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ABSTRACT 

PERFORMANCE ANALYSIS OF THE 
FIBER DISTRIBUTED DATA INTERFACE (FDDI) NETWORK 

USING 
PETRI NETS AND SPNP SOFTWARE PACKAGE 

by 
Savvas Eteoclis Christodoulou 

The main purpose of this thesis is to model a "Fiber Distributed Data Interface" 

(FDDI) Network using Petri Nets, and to analyze its performance with the help of the 

SPNP software package. The verification of a communication protocol, by modeling it as 

a discrete-event system using Petri Nets is a new approach. 

The correlation between the throughput rate, voice and data throughput, and the 

parameters of the system, such as the network load and the network speed are 

investigated. An overview of the "Fiber Distributed Data Interface" is provided, along 

with its network protocol and the limitations of its operating parameters. A proposed Petri 

Net approach is then introduced. Finally, the effect of the network latency and load on the 

network's overall performance is derived. A method for minimum delay is also proposed, 

and demonstrated with examples and computation results. 
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CHAPTER 1 

INTRODUCTION TO FDDI NETWORK 

1.1 Characteristics 

FDDI is a high performance fiber optic token ring Local Area Network (LAN), running at 

100 Mbps over distances up to 200km with up to 1000 stations connected [Burr,1986; 

Ross, 1986,1987]. 

It is designed to provide both synchronous (voice) and asynchronous (data) 

service. It also provides higher priority value to synchronous service. With synchronous 

services a user receives a preallocated maximum bandwidth (i.e., time to transmit 

specified frames) and a guarantee of a maximum delay per frame. Packet voice is one 

example of a service with these requirements. A timed token rotation (TTR) protocol, 

described in Chapter 2, is used to enforce these guarantees. 

Using a maximum latency 0.6 µsec per physical connection, an FDDI system 

produces a 600 µsec maximum total station latency around the ring. Maximum 

propagation delay, end-to-end, using the figure of 5 µsec/km as the delay per km, is 1 

msec. The maximum ring latency, therefore, turns out to be Lax= 1.6 msec. The 

maximum frame length is specified as 9000 symbols. At the 100 Mbps symbol rate, the 

maximum frame transmission time is 0.36 msec. 
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1.2 Network Physical Description 

In an FDDI system, N stations transmitting both synchronous (Voice) and asynchronous 

(Data) traffic are connected as a Local Area Network (LAN). Each station in the system 

can have more than one Voice or Data source. Stations can also have either Voice or Data 

sources only. A general FDDI network connecting N stations with a total of Vs voice 

sources and Ds data sources is shown in Fig. 1-1. Each station in the network shown, is 

connected to only two stations, forming a ring network. The formed network is 

unidirectional. Each station can receive the token ring from the station on its left, and 

pass the network only to the station to its right. For example station 2 is connected to 

station 1 and to station 3. It can receive the token ring only from station 1 and can pass 

the token only to station 3. This sequence should be followed throughout the ring, 

regardless that, some stations in the network do not have any messages to transmit. Voice 

and data messages are arriving to the stations exponentially with a rate X forming 

different queues of voice and data respectively. Each station has one queue of data and 

one queue of voice. Therefore, in an N station network, N queues of voice messages and 

N queues of data messages are formed. Each queue has one server, and the service 

provided is based on first in, first out algorithm. 

The communications rules of the network are controlled by the Timed Token 

Rotation (TTR) protocol described later in this chapter. 
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Figure 1-1. General FDDI network consisting of N stations. 
Vs voice sources and Ds data sources are available in the network 

1.3 Timing Requirements 

On ring initialization, all stations on the ring negotiate a key parameter, the Target 

Token Rotation Time (TTRT) [ANSI 1987]. TTRT is actually the average token 

rotation time on the ring. Each station requests a value T_REQ for the TTRT. The 

minimum value of T_REQ is chosen as the operational value, T_OPR, of TTRT. 

The maximum token rotation time around the ring is proved to be, however, 2T_Opr 

[Johnson 1987]. Because of that each station should request a T_REQ value which is 

one-half of its absolute maximum token rotation time. 

The minimum value of T_Opr is acquired by all stations, and each station receives 

a fractional allotment ST of this time to be used in transmitting synchronous traffic. If, for 



example, there are Vs synchronous sources on the ring, the total synchronous allotment is 

then, Vs*ST sec. T_Opr should then be chosen large enough to accommodate this 

synchronous allotment and to allow at least one data (asynchronous) frame per token 

rotation, plus the time to transmit the token. 

It is clear then, that T_Opr must satisfy the following inequality: 

where: 

L is the ring latency 

F_Max is the maximum frame transmission time and equals to 0.36 msec 

Token_Time is the token transmission time and equals to 0.88 µsec 

The operational value T_Opr of the target token rotation time TTRT is bounded 

by a default minimum value of 4 msec and a default maximum value of 165 msec. The 

later value is chosen to guarantee stable ring recovery [ANSI 19871 
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1.4 Timed Token Rotation (TTR) Protocol 

An FDDI station receiving the token may capture it and transmit any waiting frames up to 

a specified time limit to be discussed below. 

Each station has two timers involved in this protocol. A third timer, not discussed 

in this thesis, is used to provide recovery from transient ring error conditions [ANSI 

1987]. A timer called the Token Rotation Timer (TRT) controls access to the ring. This 

timer is initialized to T_Opr. 

If TRT>0 when the token arrives to the station, the token is said to be on time. 

This thesis, however, considers this case only, since we will not study the performance 

analysis of the system for abnormal cases such as errors, corrections, etc.. If this is the 

case, on the arrival of the token, the value of the TRT is transferred to the second timer, 

the Token Holding Timer (THT), and TRT is reset to T_Opr. 

Any waiting synchronous (voice) traffic is then transmitted up to the maximum 

allotment ST. On expiration of ST, or completion of synchronous transmission, 

whichever comes first, THT is enabled and any waiting asynchronous (data) frames are 

transmitted, until THT expires, or there are no further frames to transmit, whichever 

comes first. 

Asynchronous frames may have up to eight levels of priority, if desired, but in 

this thesis we are focusing on one priority level only. If THT expires while an 

asynchronous frame is being transmitted, completion of that frame is allowed. 

The following flow diagram, Fig. 1-2, shows the FDDI Timer Token Rotation 

Protocol as it was presented in [Sanker 1989]. The flow diagram, however, does not take 

into consideration the possibility TRT<0 when the station receives the token. 



Figure 1-2. FDDI Timer Token Rotation Protocol. 
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1.5 Review on Modeling and Analysis of a Token Ring 

1.5.1 Previous Studies on Token Ring System 

Token rings constitute one of the most widely known candidates for a local area network. 

In this case the nodes of the network are linked in a circular fashion. The connected 

stations gain access to the transmission channel by means of a "right to transmit" which is 

represented by a special configuration of bits, namely the token. 

In the literature we can find a lot of studies concerning cyclic server systems. 

Most of these are not mathematically tractable. Also, some of them are using 

approximation methods based on simplifying hypotheses. Some studies do not consider 

the walking time between the stations [Nair 85], and some other assume symmetric 

systems where an equal load is offered to each station [Cooper 69], [Kaye 72]. 

The discipline of the service at one queue was also a simplification method used 

for modeling a token ring. Many results exist for the case of an exhaustive service 

discipline either for a symmetrical, [Kaye 72], or an asymmetrical network, [Ferguson 

85]. Limited results were also obtained using the gated service case, [Ferguson 85]. There 

is no paper at the moment, to our knowledge, analyzing the general case of a token ring 

system, with queues having non-exhaustive service. 

1.5.2 Queueing Theory Approach for Analyzing Token Ring 

The analysis of the token ring using queueing theory is mainly based on the assumptions 

of the exponential distribution, and this utilizes the properties of the Markov chains for 

solution. 
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Each terminal is assumed to spend an exponentially distributed amount of time 

with mean 1/a preparing service request. If the state of the system is N(t) = k, then the 

number of idle terminals is K-k. Therefore the rate at which service requests are 

generated is (K-k)a. We also assume that the time required to service each request is an 

exponentially distributed amount of time with mean 1/µ. N(t) is then the continuous-time 

Markov chain with the transition rate as shown in Fig. 1-3. 

Figure 1-3. Transition rate diagram for a 
finite source single-server computer system. 

The throughput of the computer system shown above, is defined as the rate at 

which it completes transactions. 

It is proved [Garcia 89] that the mean delay in the system, E[T], for each request 

is, 

whereas the throughput, X, is, 

From the above equations, it can be seen that X. grows linearly with K. But as K 

increases, the computer will eventually become fully utilized, and then outputs 

transactions at its maximum rate, namely µ transactions per second. Thus λ µ, for large 

8 
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K. Figures 1-4 and 1-5 show respectively, the delay and throughput for finite source 

system as a function of number of sources as they were presented in [Garcia 89]. 

Figure 1-4. Delay for finite source system 
as a function of number of sources. 

Figure 1-5. Throughput for finite source 
system as a function of number of sources. 

The dashed lines in the Figures shown above, indicate asymptotes for small and 

large values of K. The value of K where the two asymptotes for E[T] intersect is called 

the system saturation point, K*. When K becomes larger then K*, the requests from the 



terminal are certain to interfere with each other and the response time increases 

accordingly. 

1.5.3 Simulation Approach for Analyzing Token Ring 

The simulation analysis, is the most common analysis for examining the behavior of a 

network, since it provides comparisons with theoretical approaches. Because of this 

reason, many simulation software packages were developed in the last decade to simulate 

the performance of the token ring networks. 

One of the most complete simulation analysis presented so far, was the one given 

by [Ghani 91]. The later paper analyzes theoretically, most of the parameters involved in 

the network, and also simulates the network presenting the comparisons between the two 

approaches. Figures 1-6, 1-7 and 1-8 show the Delay vs the Network Utilization for 

varying number of stations, T_Opr and network length respectively. 

Figure 1-6. The effect on delay as a function of the 
number of stations in the network [Ghani 91]. 
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Figure 1-7. The effect on delay as a function 
of network's Geographical size [Ghani 91]. 

Figure 1-8. The effect on the delay as a 
function of the value of T_Opr [Ghani 91]. 
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1.5.4 Petri Net Approach for Analyzing Token Ring 

The power and flexibility of Petri nets, have been a popular tool for token bus Local Area 

Networks modeling and performance [Zhou 92]. That paper examined the single, 

exhaustive, gated and limited service types in both symmetric and asymmetric token bus 

LAN. The correlation between the throughput and delay for the system with respect to the 

offered load, was provided among the GSPN model. The following figure illustrate the 

advantage of asymmetric over symmetric system. 

Figure 1-9. Performance of symmetric and asymmetric LAN [Zhou 92]. 

1.6 Objectives 

The goal of this thesis is to model and analyze the "Fiber Distributed Data Interface" 

Network using Petri Net theory. The objectives are: 

1. To propose a model describing the protocol used in FDDI systems, using 

Stochastic Petri Nets. 

2. To propose techniques to maximize the output throughput of the network. 
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3. To analyze the performance of the network using SPNP Software package. 

4. To compare the results of the present approach, with the results obtained from 

previous approaches. 

5. To point out the advantages of the Petri net model over the existing Timed 

Token Rotation protocol. 
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CHAPTER 2 

PETRI NET MODEL 

2.1 Introduction to Petri Nets 

Petri nets are a promising tool for describing and studying information processing 

systems that are characterized as being concurrent, asynchronous, distributed, parallel, 

non-deterministic, and/or stochastic. 

Petri Nets are a graphical and mathematical modeling tool applicable to many 

systems. As a graphical tool Petri nets can be used as a visual-communication aid similar 

to flow charts, block diagrams, and networks. As a mathematical tool, it is possible to set 

up state equations, algebraic equations, and other mathematical model governing the 

behavior of systems [Murata 89]. 

Petri nets consist of places (circles) which represent conditions, and transitions 

(bars) which represent events. Most of the approaches for modeling Discrete Event 

Dynamic Systems (DEDS) with Petri nets, the following interpretations for places, 

transitions, and tokens are employed [Zhou 93]: 

1. A place represents a resource status or an operation; when it represents the 

later, one or more tokens in the place indicate that the resource is available and 

no token indicates that it is not available. If a place represent an operation, a 

token in it shows that an operation is being executed and no tokens shows that 

it is not. 
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2. A transition represents either start or completion of an event or operation 

process. 

Places and transitions are connected by directed arcs from places to transitions or 

from transitions to places. If an arc is directed from node i to node .1 (either from a 

transition to a place or from a place to a transition), then i is an input to j and j is an 

output to i. An arc is directed from place pi  to transition tj  if the place is an input to the 

transition. Similarly, an arc is directed from a transition t;  to a place pi  if the place is an 

output of the transition. A PN is a directed graph. 

2.2 Advantages of Petri Net Modeling 

Petri nets as a graphical tool provide a unified method for design of discrete event 

systems from hierarchical system description to physical realizations. Compared with 

other model approaches, they have the following advantages [DiCesare 91; Ma 92; 

Martinez 86; Zhou 894 

1. Ease of modeling DES characteristics: concurrency, asynchronous and 

synchronous features, conflicts, mutual exclusion, precedence relations and 

system deadlocks. 

2. Ability to generate supervisory control code directly from graphical PN 

representation. 

3. Ability to check the system for undesirable properties such as deadlock and 

instability. 
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4. Performance analysis without simulation is possible for many systems. 

Production rates, resource utilization, reliability and performability can be 

evaluated. 

2.3 Transition Enabling and Firing Rules 

A Petri net Z is a 5-tuple, Z = (P, T, I, 0, mo) where: 

P 	p2,  p3,...pn} is a finite set of places; 

T = {t1, t2, t3,...ts} is a finite set of transitions; 

I: P x T → N = 0, 1,2 ...n} is the input function that specifies the arcs 
directed from places to transitions; 

0 : P x T 	F = {0, 1,2 ...n} is the output function that specifies the arcs 
directed from transitions to places; 

mo  : P → 0, 1, 2, 3,...} is the initial marking 

A Petri net is a particular kind of directed graph. It is presented with an initial 

state called the initial marking mo. The graph basically consists of two kinds of nodes, 

namely places and transitions. In graphical representation, places are drawn as circles and 

transitions as bars or boxes. Arcs are drawn either from places to transitions (input arcs), 

or from transitions to places (output arcs). Arcs are labeled with their weights (positive 

integers), where a K-weighted arc can be interpreted as K parallel arcs. Labels for the 

unity weight are usually omitted. A marking assigns to each place a nonnegative integer 

k. Graphically, k black dots (tokens) are placed in place p. Marking mi  actually represents 

the number of tokens in all places at state i (m0  is the initial state). In other words, 

marking m is an n-vector, where n is the total number of places. The ith component is 
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the number of tokens in place i. K tokens are put in a place to indicate that K data items 

or resources are available. 

The behavior of many systems can be described in terms of systems states and 

their changes. A state or marking in a Petri Net is changed according to the following 

transition firing rule: 

1) A transition t E T is enabled iff 	m(pj) 	I(pj  , t) 	for 1 	n 

A transition t is said to be enabled if and only if, the number of tokens in the input 

places of transition t is equal or greater than the number of input arcs from each of the 

places to t. 

2) An enabled transition t may fire at marking m', yielding new marking 

m(pi) = m'(pi) + O(pi ,t) - I(pi  ,t) 	for i = 1,2,3...,IPI. 

A firing of an enabled transition removes I(p,t) tokens from each input place p of 

t, and adds O(p,t) tokens to each output place p oft. 

Systems with priority, however, cannot be modeled with the common arcs 

discussed above. A new kind of arc called inhibitor arc is introduced to overcome 

priority problems [Agerwala 74]. An inhibitor arc is represented by a dashed line 

terminating with a small circle instead of an arrowhead at the transition, like the common 

arc. The inhibitor arc disables the transition when the input place has a token, and enables 

the transition when the input place has no token. No token is removed through an 

inhibitor arc when the transition fires. 

The transition enabling and firing rules are shown in Fig. 2-1. Transition t is 

enabled iff 

17 



Firing transition t will remove k1  and k2  tokens from pi  and p, respectively, and 

deposit one token to its output place p5. No tokens will be removed from place p3  and p4  

Figure 2-1. Petri net example using inhibitor arcs. 

2.4 Petri Net Approach to Analysis of FDDI 

The key to modeling FDDI with a Petri net was the conversion of the time-driven event 

system (Time Token Rotation protocol) to a discrete-driven one. 

The first step was the conversion from bits to messages (tokens). The service rate 

was then converted from bits per second (bps) to messages (tokens) per transition firing. 

Finally, the timers used in the Timer Token Rotation protocol (Fig.1-2) for controlling 

THT, TRT, TOpr are now replaced by a "Number of Tokens Presented Control 

Method". The maximum time available for transmitting voice (ST), or data (THT) used in 

the real-life time-driven system, are now replaced to a discrete-event system (DES) by 
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using the maximum number of times a transition can fire. Each firing implies 

transmission of a voice or data message (token). 

Figure 1-2 which was suggested by R. Sanker in 1989, was used for so many 

years as a standard tool to study the performance analysis of FDDI network. It can now 

be replaced by a discrete event dynamic system (DEDS), suggested in this thesis and 

shown briefly in Fig. 2-2. 
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Figure 2-2. FDDI Timer Token Rotation protocol for Petri Net approach. 
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This diagram in Fig. 2-2 is in fact a DEDS which has the same algorithm as the 

one used in Fig. 1-2, and it will be the basis for this thesis' approach to studying the 

performance of FDD1 network from the discrete event point of view. 

2.5 Petri Net Model 

2.5.1 Overview of the Petri Net Model 

Figure 4-3 is a simple PN model with four (4) places and five (5) transitions which only 

support a small portion of the real life TTR protocol's features. It is very important 

though, to mention this model and its features, in order to follow the overall model 

approach, and the final Petri net model to be suggested later. This figure shows a station 

holding the token, able to transmit voice and data messages, with voice messages having 

priority. The three (3) transitions on the upper-right side present the three (3) conditions, 

based on which the station holding the token, should pass the token to the next station. 

The transition on the top represents the case when the station holding the token ring does 

not have any messages to transmit. The next transition represents the case when the 

station transmits the maximum number of voice permitted, but it does not have any data 

messages to transmit. Finally, the third transition shows the case when the station 

transmits all voice and data messages permitted. The place on the right represents the 

next station on the ring. The two places on the lower part of the figure represent the voice 

and data messages presented in the station. The remaining transitions describe the voice 

and data service rate. The last two transitions are exponentially distributed since they 
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represent rates, whereas the first three are immediate. The inhibitor arc in the network 

supports the priority of voice over data. 

Figure 2-3 however, is unable to capture all the features described in Fig. 2-2. 

First, it does not support the complete description of the priority function. The protocol 

states that, maximum Xo number of voice sources can be transmitted prior to data 

transmittion. Figure 2-3 does however, support exhaustive priority of voice over data. 

Also, the later figure does not show the maximum number Y of data a station can 

transmit, as a function of the number of voice messages already have been transmitted. 

Finally, Fig. 2-3 does not cover the issue of voice and data message arrival rate λ and the 

formation of different queues. 
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Figure 2-3. Petri net model for a single station 
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2.5.2 Description of the Petri Net Model Operation 

The complete Petri net supporting all features of Timer Token Rotation protocol first 

presented in Fig. 1-2, and then in Fig. 2-2 as a DEDS, is shown in Fig. 2-4. Each Petri 

Net station consists of thirteen (13) places and nineteen (19) transitions. Table 2-1 

tabulates all places and transitions presented in this final Petri net model. 

Place p1  is part of the token ring and indicates whether the station is idle or not. 

The available token in p1  indicates that the station is able to transmit any waiting voice or 

data messages represented by m(p2) and m(p3) respectively. Voice and data messages are 

arriving with a rate λ to place p2  and p3  through transitions t1-t16  and t2-t17, respectively. As 

long voice has priority over data, the station starts transmitting voice messages with a rate 

by firing transition t3. Every time a voice message is transmitted, a token is stored in 

place p6. The number of token available in place p6  controls the muximum number of 

voice messages (Xo) the station can transmit per token ring holding time. As soon as the 

place p6  is filled with Xo tokens, the station is prohibited from transmitting any more 

voice messages. The Xo-weighed inhibitor arc from place p6  to transition t3, basically 

controls the protocol's feature concerning the TRT time. 

Data messages are allowed to be transmitted under two conditions. 

• The first condition is when no more voice messages are available in the station. This 

condition is represented by the inhibitor arc from place p2  to transition t4. In that case, 

transition t4  is enabled, transmitting any available data message in place p3, with a rate µ. 
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• The second condition, is when Xo voice messages have already been transmitted. In 

that case, transition t3  is disabled as mentioned before, while at the same time, transition t5  

is enabled. 

In both cases, every time a data message is transmitted, either through transition t4  

or transition t5, a token is stored in place p,. Place p, is contolling the feature of the THT 

protocol. The myval-weighed inhibitor arcs from p, to transition t.1  and t5, indicate that the 

maximum number of data messages that can be transmitted depends on the remaining 

time available after transmitting X voice messages. It should be noted here that as long as 

a data message is transmitted no voice message is able to be transmitted. To reinforce this 

feature, transition t3  which is responsible for voice service is disabled as soon as a token 

is stored in place p,. To avoid deadlock, transition t1, which represents voice message 

arrival rate, is also disabled with the appearance of a token in place p,. 

Transitions t8-t, and t10  indicate the three conditions, the station should transmit 

the ring token to the next station, represented by place p8, as discussed briefly in the 

previous section. It should be noted here, that as soon as the station passes the token to 

the following one, the control counters p6  and p, are reset. This is achieved by the 

immediate transitions t6  and t7. 

The remaining transitions and places shown in the final Petri net are mainly 

inserted for control purposes. Basically, they model the interarrival message rate in a way 

to avoid deadlock. The part of the Petri net model including t1 ,-p9-p10-t17,   blocks out any 

arriving voice messages while m(p1)=1 and m(p2)=0. Any messages that arrives at the 

station wlile m(p1)=1 and m(p2)=0 is stored in a temporary memory buffer, modeled by 
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t16-p13-t18  combination, and transfered to the voice queue as soon as the station goes idle, 

i.e. when m(p1 )=0. Similarly, any data message that arrives while m(p1 )=1 and m(p3)=0 is 

stored in a temporary buffer, and transfered to the data queue as soon as the station goes 

idle. The temporary data buffer and the control system for preventing deadlock is 

modeled by t14 -p11-t15-p12-t17-p14-t19  combination. 



Figure 2-4. Petri Net model for a single station. 
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Table 2-1. Labels of places and transitions in final Petri Net Model. 

NOTATION DESCRIPTION 

p1 Token ring is available and the station is able to transmit 

P2 Synchronous (voice) messages ready to transmit 

P3 Asynchronous (data) messages ready to transmit 

p4-p5 Voice-Data sources 

p6-p7 # of voice-data messages transmitted 

p8  Next station on ring (idle) 

p9-p10-p11-p12 Places for control purposes. They block out any arriving 
messages while m(p2) or m(p3)=0, and m(p1)=1 

p13-p14 Voice-Data message temporary buffers 

t1 -t2  Voice-Data message arrival rate 

t3  Voice service rate 

t4-t5  Data service rate 

t6-t7 Immediate transitions for control purposes 

t8-t9-t10  Token ring transitions between successive stations 

t11 Connects rest of the net with first station 

t12-t13-t14-t15 Transitions for control purposes 

t16-t17 Voice-Data message arrival rate 
t18-t19 

Immediate transitions to transfer any messages from the 
temporary buffers to the queues 

X 	[ = m(p6) ] # of voice messages transmitted so far 

Y 	[ = m(p7) ] # of data messages transmitted so far 

Xo maximum number of voice messages a station can 
transmit per token ring holding time 

myval 	[ = (Xo+1) - X ] Variable to support FDDI protocol 
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CHAPTER 3 

THE EFFECT OF THE NETWORK'S 
LOAD ON OVERALL PERFORMANCE 

3.1 Performance Analysis of FDDI in other Approaches 

As stated earlier in this thesis, FDDI uses a token-based protocol. Since it is a token ring 

LAN, its access delay clearly depends on the overall latency L. 

The use of the timed token rotation protocol provides service to synchronous 

traffic, and limits the amount of asynchronous data traffic on the network. The data 

access delay and the maximum data throughput turn out to be dependent critically on the 

initial value for the Token Rotation Timer, T_Opr. The performance thus depends, in a 

rather complex way, on both the latency L and T_Opr. 

This complexity of the protocol urges many engineers to study the performance 

analysis of the FDDI. The work of Karvelas and Leon-Garcia [Karvelas 88,90] developed 

simple worst-case bounds on the synchronous traffic delay (2T_Opr, as noted in the 

earlier discussion of the FDDI), the worst-case maximum data traffic throughput and a 

relatively simple data access delay approximation. The effect of L and T_Opr on the 

network's performance was a main focus of the study in these papers. The results of these 

papers, mainly based on simulation, help choosing the value of T_Opr. 
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3.2 Introduction to SPNP Software Package 

The SPNP (Stochastic Petri Net Package) Version 3.0 used in this thesis was developed at 

Duke University [Ciardo 89]. The Stochastic Petri Net (SPN) to be analyzed must be 

described in a CSPL (C-based Stochastic Petri Net Language) file, which specifies the 

structure of the SPN and the desired outputs, by means of predefined functions. 

The SPN model is obtained from the PN model by associating a probability 

distribution function to the firing time of each transition. Transitions with an associated 

exponential distribution are said to be limed; transitions with a constant 0 distribution are 

said to be immediate. 

3.3 Network's Modified Model 

To study the effect of the network's load on any individual station throughput, a 

simplified network is proposed. The general N station network shown in Fig. 1-1, is 

replaced by the network shown in Fig. 3-1, by simply replacing the part of the network 

from station 2 through station N, by a single station, called "station N-1". 
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The Petri net version of the newly revised network, can be constructed by simply 

modeling the N-1 stations by a single place. The walking time throughout the N-1 

stations, plus the service time of the N-1 stations is represented by the transition t,,. The 

higher the transition's t11 rate is, the lighter the network load is. Figure 3-2 shows the 

complete revised ring network using Petri nets. 

Figure 3-2. Modified N station Petri network. 

It should be noted that the notations of the places and the transitions shown in Fig. 

3-2 correspond to the same places and transitions shown in the original Petri net model of 

Fig. 2-4. 

3.4 FDDI Performance using SPNP 

The final PN model of an individual station proposed in Fig. 2-4, is connected as a part of 

an N station network using the method shown in Fig. 3-2. The modified network is 

described in CSPL file and executed using the SPNP software package. The C-code for 

the network is listed in Appendix A. 
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The effect of the network's parameters on the individual station's throughput are 

examined in this part of the thesis. The main focus of the study is on the relation between: 

1. The number of voice sources presented at the station vs the average voice 

throughput of the station; 

2. The speed/length of the net (latency) vs the average voice throughput of the 

station; 

3. The effect of data sources on average voice and data throughputs of the station. 

The results of the SPNP analysis are listed in Appendix D. The following figures 

are sketched using the results obtained by the SPNP analysis.. 

Figure 3-3 presents the relation between the number of voice sources in an 

individual station, and its average voice throughput. Since the effect of data sources is 

not covered in this figure, the individual station to be examined, is assumed to have no 

data sources. 

Figure 3-4 presents the effect of the (N-1) stations walking and service rate on the 

voice throughput of the individual station. This case does in fact show the effect of the 

network's speed and latency on the individual station's throughput rate. 

Figure 3-5 shows the effect of data sources presented in a station, on its average 

voice/data throughput. 

Finally, Fig. 3-6 shows the effect of the (N-1) stations on the individual's 

voice/data throughput. 
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Figure 3-3. Voice Throughput (100K Messages per 
Second) vs. number of Voice Sources (Ds=0). 

Figure 3-4. Voice Throughput (100K Messages per Second 
vs. number of Voice Sources (Ds=0) for variable latency. 
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Figure 3-5. Voice and Data Throughput (100K Messages 
per Second) vs. number of Voice Sources (Ds=9) 

Figure 3-6. Voice and Data Throughput (100K Messages per Second) vs. 
number of Voice Sources (Ds=9) for Variable Latency. 
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3.5 Analysis of Results 

• The upper-bound limit on the average voice throughput is shown in Fig. 3-3. Even 

with no data sources available in the station, voice throughput cannot increase 

unlimitedly. The upper bound limit is controlled by ST in the time-driven protocol and by 

the "number of tokens in place p6" in the discrete-driven system proposed in this thesis. In 

this case, the number of tokens in place p6, cannot exceed Xo, i.e., after the station 

transmits a maximum of Xo messages, it should transmit data or pass the token to the 

next station. 

• The effect of the latency on the network performance is presented in Fig. 3-4. The 

faster the token goes around the ring, the higher the individual station's throughput is. By 

gaining speed we are gaining efficiency. Short queues of voice messages ready to 

transmit are formed causing short transmission delays. 

• Figure 3-5 demonstrates the priority of voice over data. It is clear that, by increasing 

the number of voice sources, while keeping the number of data sources constant, the 

voice throughput is increasing at the expense of data throughput. Voice throughput is 

increased up to a certain upper-bound limit, while data throughput approaches to zero. In 

other words, by gaining voice efficiency, long data queue delay and low-level data 

efficiency, are created. 

• The results of the three previous figures are summarized in Fig. 3-6. Voice priority 

over data, upper-bound limit in voice efficiency, long data queue delays for large number 

of voice sources in the network, as well as, latency effect on station's voice/data 

efficiency can be seen in the later graph. 
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As it is shown so far, there is no such an ideal combination of parameters for 

maximum efficiency. Network's speed (latency), throughput and queue delays, are related 

in a very complicated way. Depending on the network we are planning to develop, we 

should consider different combinations of parameters. 
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CHAPTER 4 

THE EFFECT OF THE T-OPR ON 
THE NETWORK'S PERFORMANCE 

4.1 Introduction 

This chapter focuses on the effect of T_OPR on the network's performance. Previous 

papers on this subject, such as [Karvelas 88] and [Karvelas 90], proved that the value of 

T_Opr is bounded by a default minimum value of 4 msec and a default maximum value 

of 165 msec. The latter value is chosen to ensure stable ring recovery [ANS1 87] . For 

asynchronous traffic higher throughput is possible with a larger T_Opr, but the maximum 

asynchronous frame delay increases correspondingly. 

Since this thesis, however, deals with DEDS, the optimum value of T_Opr (and 

allotment time ST), will be as a function of "how many messages per token ring holding 

time, a station can transmit - S2 ". The theoretical approach, as well as the analytical 

approach using SPNP, will be initially done, using a two-station-network case. It will, 

then be extended to the N-station network case, for general conclusions. The simplest 

two-station network is shown in Fig. 4-1. 
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Figure 4-1. Two-station network. 

4.2 Two-Identical-Station Network 

A simple network consisting of two identical stations having initially K voice messages 

to transmit, will be the basis for this chapter's approach to studying the effect of Q on 

network's time delays. 

This section aims to estimate the number of Transmitted Messages per Token 

Holding Time, denoted by Q, that produces the minimum time (propagation and service 

time), in transmitting the K messages from each station. 

The optimum value for the two-identical-station network can be simply evaluated 

through the following two examples. 

Example 1 (K is even)  

Assume that two station's PNs are joined together forming an FDDI LAN. Each station 

has initially K=8 voice messages to transmit. 
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Find how many messages each station should transmit every time it holds the ring token, 

in order to have minimum delays. 

Solution:  

A simple way for determining the optimal value of Ω is to enumerate all of its 

possible values, i.e. Ω =1,2,3...8, and obtain the minimum time to transmit all messages 

from each station. 

A detailed analysis of these cases follows: 

Case 1: Ω = 1  

In order to transmit all initial K=8 messages, each station should receive the ring 

token eight times. Note that the messages arriving to the station with rate λ, are not taken 

into consideration at this point. 

Case 2: Q = 2  

In this case, each station has to transmit the messages two at a token holding time, 

resulting to a total of four token holding times. 

Case 3:52 = 3  

For this case, each station transmits three messages per token holding time. 

The following scheme can then be obtained: 
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Number of 

messages sent from 

Station 1 

Number of 

messages sent from 

Station 2 

3 

3 

3 

3 

9 

It can be clearly seen that each station should receive the ring token three times to 

transmit all initial messages. 

A similar pattern is obtained for the rest of the cases, and is summarized in Table 

4-1. Note that the guaranteed transmission of one data message per cycle, provided in the 

Time Token Rotation Protocol described in Section 1.4, is considered in the table. 

Table 4-1. The effect of Ω value on two-identical-station 
network initially having K=8 messages to transmit. 

Station 1 

K1=8 

Station 2 

K2=8 

Total time to transmit K1=8 messages 

(station 1 receives the token at t=0) 

Ω=3 3/3/2 3/3 t = 2L + 14V/µ + 2D/µ 

Ω=4 
4/4 4 t = L + 12V/µ + D/µ. 

S2=5 5/3 5 t = L + 13V/µ + D/µ. 
Ω=6 

6/2 6 t = L + 14V/µ + D/µ 

S2=7 7/1 7 t = L + 15V/µ. + D/µ 

40 



where: 

L is the propagation delay for a complete token ring cycle (latency) 

µ is time required to transmit a single message (service rate) 

✓ is the Voice message length 

D is the Data message length 

Note that the Ω=8 case (exhaustive case) is ignored. For real life N station 

network where N>>2, such a case will produce long delays in all stations. 

It is concluded then, that for the case K1 =K2=8, Ω=4 is the optimal value for minimum 

delays. 

Example 2 (K is odd)  

Assume that two station's PNs are connected forming an FDDI LAN, as in Fig. 

4-1. Each station has initially K=9 voice messages to transmit. Find out how many 

messages each station should transmit every time it holds the token, for minimum delays. 

Solution:  

The approach is similar to the one used in Example 1. 

The total time to transmit K1 =9 messages from station 1, for all Ω cases is shown 

below in Table 4-2: 
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Table 4.2 The effect of Ω value on two-identical-station 
network initially having K=9 messages to transmit. 

Station 1 

K1=9 

Station 2 

K2=9 

Total time to transmit K1 =9 messages 

(station 1 receives the token at t=0) 

Ω=2 2/2/2/2/1  2/2/2/2 t = 4L + 17V/µ + 4D/µ 

f2=3 3/3/3 3/3 t = 2L + 15V/µ + 2D/µ 

Ω=4 4/4/1 4/4 t = 2L + 17V/µ + 2D/µ 

Ω=5 5/4 5 t = L + 14V/µ. + D/µ 

Ω=6 6/3 6 t=L+15V/µ+D/µ 

Ω=7 7/2 7 t = L + 16V/µ+ D/µ 

Ω=8 8/1  8 t = L + 17 V/µ + D/µ 

Now, it is obvious that for the case of K1=K2=9, Ω=5 produces the minimum 

delay. 

Conclusion 1  

For a two-identical-station FDDI network, initially having K messages ready to 

send, the optimal value for Q for minimum delay, is: 

The minimum time to transmit all messages presented at any station starting the 

clock time as soon as the station receives the ring token is: 
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By induction the results obtained can be extended to the N-station network case: 

• For N-identical station network, the optimum value of S2 for minimum delay 

is: 

• The minimum delay to transmit K messages from station 1, in N-identical 

station network is: 

4.3 Two-Non-Identical-Station Network 

In this section a more realistic non-identical station network will be studied. The 

approach, however, is the same used in section 4.1, and illustrated in the following 

example. 

Example 3 (Non-identical stations)  

Assume that two PN stations are connected forming an FDDI network. Initially, 

station 1 and station 2, have respectively K1 =8 and K2=6 messages ready to transmit. 

Find the value of the Ω  which produces the minimum delay. Calculate the time 

required to transmit all initial K1  messages. 

Solution  

A similar approach, applies to this example as well. Table 4-3 shows all possible 

values of S2 and their performance results on this specific example. 
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Table 4-3. The effect of Ω value on two-non-identical-station network initially 
having K1 =8 and K2=6 messages to transmit. Station 1 receives the token at t=0. 

Station 1 

K1 =8 

Station 2 

K2=6 

Total time to transmit K1=8 messages 

(station 1 receives the token at t=0) 

Q =2 2/2/2/2 2/2/2 t = 3L + 14V/µ + 3D/µ 

Ω=3 3/3/2 3/3 t = 2L + 14V/µ + 2D/µ 

Q=4 4/4 4 t = L + 12V/µ + D/µ 

Q=5 5/3 5 t = L + 13V/µ + D/µ 

Q=6 6/2 6 t = L + 14V/µ + D/µ 

Ω=7 7/1 7 t = L + 15V/µ + D/µ 

The above table covers the case when station I with K1 =8 holds the token at t=0. 

It seems that Q=4 is the optimal value for this case. 

To show however, that the result is independent of which station holds the token 

at t=0, a similar table should be formed in which station 2, (K,=6), holds the token at t=0. 

Table 4-4 shows the results of the later case: 

Table 4-4. The effect of Q value on two-non-identical-station network initially 
having K1 =8 and K2=6 messages to transmit. Station 2 receives the token at t=0. 

Station 2 

K2=6 

Station 1 K1=8 Total time to transmit K2=6 messages 

(station 2 receives the token at t=0) 

Q=2 2/2/2 2/2/2 t = 2L + 12V/µ + 2D/µ 

Q=3 3/3 3 t = L + 9V/µ + D/µ. 

Ω=4 4/2 4 t = L + 10V/µ + D/µ 

Ω=5 5/1 5 t = L + 11 V/µ + D/µ 
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Table 4-4 does not cover Q=6 and Ω=7 cases due to exhaustive-service-case 

reasons. It does however, suggests a different value of Ω, namely Q=3. Between the two 

values suggested by the two different tables, the value to be used is Ω=4. By using this 

choice, less delays are encountered, mainly dependent on the overall propagation delay 

rather than the transmission delay. 

Conclusion 2  

For a two-non-identical-station FDDI network, initially having K, and K2  

messages ready to send respectively, the optimal value for Ω, for minimum delay, is: 

The minimum time to transmit all messages presented at any station i starting the 

clock time as soon as the station i receives the ring token is: 

The two-non-identical-station network approach, can be extended to an 

N-non-identical station network. 

For N-identical station network, the optimum value of S2 for minimum delay is: 

• The minimum time to transmit all Ki messages presented at station i (t=0 when 

station i receives the token) is given by: 
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4.4 Real Life N-Non-Identical-Station Network 

The previous two sections cover very specific, and actually, non realistic network cases. 

They suggest however, very important results, which are useful to complete the 

performance analysis of real life N station network. 

As mentioned in earlier chapters, during ring initialization, T_Opr is acquired by 

all stations. Each station receives a fractional allotment ST of this time to be used in 

transmitting synchronous traffic. If, for example, there are Vs synchronous sources on the 

ring, the total synchronous allotment is then Vs*ST sec. This mainly implies that not 

necessarily all stations have the same allotment time to transmit messages. 

In the DEDS framework, all stations should not necessarily transmit the same 

number of messages per holding token time. Different values of Ω can then be applied to 

individual stations, according to the number of sources (messages) presented at the 

initialization of the network. Basically, each station acquires its own value of f and 

according to Eqn. 4.1 this value of Ω is equal to the ceiling function of the initial 

messages presented at the individual station, divided by two. 

Based on this, station I (K1 =8), and station 2 (K2=6) will not have the same value 

of Ω as suggested in example 3. Station I will now transmit four messages per token 

holding time (Ω1 =4), whereas station 2 will transmit three messages per token holding 

time (Ω2=3). A new transmitting message sequence can then be obtained, as shown 

below: 
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Number of messages sent from 

Station 1 

(K1 =8, Ω1=4) 

Number of messages sent from 

Station 2 

(K2=6, Ω2=3) 

4 

3 

4 

The above scheme indicates that the minimum time to transmit all messages 

initially presented at station 1 (t=0 when station 1 receives the token) is: 

Conclusion 3 

For a real N (non identical) station FDDI network, 

• the optimum number of messages, Ωi, transmitted per ring token holding time 

by station i, (station i having initially Ki  messages ready to transmit), is: 

• the minimum time to transmit all messages presented at station 1, starting the 

clock time as soon as station 1 receives the token, is: 
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CHAPTER 5 

THE EFFECT OF T-OPR USING SPNP ANALYSIS 

5.1 Introduction 

The previous chapter covers the theoretical approach to the effect of the T_Opr on the 

overall network's performance. Important results regarding the optimal value of the 

number of messages transmitted per token ring holding time, denoted by S2, as well as the 

minimum time needed to transmit all messages presented at the stations, were drawn. In 

addition to the results presented in the previous chapter, a computer software package 

(SPNP) is utilized to reinforce the conclusions drawn. The reason this software is chosen 

is because of its capability to solve problems involving stochastic Petri Nets and Markov 

chains. 

5.2 N-Identical-Station Network 

The first case to be examined, is the simplest N identical-station network introduced in 

Fig. 1-1. It consists of N stations connected back to back forming a token ring. For 

simplicity reasons, all N stations in the network are identical and they all have K 

messages initially ready to transmit, i.e. K1=K2=...=Kn=K. The value of K is chosen 

randomly to be equal to eight. 

Due to software limitations, however, the N station network was designed and 

simulated, using the approach illustrated by Fig. 3-1. The interrelation between Ω and 
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voice throughput, can be examined by altering the value of S2 in the network described by 

the CSPL file, listed in Appendix B. Figure 5-1 illustrates this interrelation. 

Figure 5-1. The effect of S2 on the Voice Throughput, in an 
N-identical-station network (K is even and equal to eight). 

The stochastic Petri Net analysis (Fig. 5-I) suggests the same value of S2 for 

maximum throughput, as the one suggested by the theoretical approach discussed in 

Chapter 4. 

To be more consistent with Chapter 4's results, however, an N-identical-station 

network is examined where K's value is even. The value of K is chosen to be equal to 

nine. The output voice throughput as a function of the value of S2 is obtained using the 

SPNP analysis. The outcomes of the computer's analysis, are plotted in the Fig. 5-2. 
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Figure 5-2. The effect of Ω  on the Voice Throughput, in an 

N-identical-station network (K is odd and equals to nine). 

Conclusion  

SPNP analysis does in fact proposes, a value of C2 for maximum Voice 

Throughput. The value of Ω  depends on the initial messages presented at the stations. Its 

value is equal to the ceiling function of the number of messages presented, divided by 

two, i.e., 

5.3 N-Non-Identical-Station Network 

A more general case token ring network is to be examined in this section of the thesis. It 

consists of N non-identical stations connected as shown in Fig. 1-1. Since this network 

consists of non-identical stations, the approach suggested by Fig. 3-1 in Chapter 3 cannot 

be applied. To overcome the software's limitations as well as the non-identical stations 



presence, a modified network is proposed. The newly modified network consists of two 

non-identical stations plus a station representing the remaining N-2 stations. Figure 5-3 

pictures the newly modified ring network, whereas Fig. 5-4 shows the part of the Petri 

Net version, which is responsible for the ring connection. 

Figure 5-3. Modified N Non-identical-station token ring network. 

Figure 5-4. PN model representing the 
N Non-identical-station ring network. 
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It should be noted here, that the place p40  represents the N-2 stations, and the 

transition t40  the propagation delay through the distance between the last N-2 stations. It 

should be noted also, that the labels used in the Fig. 5-4, are the same used in the code 

listed in Appendix C, describing the complete network. 

By assigning different values of K to stations 1 and 2, an N-non-identical-station 

is designed. The analysis of the network is performed using the code of Appendix C. 

Figure 5-5 pictures the effect of Ω on Station 1's Voice Throughput, for the case K1 =8 

and K2=6. Note that, Fig. 5-5 demonstrates the case, where the same value of Ω is 

assigned to both station 1 and station 2. 

Figure 5-5. The effect of Ω on the Voice Throughput, 
in an N-non-identical-station network. The same 

value of Ω is assigned to all stations. 
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Conclusion  

Both SPNP analysis and theoretical approach developed in Chapter 4, reinforce 

the same value of Ω for maximum voice throughput. For unique Q value throughout the 

network, W should follow Eqn. (4.4), Le., 

5.4 Real N-Station Network 

The use of the SPNP analysis, ends with the study of an actual network. It consists of N, 

not necessarily identical, stations. As mentioned in previous chapters, the value of Ω 

varies from station to station throughout the network. Since, every station has a unique 

optimal value of Ω for its maximum throughput, N different values of Ω can be assigned 

to the network. The value of Ω=(Ω1, Ω2 ,...,Ωn) assigned to station i=(1, 2,..n) depends on 

the number of voice messages Ki  initially available at station i. 

The aim of this section is to analyze the network performance using the 

real network's parameters and compare the results with the results drawn by simulating 

the non-realistic network examined in Section 7.3. By assigning Q=(4,3) to stations 1 and 

2 of the network of Section 5.3, a realistic network is formed. Figure 5-6 presents the 

difference on the network's performance, between the realistic network with Q=(4,3) and 

the non-realistic one with identical Ω throughout all stations. 
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Figure 5-6. Comparison between realistic and non-realistic networks. 

It is obvious that by assigning different values of Ω to individual stations, better 

throughput can be achieved. And in fact, this is what exactly happening in real FDD1 

networks. 

Conclusion  

The assignment of correct value of ST or Ω at the initialization of the network can 

cause tremendous difference on the networks performance. 
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CHAPTER 6 

CONCLUSION 

6.1 Contribution of Petri Net FDDI Model 

The Petri Net model proposed in this thesis, can provide better results on the network's 

performance, than the ones currently supported by the TTR protocol's timers. The 

advantages of using such a model are summarized below. 

1. Petri Nets have the ability to check the system for undesirable properties, such 

as deadlock and instability. 

2. Petri Nets can achieve better throughput, and create fewer delays. This is due to 

the fact that in case of a message error/correction, the PN model is able to locate 

the specific message causing the error, and retransmit only that specific 

message. On the other hand, in the case of an error in the TTR protocol, the 

station should retransmit its entire previous transmission, even though the error 

is spotted immediately. Since the transmission of the entire process takes 

longer, such a TTR process is much more time-consuming than the 

corresponding PN model process, which is the transmission of a single PN 

message. 

3. The Petri Net model guarantees message completion in all cases, since it 

transmits messages, and not bits. 
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4. The PN model proposed in this thesis, supports non-exhaustive service for the 

token ring system, which is very rarely seen in other published papers. 

5. Finally, this model can provide results for asymmetric networks, which are 

difficult to be examined by queueing methods. 

6.2 Limitations of Petri Net FDDI Model 

The Petri Net model proposed in this thesis, however, does not support all the features 

that the TTR protocol supports. The PN model's limitations are listed below. 

1. The PN model does not support the error correction mechanism. 

2. The PN model does not support the eight (8) priority levels supported by the 

TTR protocol. 

3. The PN model does not consider the walking time between the stations. 

It should also be noted that the PN model used was developed and implemented 

using the SPNP software, and therefore affected by the limitations of the SPNP software 

itself. The introduction of these limitations in the modeling approach could not be 

avoided, since the PN FDDI model was developed around the SPNP software. The most 

important limitations of the SPNP software package that were encountered during the 

development and implementation of the PN model are, 

1. The upper bound limit on the length of Markov chain that can be solved by the 

software. This limits the number of stations that can be connected in the Token 

Ring to be examined. 

56 



2. The software output, limits the relationships that can be examined between the 

network's parameters. Namely, the software output that could be utilized in the 

deduction of conclusions, was the throughput. This throughput was correlated 

with the latency, and T_Opr, as discussed in this thesis. All other relationships 

between the operational parameters of the model, had to be deduced indirectly, 

based on the throughput's behavior. 

6.3 Future Research 

In this thesis we have investigated the performance of the FDDI network under 

Voice/Data integration. We have derived the constraints that the operational time 

parameter Ω must obey in order for the maximum voice throughput to be met. Finally, we 

have found, through analysis, that the system behavior is related in a very complicated 

way to the network's latency and T-Opr. Unfortunately, SPNP's limitations did not allow 

us to connect N individual stations and analyze the performance of an authentic N station 

network, in order to have a broader overview of the model. 

Since, however, this model has the potential of being a strong protocol itself, it 

should be extended in order to support all FDDI's functions. High level Petri Nets, such 

as color PNs, should be involved to support the eight levels of priority. Also, the network 

should be modified to support the error-correction capability. Only after completion of all 

the above modifications, we will be able to thoroughly analyze the performance of the 

network. 
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Finally, a new software, capable to support color PNs and longer Markov chains, 

should be developed. Only with the help of such a powerful tool we will be able to 

demonstrate, what we have talked about, throughout this thesis. 
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APPENDIX A 

C-Code Representing N-Station Network Using 

Fig. 3-1's Modeling Approach, to Study the 

Effect of Latency on Network's Performance 
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/* This program is the PETRI NET description for the Fiber Distributed Data Interface 

(FDDI) network used in Chapter 3 to study the effect of the latency on overall network's 

performance. 

The output contains the steady-state transition rates, the token probabilities, the voice 

throughput, the data throughput and the individual station's utilization */ 

#include "user.h" 

int X; 

int L; 

int myval() {return (9 - mark("p6"));} 

/* This function declares the SPNP options */ 

parameters() { 

iopt(IOP_PR_FULL_MARK, VAL_YES) ; 

iopt(IOP PR MC, VAL_YES) ; 

iopt(IOP PR RGRAPH, VAL_YES); 

iopt(IOP PR_PROB, VAL_YES) ; 

/* The user must input the voice message load ready to be transmitted by the station*/ 

X = input("Number of voice messages already at the station service queue (value 

from 0 to 10):"); 

/* The user must also input the rate value of transition t11 which presents the latency 

through the N-1 stations*/ 

L = input("Rate value of transition t11 (value from 1 to 20) : "); 

/* 	There are 13 places and 19 transitions in each station PN model */ 

net 0 { 

/* place p1 represents the token ring. If there is a token in this place, the station is able to 

transmit */ 
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place ("p1"); init("p1",1); 

/* place p2 represents the queue of voice sources which are ready to transmit */ 

place ("p2"); init("p2",X); 

/* place p3 represents the queue of data sources which are ready to transmit */ 

place ("p3"); init("p3",9); 

/* place p4 and place p5 represent voice and data sources */ 

place ("p4"); 	/* init("p4",8); */ 

place ("p5"); 	/* init("p5",8); */ 

/* place p6 and place p7 represent how many voice and data messages are transmitted */ 

place ("p6"); 

place ("p7"); 

/* place p8 represents the token ring status of the next station.(Similar to p1 place) */ 

place ("p8"); 

/* place p9, p10, p11 and p12 are for control purposes */ 

place ("p9"); 

place ("p10"); 	init("p10",1); 

place ("p11"); 

place ("p12"); 	init("p12",1); 

/*place p13 and p14 are used as memory buffers for the arriving voice/data messages. 

The tokens in these places are transfered into the queues as soon as the station passes the 

token to the next station.*/ 

place ("p13"); place("p14"); 
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/* Both exponential and immediate transitions are used. Most of the immediate 

transitions are for net interconnections, and have a firing probability of 1.0. The rates for 

the exponential transitions are declared below.*/ 

/* Transitions t1 and t2 represent voice and data message arrival rate respectively */ 

trans ("t1"); 	rateval("t1",0.064); 

trans ("t2"); 	rateval("t2",0.064); 

/* Transitions t3 and t4-t5 represent voice and data message service rate respectively */ 

trans ("t3"); 	rateval("t3",1.0); 

trans ("t4"); 	rateval("t4",1.0); 

trans ("t5"); 	rateval("t5",1.0); 

/* Transitions t6 and t7 are immediate transitions with a probability of 1.0. They are used 

for control purposes. They are enabled after the token is passed to the next station */ 

trans ("t6"); 	probval("t6",1.0); priority("t6",3); 

trans ("t7"); 	probval("t7",1.0); priority("t7",2); 

/* Transitions t8, t9 and t10 are also immediate transitions. They are enabled under 

different conditions and they actually pass the token to the next station after firing. */ 

trans ("t8"); 	rateval("t8",5000.0); 

trans ("t9"); 	rateval("t9",5000.0); 

trans ("t10"); rateval("t10",5000.0); 

/* Transition t1 1 represents the rest of the stations in the network */ 

trans ("t11"); rateval("t11",L); 

/* Transition t12, t13, t14 and t15 are immediate transitions for control purpose */ 

trans("t12"); rateval("t12", 5000.0); 	trans("t13"); rateval("t13",5000.0); 

trans("t14"); rateval("t14",5000.0); 	trans("t15"); rateval("t15",5000.0); 

/*Transitions t16 and t17 represent voice and data message arrival rate. They are similar 

to t1 and t2 respectively. In fact they are their complement in order to have interarriving 

messages continually without deadlock. */ 

trans("t16"); rateval("t16",0.064); trans("t17"); rateval("t17",0.064); 

/*Transitions t18 and t19 are immediate. As soon as the station passes the token to the 

next station they transfer the voice/data message to the voice/data queues.*/ 
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trans ("t 1 8"); 	probval("t 1 8", 1.0); priority("t 1 8",3); 

trans ("t 19"); 	probval("t 1 9", 1 .0); priority("t 1 9",2); 

/* The rest of the net description consists of defining the arcs. */ 

iarc ("t1","p4"); 	harc("t1","p7"); 	harc("t 1 ","p9"); 

oarc("t1","p2"); 

iarc ("t2","p5"); 	harc ("t2","p11"); 	vharc ("t2","p7",myval); 

oarc("t2","p3"); 

iarc ("t3","p1"); 	iarc ("t3","p2"); 	oarc("t3","p6"); 

oarc("t3","p4"); 	mharc("t3","p6",8); 	harc ("t3","p7"); 

oarc("t3","p1"); 

iarc ("t4","p1"); 	harc ("t4","p2"); 	oarc("t4","p7"); 

oarc("t4","p5"); 

iarc("t4","p3"); 	vharc("t4","p7",myval); 	oarc("t4","p1"); 

iarc("t5","p1"); 	iarc ("t5","p3"); 	oarc("t5","p1"); 

oarc("t5","p7"); 

miarc("t5","p6",8); moarc("t5","p6",8); vharc("t5","p7",myval) 

iarc ("t6","p6"); 	harc ("t6","p1"); 

iarc ("t7" "p7"); 	harc ("t7","p1"); 

iarc ("t8","p1"); 	oarc("t8","p8"); 	harc ("t8","p2"); 
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harc ("t8","p3"); 

iarc ("t9","p1"); 	oarc("t9","p8"); 	harc ("t9","p3"); 

miarc ("t9","p6",8); 

iarc("t10","p1"); 	oarc("t10","p8''); 	viarc ("t10","p7",myval); 

iarc("t11","p8"); 	oarc("t11","p1"); 

iarc("t12'',"p 10"); 	oarc("t12","p9"); 	harc("t12","p2"); 

iarc("t13","p9"); 	oarc("t13","p10"); 	harc("t13","p1"); 

iarc("t14","p 12"); 	oarc("t14","p11"); 	harc("t14","p3"); 

iarc("t15","p 1 1"); 	oarc("t15","p12"); 	harc("t15","p 1 "); 

iarc("t16","p9"); 	iarc("t16","p4"); 

oarc("t16","p9"); 	oarc("t16","p13"); 

iarc("t17","p 1 1"); 	iarc("t17","p1"); 

oarc("t17","p 1 1"); 	oarc("t17","p14"); 

iarc("t18","p13"); 	harc("t18","p1"); 	oarc("t18","p2"); 

iarc("t19","p14"); 	harc("t19","p1"); 	oarc("t19","p3"); 

/* This function allows for the checking of illegal markings. It is not needed in this 

model, so always return a no error condition */ 

assert() {return (RES_NOERR);} 
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/* This function is called before the net analysis starts. Since the structure of the net is 

fixed in this model, this function is not needed */ 

ac init() { } 

/* This function is called with reachability graph information. */ 

ac reach(){fprintf(stderr,"/nThe reachability graph has been generated/n/n");} 

/* Define output functions*/ 

/* Voice throughput */ 	reward_type ef0() {return (rate("t3"));} 

/* Data throughput */ 	reward_type ef1 () {return(rate("t4") + rate("t5"));} 

/* Station Utilization */ 	reward_type ef2 () { return ( mark("p 1 "));} 

/* Output */ 

ac final() { 

pr_expected("voice throughput = ",ef0); 

pr_expected("data throughput = ",ef1); 

pr_expected("station utilization = ",ef2); 

pr_std_average 0; 

} 
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APPENDIX B 

C-Code Representing N-Station Network Using 

Fig. 3-1's Modeling Approach, to Study the 

Effect of Ω on Network's Performance 
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/* This program is the PETRI NET description for the Fiber Distributed Data Interface 

(FDDI) network consisting of N identical stations.It uses the "N-1 station place" method 

and it is used to examine the optimal value of Ω for better performance */ 

#include "user.h" 

int Q; 

int X; 

int myval() {return ((Ω+1) - mark("p6"));} 

/* This function declares the SPNP options */ 

parameters() 

iopt(IOP PR_FULL_MARK, VAL_YES) ; 

iopt(IOP_PR_MC, VAL_YES) ; 

iopt(IOP PR RGRAPH, VAL_YES); 

iopt(IOP_PR_PROB, VAL_YES) ; 

/* The user must input the voice message load ready to be transmitted by the station*/ 

X = input("Number of voice messages already at the station service queue (value 

from 0 to 10):"); 

Ω = input("Max number of tokens(messages) transmitted per token holding time 

(value from 1 to 8):"); 	} 

net () 

place ("p1 "); init("p1",1); 

place ("p2"); init("p2",X); 

place ("p3"); init("p3",5); 

place ("p4"); place ("p5"); 

place ("p6"); place ("p7"); 

place ("p8"); 
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place ("p9"); place ("p10"); init("p10",1); 

place ("p11"); place ("p12"); init("p12",1); 

place ("p13"); place("p14"); 
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trans ("t1"); 

trans ("t3"); 

trans ("t5"); 

trans ("t6"); 

trans ("t7"); 

trans ("t8"); 

trans ("t10"); 

trans("t12"); 

trans("t14"); 

trans("t16"); 

trans("t17"); 

trans ("t18"); 

trans ("t19");  

rateval("t1",0.064); 	trans ("t2"); 	rateval("t2",0.064); 

rateval("t3",1.0); 	trans ("t4"); 	rateval("t4",1.0); 

rateval("t5",1.0); 

probval("t6",1.0); 	priority("t6",3); 

probval("t7",1.0); 	priority("t7",2); 

rateval("t8",5000.0); trans ("t9"); 	rateval("t9",5000.0); 

rateval("t10",5000.0); trans ("t11"); rateval("t11",1.0); 

rateval("t12",5000.0); trans("t13"); rateval("t1 3",5000.0); 

rateval("t14",5000.0); trans("t15"); rateval("t15 ",5000.0); 

rateval("t16",0.064); 

rateval("t17",0.064); 

probval("t18",1.0); priority("t18",3); 

probval("t19",1.0); priority("t19",2); 

/* The rest of the net description consists of defining the arcs. */ 

iarc ("t1","p4"); 	oarc("t1","p2"); 	harc("t1","p7"); 

harc(" tl" ,"p9"); 

iarc ("t2","p5"); 	oarc("t2","p3"); 	harc ("t2","p11"); 

vharc ("t2","p7",myval); 

iarc ("t3","p1"); 	oarc("t3","p4"); 	iarc ("t3","p2"); 

oarc("t3","p6"); 

mharc("t3","p6",Ω); 	oarc("t3","p1"); 	harc ("t3","p7"); 

iarc ("t4","p1"); 	oarc("t4","p5"); 	harc ("t4","p2"); 

oarc("t4","p7"); 

oarc("t4","p1"); 	iarc("t4","p3"); 	vharc("t4","p7",myval); 



iarc("t5","p1"); 

oarc("t5","p1"); 

miarc("t5","p6",Ω); 

iarc ("t6" "p6"); 

iarc ("t7" "p7")• 

iarc ("t8'',"p1"); 

harc ("t8","p3"); 

iarc ("t9""p1"); 

harc ("t9","p3"); 

iarc("t10","p1"); 

iarc("t11","p8"); 

iarc("t12","p10"); 

iarc("t13","p9"); 

iarc("t14","p12"); 

iarc("t15","p 1 1"); 

iarc("t16","p9"); 

oarc("t16","p9"); 

iarc("t17","p11"); 

oarc("t17","p 1 1"); 

iarc("t18","p13"); 

iarc("t19","p14"); 

} 
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iarc ("t5","p3"); 	oarc("t5","p7"); 

vharc("t5","p7",myval); 	moarc("t5","p6",Ω); 

harc ("t6'',"p1"); 

hare ("t7","p1"); 

oarc("t8","p8"); 	harc ("t8","p2"); 

oarc("t9","p8"); 

miarc ("t9","p6",Ω); 

oarc("t10'',"p8"); 	viarc (t10","p7",myval); 

oarc("t11 ",''p1 "); 

oarc("t12","p9"); 	harc("t12","p2"); 

oarc("t13","p10"); 	harc("t13","p1"); 

oarc("t14","p11"); 	harc("t14","p3"); 

oarc("t15","p12"); 	harc("t15","p1"); 

iarc("t16","p4"); 

oarc("t16","p13"); 

iarc("t17","p1"); 

oarc("t17","p 14"); 

harc("t18","p1"); 	oarc("t18","p2"); 

harc("t19","p1"); 	oarc("t19","p3"); 

assert() {return (RES_NOERR);} 

ac init() } 

ac_reach(){fprintf(stderr,"/nThe reachability graph has been generated/n/n");} 

/* Define output functions*/ 

/* Voice throughput */ 	reward_type ef0() {return (rate("t3"));} 

/* Data throughput */ 	reward_type ef1 () {return(rate("t4") + rate("t5"));} 



/* Station Utilization */ 	reward_type ef2 () { return ( mark("p1"));} 

/* Output */ 

ac final() { 

pr_expected("voice throughput = *,ef0); 

pr_expected("data throughput = ",ef1); 

pr_expected("station utilization = ",ef2); 

pr_std_average (); 

} 
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APPENDIX C 

C-Code Representing N-Station Network Using 

Fig. 5-3's Modeling Approach, to Study the 

Effect of Ω on Network's Performance 
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/* This program is the PETRI NET description for an N station network. It covers both 

identical and non-identical stations cases. It is based on Fig. 7-3 approach. */ 

#include "user.h" 

int X; 

int Ω1; 

int Ω2; 

int myval() {return ((Ω1+1) - mark("p6"));} 

int myval2() {return((Ω2+1)- mark("p26"));} 

parameters() { 

iopt(lOP PR FULL_MARK, VAL_YES) ; 

iopt(IOP_PR_MC, VAL_YES) ; 

iopt(IOP_PR_RGRAPH, VAL_YES); 

iopt(IOP PR_PROB, VAL YES) ; 

/* The user must input the voice message load ready to be transmitted by the station*/ 

X = input("Number of voice messages already at the station service queue (value 

from 0 to 10):"); 

Q1 = input("Max number of voice messages transmitted per token ring holding 

time by station 1(value from 1 to 8):"); 

Ω2 = input("Max number of voice messages transmitted per token ring holding 

time by station 2 (value from 1 to 8):"); 

} 

net () { 

place ("p1 "); init("p1 ",1); 	place ("p2"); init("p2",X); 

place ("p3"); init("p3",1); 	place ("p4"); place ("p5"); 

place ("p6"); place ("p7"); place ("p9"); place ("p10"); init("p10",1); 

place ("p11"); place ("p12"); init("p12",1); place ("p13"); place ("p14"); 

trans ("t1"); 	rateval("t1",0.064); 
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trans ("t2"); 

trans ("t3"); 

trans ("t5"); 

trans ("t6"); 

trans ("t7"); 

trans ("t8"); 

trans ("t10") 

trans("t13"); 

trans("t14"); 

trans("t16");  

rateval("t2",0.064); 

rateval("t3",1.0); 	trans ("t4"); 	rateval("t4",1.0); 

rateval("t5",1.0); 

probval("t6",1.0); 	priority("t6",3); 

probval("t7",1.0); 	priority("t7",2); 

rateval("t8",5000.0); trans ("t9"); 	rateval("t9",5000.0); 

rateval("t10",5000.0); trans("t12"); rateval("t12",5000.0); 

rateval("t13",5000.0); 

rateval("t14",5000.0); trans("t15"); rateval("t15",5000.0); 

rateval("t16",0.064); trans("t17"); rateval("t17",0.064); 
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trans ("t18"); 	probval("t18",1.0); priority("t18",3); 

trans ("t19"); 	probval("t19",1.0); priority("t19",2); 

oarc("t1","p2"); 	harc("t1","p7"); harc("t1","p9"); 

oarc("t2","p3"); 

vharc ("t2","p7",myval); 

iarc ("t1 ","p4"); 

iarc ("t2","p5"); 

hare ("t2","p11"); 

iarc ("t3" ,"p1"); 

mharc("t3","p6",Ω1); 

iarc ("t4","p1"); 

oarc("t4","p1"); 

iarc("t5","p1"); 

miarc("t5","p6",Ω1); 

iarc ("t6","p6"); 

iarc ("t8","p1"); 

iarc ("t9","p1"); 

miarc ("t9","p6",Ω1); 

iarc("t10","p1"); 

iarc("t12","p10"); 

iarc("t13","p9");  

oarc("t3","p4") 

oarc("t3","p1"); 

oarc("t4","p5"); 

iarc("t4","p3"); 

iarc ("t5","p3"); 

moarc("t5","p6",Ω 1); 

hare ("t6","p1"); 

oarc("t8","p21"); 

oarc("t9","p21");  

iarc ("t3","p2"); oarc("t3","p6"); 

hare ("t3","p7"); 

hare ("t4","p2"); oarc("t4","p7"); 

vharc("t4","p7",myval); 

oarc("t5","p7"); oarc("t5'',"p1"); 

vharc("t5","p7",myval); 

iarc ("t7","p7"); hare ("t7'',"p1"); 

hare ("t8","p2"); hare ("t8","p3"); 

hare ("t9","p3"); 

oarc("t10","p21"); 	viarc ("t10","p7",myva 

oarc("t12","p9"); 	harc("t12","p2"); 

oarc("t13","p10"); 	harc("t13","p1"); 



iarc("t14","p12"); 	oarc("t14","p11"); 	harc("t14","p3"); 

iarc("t15","p 1 1"); 	oarc("t15","p12"); 	harc("t15","p1"); 

iarc("t16","p9"); 	iarc("t16","p4"); 

oarc("t16","p9"); 	oarc("t16","p13"); 

iarc("t17","p 1 1"); 	iarc("t17","p1"); 

oarc("t17","p 1 1"); 	oarc("t17","p14"); 

iarc("t18","p13"); 	harc("t18","p1"); 	oarc("t18","p2"); 

iarc("t19","p14"); 	harc("t19","p1"); 	oarc("t19","p3"); 

place ("p21"); 

place ("p22"); init("p22",6); 

place ("p23"); init("p23",1); 

place ("p24"); place ("p25"); 

place ("p26"); place ("p27"); 

place ("p29"); place ("p30"); init("p30",1); place ("p31"); 

place ("p32"); init("p32",1); place ("p33"); place ("p34"); 

trans ("t21"); rateval("t21",0.064); trans ("t22"); rateval("t22",0.064); 

trans ("t23"); rateval("t23",1.0); 	trans ("t24"); rateval("t24",1.0); 

trans ("t25"); rateval("t25",1.0); 

trans ("t26"); probval("t26",1.0); 	priority("t26",3); 

trans ("t27"); probval("t27",1.0); 	priority("t27",2); 

trans ("t28"); rateval("t28",5000.0); 

trans ("t29"); rateval("t29",5000.0); 

trans ("t30"); rateval("t30",5000.0); 

trans("t32"); rateval("t32",5000.0); 

trans("t33"); rateval("t3 3",S000.0); 

trans("t34"); rateval("t34",5000.0); 

trans("t35"); rateval("t3 5",5000.0); 

trans("t36"); rateval("t36",0.064); trans("t37"); rateval("t37",0.064); 
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trans ("t38"); 	probval("t38",1.0); priority("t38",3); 

trans ("t39"); 	probval("t39",1.0); priority("t39",2); 

/* Place p40 and transition t40 represent the remaining N-2 stations of the network */ 

place ("p40"); 

trans ("t40"); rateval("t40",0.5); 

iarc ("t21","p24"); 	oarc("t21","p22"); 	harc("t21","p27"); 

harc("t21"," p29"); 

iarc ("t22","p25"); 	oarc("t22","p23"); 	hare ("t22","p31"); 

vharc ("t22","p27",myval2); 

iarc ("t23","p21"); 	oarc("t23","p24"); 	iarc ("t23","p22"); 

oarc("t23",''p26"); 

oarc("t23","p21"); 	hare ("t23","p27"); 	mharc("t23","p26",Ω2); 

iarc ("t24","p21"); 	oarc("t24","p25"); 	hare ("t24","p22"); 

oarc("t24","p27"); 

oarc("t24","p21"); 	iarc("t24","p23"); 	vharc("t24","p27",myval2) ; 

iarc("t25","p21"); 	iarc ("t25","p23"); 	oarc("t25","p27"); 

oarc("t25","p21"); 

vharc("t25","p27",myval2); miarc("t25","p26",Ω2); 

moarc("t25","p26",Ω2); 

iarc ("t26","p26"); 	hare ("t26","p21"); 

iarc ("t27","p27"); 	hare ("t27","p21"); 

iarc ("t28","p21"); 	oarc("t28","p40"); 	hare ("t28","p22"); 

hare ("t28","p23"); 

iarc ("t29","p21"); 	oarc("t29","p40"); 

hare ("t29","p23"); 	miare ("t29","p26",Ω2); 

iarc("t30","p21"); 	oarc("t30","p40"); 	viarc ("t30","p27",myval2); 

iarc("t32","p30"); 	oarc("t32","p29"); 	harc("t32'',"p22"); 
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iarc("t33","p29"); 	oarc("t33","p30"); 	harc("t33","p21"); 

	

iarc("t34","p32"); 	oarc("t34","p31"); 	harc("t34","p23"); 

	

iarc("t35","p3I"); 	oarc("t35","p32"); 	harc("t35","p21"); 

	

iarc("t36","p29"); 	iarc("t36","p24"); 

	

oarc("t36","p29"); 	oarc("t36","p33"); 

	

iarc("t37","p31"); 	iarc("t37","p21"); 

	

oarc(" t37","p31"); 	oarc("t37","p34"); 

	

iarc("t38","p33"); 	harc("t38","p21"); 	oarc("t38","p22"); 

	

iarc("t39","p34"); 	harc("t39","p21"); 	oarc("t39","p23"); 

	

iarc("t40","p40"); 	oarc("t40","p1"); 	} 

assert() {return (RES_NOERR);} 

ac_init() { } 

ac_reach(){fprintf(stderr,"/nThe reachability graph has been generated/n/n");} 

/* Define output functions*/ 

/* Voice throughput of station 1 */ reward_type ern() {return (rate("t3"));} 

/* Data throughput of station 1 */ 	reward_type ef1 () {return(rate("t4") + rate("t5"));} 

/* Station 1 Utilization *1 	reward_type ef2 () { return ( mark("p1"));} 

/* Voice throughput of station 2 */ reward_type ef3 () {return(rate("t23"));} 

/*Data throughput of station 2*/ reward_type ef4 () {return(rate("t24") + rate("t25"));} 

	

/* Station 2 Utilization */ 	reward_type ef5 0 { return ( mark("p21"D;} 

/* Output */ 

ac_final() { 

pr_expected("voice throughput of station 1 = ",ef0); 

pr_expected("data throughput of station I = ",efl); 

pr_expected("station I utilization = ",ef2); 

pr_expected("voice throughput of station 2 = ",ef3); 

pr_expected("data throughput of station 2 = ",ef4); 

pr_expected("station 2 utilization = ",ef5); pr_std_average 0; 



APPENDIX D 

SPNP Analysis Data 
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Table D-1. Voice Sources vs. Throughput (DS = 0 

Vs Thr 

0 0.000 

1 0.642 

2 0.707 

3 0.765 

4 0.791 

5 0.807 

6 0.818 

7 0.840 

8 0.858 

9 0.893 

10 0.904 

Table D-2. Effect Of (N-1) Stations on Throughput. 

# of Voice 
Sources 

Rate 
"t 1 1" = 10 

Rate 
"t11" = 5 

Rate 
"t11" = 

Vs Thr Thr Thr 

0 0.000 0.000 0.000 

1 0.642 0.576 0.412 

2 0.707 0.647 0.485 

3 0.765 0.712 0.559 

4 0.791 0.742 0.597 

5 0.807 0.761 0.620 

6 0.818 0.774 0.673 

7 0.840 0.800 0.693 

8 0.858 0.821 0.702 

9 0.893 0.864 0.766 

10 0.904 0.878 0.786 
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Table D-3. Effect Of Ds and Vs on each other's throughput. 

Vs Ds V Thr D Thr 

0 9 0.000 0.788 

1 9 0.052 0.708 

2 9 0.136 0.634 

3 9 0.678 0.044 

4 9 0.769 0.005 

5 9 0.789 0.002 

6 9 0.798 0.001 

7 9 0.801 0.000 

8 9 0.804 0.000 

Table D-4. Effect of (N-1) stations on Ds and Vs throughput. 

Vs Ds V Thr 
t11=50 

D Thr 
01=50 

V Thr 
t11=10 

D Thr 
01=10 

0 9 0.000 0.788 0.000 0.884 

1 9 0.052 0.708 0.016 0.821 

2 9 0.136 0.634 0.056 0.763 

3 9 0.678 0.044 0.100 0.731 

4 9 0.769 0.005 0.150 0.693 

5 9 0.789 0.002 0.203 0.653 

6 9 0.798 0.001 0.280 0.580 

7 9 0.801 0.000 0.340 0.528 

8 9 0.804 0.000 0.400 0.477 
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Table D-5. Effect of Ω on Voice Throughput for identical-station network. 

Voice 
Throughput 

K=8 

Voice 
Throughput 

K=9 

1 0.454 0.400 

2 0.521 0.630 

3 0.529 0.840 

4 0.538 0.910 

5 0.480 0.920 

6 0.475 0.790 

7 0.431 0.780 

Table D-6. Effect of Ω on Voice Throughput for N non-identical-station network (Ω is 
identical for all stations). 

Voice 
Throughput 

2 0.382 

3 0.391 

4 0.411 

5 0.403 

Table D-7. Effect of W on Voice Throughput for N non-identical-station network (W 
varies between stations). 

Ωl, Ω2 Voice 
Throughput 

Voice 
Throughput 

2,2 0.382 

3,3 0.391 

3,4 0.415 

4,4 0.411 

5,5 0.403 
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