting Broadway 0.970 

Chorleywood Rickmansworth 0.970 

Wembley Park Kingsbury 0.970 

Buckhurst Hill Loughton 0.970 

Greenford Northolt 0.970 

North Wembley Wembley Central 0.970 

Elm Park Hornchurch 0.978 
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Table 15 (continued)   

East Putney Southfields 0.978 

Seven Sisters Tottenham Hale 0.978 

Hatton Cross Heathrow Terminal 4 0.978 

Ickenham Ruislip 0.978 

Arnos Grove Southgate 0.978 

Colindale Hendon Central 0.978 

Colliers Wood Tooting Broadway 0.978 

West Finchley Woodside Park 0.978 

Chalfont & Latimer Chorleywood 0.978 

Kingsbury Queensbury 0.978 

Debden Loughton 0.978 

Northolt South Ruislip 0.978 

North Wembley South Kenton 0.978 

Gunnersbury Kew Gardens 0.985 

Hornchurch Upminster Bridge 0.985 

Southfields Wimbledon Park 0.985 

Blackhorse Road Tottenham Hale 0.985 

Hillingdon Ickenham 0.985 

Oakwood Southgate 0.985 

Burnt Oak Colindale 0.985 

Colliers Wood South Wimbledon 0.985 

Totteridge & Whetstone Woodside Park 0.985 

Canons Park Queensbury 0.985 

Ruislip Gardens South Ruislip 0.985 

Debden Theydon Bois 0.985 

Kenton South Kenton 0.985 

Earl's Court Kensington (Olympia) 0.993 
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Table 15 (continued)   

Kew Gardens Richmond 0.993 

Upminster Upminster Bridge 0.993 

Wimbledon Wimbledon Park 0.993 

Brixton Stockwell 0.993 

Blackhorse Road Walthamstow Central 0.993 

Cockfosters Oakwood 0.993 

Hillingdon Uxbridge 0.993 

Burnt Oak Edgware 0.993 

Morden South Wimbledon 0.993 

High Barnet Totteridge & Whetstone 0.993 

Croxley Watford 0.993 

Canons Park Stanmore 0.993 

Epping Theydon Bois 0.993 

Ruislip Gardens West Ruislip 0.993 

Harrow & Wealdstone Kenton 0.993 

 

 

Table 16. Fraction Coefficient (functional vulnerability) of edges between station s and station t- AM Peak. 

Edges with fc > 0 are only listed below. 

Station s Station t Fracture 

Coefficient, fc 

Clapham North                  Stockwell                      0.059 

Bow Road                       Mile End                       0.059 

Leyton                         Stratford                      0.056 

Clapham Common                 Clapham North                  0.056 

Bow Road                       Bromley-by-Bow                 0.054 
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Table 16 (continued)   

Bromley-by-Bow                 West Ham                       0.052 

Clapham Common                 Clapham South                  0.049 

Plaistow                       West Ham                       0.048 

Leyton                         Leytonstone                    0.048 

Plaistow                       Upton Park                     0.044 

Fulham Broadway                West Brompton                  0.042 

Balham                         Clapham South                  0.042 

Finsbury Park                  Seven Sisters                  0.039 

Camden Town                    Kentish Town                   0.037 

East Ham                       Upton Park                     0.037 

Finsbury Park                  Manor House                    0.035 

Fulham Broadway                Parsons Green                  0.035 

Kentish Town                   Tufnell Park                   0.034 

Camden Town                    Chalk Farm                     0.034 

Paddington                     Warwick Avenue                 0.032 

Balham                         Tooting Bec                    0.031 

Archway                        Tufnell Park                   0.031 

Belsize Park                   Chalk Farm                     0.030 

Manor House                    Turnpike Lane                  0.029 

Parsons Green                  Putney Bridge                  0.029 

Barking                        East Ham                       0.028 

Maida Vale                     Warwick Avenue                 0.028 

Acton Town                     South Ealing                   0.027 

Belsize Park                   Hampstead                      0.026 

Kilburn Park                   Maida Vale                     0.025 

Tooting Bec                    Tooting Broadway               0.025 

Archway                        Highgate                       0.025 
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Table 16 (continued)   

Seven Sisters                  Tottenham Hale                 0.024 

East Putney                    Putney Bridge                  0.024 

Northfields                    South Ealing                   0.024 

Kilburn Park                   Queen's Park                   0.023 

Turnpike Lane                  Wood Green                     0.023 

Golders Green                  Hampstead                      0.022 

East Finchley                  Highgate                       0.020 

Boston Manor                   Northfields                    0.020 

Brixton                        Stockwell                      0.020 

East Putney                    Southfields                    0.019 

Boston Manor                   Osterley                       0.019 

Kensal Green                   Queen's Park                   0.019 

Barking                        Upney                          0.018 

Blackhorse Road                Tottenham Hale                 0.017 

Hounslow East                  Osterley                       0.017 

Brent Cross                    Golders Green                  0.017 

Kensal Green                   Willesden Junction             0.017 

Becontree                      Upney                          0.016 

Hanger Lane                    North Acton                    0.016 

North Harrow                   Pinner                         0.015 

Brent Cross                    Hendon Central                 0.015 

Bounds Green                   Wood Green                     0.015 

Colliers Wood                  Tooting Broadway               0.015 

East Finchley                  Finchley Central               0.015 

Hounslow Central               Hounslow East                  0.014 

Becontree                      Dagenham Heathway              0.014 

Eastcote                       Rayners Lane                   0.013 
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Table 16 (continued)   

Southfields                    Wimbledon Park                 0.013 

Northwood Hills                Pinner                         0.013 

Hanger Lane                    Perivale                       0.013 

Harlesden                      Willesden Junction             0.012 

Blackhorse Road                Walthamstow Central            0.012 

Northwood                      Northwood Hills                0.011 

Wimbledon                      Wimbledon Park                 0.011 

Gunnersbury                    Kew Gardens                    0.011 

Eastcote                       Ruislip Manor                  0.011 

Hounslow Central               Hounslow West                  0.011 

Greenford                      Perivale                       0.011 

Harlesden                      Stonebridge Park               0.011 

Kingsbury                      Wembley Park                   0.011 

Arnos Grove                    Bounds Green                   0.010 

Dagenham East                  Dagenham Heathway              0.010 

Colindale                      Hendon Central                 0.010 

Colliers Wood                  South Wimbledon                0.010 

Ruislip                        Ruislip Manor                  0.009 

Moor Park                      Northwood                      0.009 

Stonebridge Park               Wembley Central                0.009 

Hatton Cross                   Hounslow West                  0.009 

Kew Gardens                    Richmond                       0.009 

Dagenham East                  Elm Park                       0.008 

Buckhurst Hill                 Loughton                       0.008 

Ickenham                       Ruislip                        0.008 

Kingsbury                      Queensbury                     0.008 

Greenford                      Northolt                       0.008 
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Table 16 (continued)   

Hillingdon                     Ickenham                       0.007 

West Finchley                  Woodside Park                  0.007 

Arnos Grove                    Southgate                      0.007 

Hatton Cross                   Heathrow Terminal 4            0.007 

Morden                         South Wimbledon                0.006 

North Wembley                  Wembley Central                0.006 

Burnt Oak                      Colindale                      0.006 

Elm Park                       Hornchurch                     0.006 

Hillingdon                     Uxbridge                       0.006 

Debden                         Loughton                       0.006 

North Wembley                  South Kenton                   0.005 

Canons Park                    Queensbury                     0.005 

Totteridge & Whetstone         Woodside Park                  0.005 

Kenton                         South Kenton                   0.004 

Hornchurch                     Upminster Bridge               0.004 

Northolt                       South Ruislip                  0.004 

Chorleywood                    Rickmansworth                  0.004 

Debden                         Theydon Bois                   0.003 

Burnt Oak                      Edgware                        0.003 

Chalfont & Latimer             Chorleywood                    0.003 

Oakwood                        Southgate                      0.003 

Harrow & Wealdstone            Kenton                         0.003 

Upminster                      Upminster Bridge               0.003 

Earl's Court                   Kensington (Olympia)           0.003 

Canons Park                    Stanmore                       0.003 

Epping                         Theydon Bois                   0.003 

High Barnet                    Totteridge & Whetstone         0.003 
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Table 16 (continued)   

Ruislip Gardens                South Ruislip                  0.002 

Croxley                        Watford                        0.002 

Ruislip Gardens                West Ruislip                   0.001 

Cockfosters                    Oakwood                        0.001 
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