4,620 research outputs found

    Modeling of the Space Station Freedom data management system

    Get PDF
    The Data Management System (DMS) is the information and communications system onboard Space Station Freedom (SSF). Extensive modeling of the DMS is being conducted throughout NASA to aid in the design and development of this vital system. Activities discussed at NASA Ames Research Center to model the DMS network infrastructure are discussed with focus on the modeling of the Fiber Distributed Data Interface (FDDI) token-ring protocol and experimental testbedding of networking aspects of the DMS

    A method for analyzing the performance aspects of the fault-tolerance mechanisms in FDDI

    Get PDF
    The ability of error recovery mechanisms to make the Fiber Distributed Data Interface (FDDI) satisfy real-time performance constraints in the presence of errors is analyzed. A complicating factor in these analyses is the rarity of the error occurrences, which makes direct simulation unattractive. Therefore, a fast simulation technique, called injection simulation, which makes it possible to analyze the performance of FDDI, including its fault tolerance behavior, was developed. The implementation of injection simulation for polling models of FDDI is discussed, along with simulation result

    Simulation Networks Modeling And Monitoring: Final Project Report

    Get PDF

    Performance analysis of the Fiber distributed data interface (FDDI) network using petri nets and SPNP software package

    Get PDF
    The main purpose of this thesis is to model a Fiber Distributed Data Interface (FDDI) Network using Petri Nets, and to analyze its performance with the help of the SPNP software package. The verification of a communication protocol, by modeling it as a discrete-event system using Petri Nets is a new approach. The correlation between the throughput rate, voice and data throughput, and the parameters of the system, such as the network load and the network speed are investigated. An overview of the Fiber Distributed Data Interface is provided, along with its network protocol and the limitations of its operating parameters. A proposed Petri Net approach is then introduced. Finally, the effect of the network latency and load on the network\u27s overall performance is derived. A method for minimum delay is also proposed, and demonstrated with examples and computation results

    Advanced manned space flight simulation and training: An investigation of simulation host computer system concepts

    Get PDF
    The findings of a preliminary investigation by Southwest Research Institute (SwRI) in simulation host computer concepts is presented. It is designed to aid NASA in evaluating simulation technologies for use in spaceflight training. The focus of the investigation is on the next generation of space simulation systems that will be utilized in training personnel for Space Station Freedom operations. SwRI concludes that NASA should pursue a distributed simulation host computer system architecture for the Space Station Training Facility (SSTF) rather than a centralized mainframe based arrangement. A distributed system offers many advantages and is seen by SwRI as the only architecture that will allow NASA to achieve established functional goals and operational objectives over the life of the Space Station Freedom program. Several distributed, parallel computing systems are available today that offer real-time capabilities for time critical, man-in-the-loop simulation. These systems are flexible in terms of connectivity and configurability, and are easily scaled to meet increasing demands for more computing power

    Data communication network at the ASRM facility

    Get PDF
    The main objective of the report is to present the overall communication network structure for the Advanced Solid Rocket Motor (ASRM) facility being built at Yellow Creek near Iuka, Mississippi. This report is compiled using information received from NASA/MSFC, LMSC, AAD, and RUST Inc. As per the information gathered, the overall network structure will have one logical FDDI ring acting as a backbone for the whole complex. The buildings will be grouped into two categories viz. manufacturing critical and manufacturing non-critical. The manufacturing critical buildings will be connected via FDDI to the Operational Information System (OIS) in the main computing center in B 1000. The manufacturing non-critical buildings will be connected by 10BASE-FL to the Business Information System (BIS) in the main computing center. The workcells will be connected to the Area Supervisory Computers (ASCs) through the nearest manufacturing critical hub and one of the OIS hubs. The network structure described in this report will be the basis for simulations to be carried out next year. The Comdisco's Block Oriented Network Simulator (BONeS) will be used for the network simulation. The main aim of the simulations will be to evaluate the loading of the OIS, the BIS, the ASCs, and the network links by the traffic generated by the workstations and workcells throughout the site

    Simulation Networking Protocol Alternatives: Final Report

    Get PDF
    corecore