
University of Central Florida University of Central Florida

STARS STARS

Institute for Simulation and Training Digital Collections

1-1-1989

Simulation Networks Modeling And Monitoring: Final Project Simulation Networks Modeling And Monitoring: Final Project

Report Report

Michael Bassiouni

Find similar works at: https://stars.library.ucf.edu/istlibrary

University of Central Florida Libraries http://library.ucf.edu

This Research Report is brought to you for free and open access by the Digital Collections at STARS. It has been

accepted for inclusion in Institute for Simulation and Training by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

Recommended Citation Recommended Citation
Bassiouni, Michael, "Simulation Networks Modeling And Monitoring: Final Project Report" (1989). Institute
for Simulation and Training. 167.
https://stars.library.ucf.edu/istlibrary/167

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/istlibrary
https://stars.library.ucf.edu/digitalcollections
https://stars.library.ucf.edu/istlibrary
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/istlibrary/167?utm_source=stars.library.ucf.edu%2Fistlibrary%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

I

I
Contract Number N61339-88-G-0002 Order 0008
PM TRADE

August 1, 1988 through July 31, 1989

I

iST

Institute for Simulation and Tr3ining
12424 Research Parkway, Suite 300
Orlando FL 32826

University of Central Florida
Division of Sponsored Rescarch

1ST -CR-89-15

I

Contract Number N61339-88-G-0002 Order 0008
PM TRADE

August 1, 1988 through July 31, 1989

I

I

I

I

Author:
M. Bassiouni

Institute for Simulation and Training
12424 Research Parkway, Suite 300
Orlando FL 32826

University of Central Florida
Division of Sponsored Research

IST-CR-89-15

I

I

I

I

I
I
I

TABLE OF CONTENTS

Organization of Final Report

Section 1: Chronological Listing of Activities

Section 2: NetwotX System Configuration Models

Section 3: The SIMNETIETHERNET Simulation Model

Section 4: The Token-Ring Simulation Model

Section 5: Perfonnance Results

Section 6: Conclusions

Acknowledgements

Appendix A: Source Code Listing of the ETHERNET Simulation Model

Appendix B: Source Code Listing of the Token-ring Sim~tion Model

Appendix C: Copy of Published Paper (1ST Netwomng Conference)

Appendix D: Copy of Published Paper (I/ITSC Conference)

Appendix E: Literature Search Summary

Page

1

3

8

11

23

25

46

50

•

I
I

I

Organization of Final Report

This report contains six sections (1-6) and five appendices (A-E) as follows:

*

*

*

*

*

*

*

*

Section 1 gives a chronological listing of the activities and progress made during

the one year period of the project.

Section 2 describes the two network system models considered in this project,

namely, the Carrier Sense Multiple Access with Collision Detection (CSMNCD)

and the token-ring medium access protocols.

Section 3 gives a description of the logical design of the simulation model for

SIM:NET with the ETHERNET CSMA/CD protocol.

Section 4 describes the logical design of the simulation model for SIM:NET with

the token-ring protocol.

Section 5 contains performance results and miscellaneous statistics gathered from

the simulation models.

Section 6 contains summary of the project and concluding remarks.

Appendix A gives the complete listing of the Concurrent-C code of the ETHER­

NET simulation model.

Appendix B gives the complete listing of the Concurrent-C code of the tc:!ken-ring

simulation model.

1

I
I
I
I
I
I
I
I
I
I

•

*

*

*

Appendix C contains a copy of the paper entitled "Simulation Networking and

Protocol Alternatives" (by M. Bassiouni, M. Georgiopoulos, and J. Thompson)

published in the Proceedings of the First 1ST Networking Conference, April 1989.

Appendix D contains a copy of the paper entitled "Real-Time Simulation

Networking- Network Modeling and Protocol Alternatives" (by M. Bassiouni, M.

Georgiopoulos, and J. Thompson) accepted for publication in the Proceedings of

the 11th I/ITSC Conference, November 1989.

Appendix E contains a summary of the literature search performed during this

project.

2

•

1. Chronological Listing of Activities and Progress

The following is a brief description of the progress made and the activities carried

out during the one-year period of this project The progress and activities are listed in

chronological order and are grouped into two-month periods .

I Months 1-2:

•
I
I

I

*

*

*

*

*

*

Detailed workplan was developed and graduate students were hired.

Various technical information and articles about SIMNET were gathered.

A study to characterize the SIMNET networking approach was performed and

basic features of the protocols were examined.

Experience on the capabilities and method of operation of the HP-4972A network

analyzer (at 1ST SIMNET Laboratory) was gained.

Review of literature on analytical models for ETIIERNET was started and several

technical articles were studied.

Preliminary work on the design of the simulation models for SIMNET was started

and appropriate available simulation languages (e.g., Concurrent-C, SLAM,

SIMSCRIPT, Concurrent-Euclid, etc.) were examined and evaluated.

Months 3-4

* More technical information and articles about SIMNET were gathered and stu­

died. We also obtained copies of the latest release of the IEEE Standards for the

3

I

I
I
I

•
I

*

*

*

CSMNCD access method and its physical layer specifications.

The effon for the design of the simulation models for SIMNET with ETIiER­

NET continued. Methods for generating traffic load (both by stochastic distribu­

tions and trace data) were finalized. Design details for simulating the CSMNCD

collision handling mechanism were extensively examined and discussed during

our weekly meetings at 1ST.

The evaluation process of several available programming languages was com­

pleted and the Concurrent-C language was selected for the implementation of the

simulation models in this project.

We continued gaining experience on the capabilities and method of operation of

the HP-4972A network analyzer. Tests to measure the SIMNET traffic load using

the HP-4972A analyzer were conducted.

* Literature review on token-ring local area networks was started .

Months 5·6

* The high-level design of the simulation models for SIMNET under ETIiERNET

was completed and the implementation (coding) phase was statted. The simulation

program (written in Concurrent-C) was designed to be a collection of parallel

processes where each SIMNET vehicle simulator is mapped to an independent

Concurrent-C process. The ETHERNET bus was simulated by a group of

Concurrent-C processes representing the points of contacts with the TCL boxes.

4

I

I

•

I

*

*

*

Auxiliary server processes were used to accomplish the transfer of packets and

simulate the propagation delay of the transmission medium.

The Concurrent-C code of a general purpose time-scheduler for event-driven

simulation (an AT&T product) was acquired. The code of this scheduler was

extensively studied and the modifications needed for its adaptation to our SIM­

NET simulation were identified.

The detailed review of the latest release of the IEEE 802.3 standards for the

CSMNCD access methods and protocols was completed. Our simulation pro­

grams were made to adhere to all specifications and protocols of the IEEE 802.3

standards.

The review of the token-ring local area networks continued.

Months 7-8

* The coding of the simulation models for SIMNET under ETHERNET was com­

pleted and the effort for testing and collecting results was started. A copy of the

documented listing of the Concurrent-C code of the SIMNETIETHERNET simu­

lation program is attached (Appendix A).

* A paper was written and presented in the first 1ST Networking Conference, April

1989. The paper is entitled "Simulation Networking and Protocol Alternatives"

(authored by: M. Bassiouni, M. Georgiopoulos, and 1. Thompson). The paper was

also published in the Conference Proceedings. Copy of this paper is attached

5

(Appendix C).

* An extended of second paper was submitted to the 11thabstract a

Interservice/Industty Training Systems (I/ITSC) Conference. The abstract was

selected for paper preparation and we were invited to submit the complete paper

by June 1989 for final review/selection.

Months 9-10

.

* Perfonnance results of the SIMNET network under the CSMA/CD ETHERNET

protocol were collected from the simulation models. Several runs covering a

wide range of traffic load conditions were conducted and appropriate statistics

were gathered.

I * The coding of the simulation models for token-ring LANs was started. The

Concurrent-C language was also selected for the implementation of simulation

models of token-ring LANs and each node on the ring was mapped to an indepen-

dent Concurrent-C process. Auxiliary server processes were used to accomplish

the transfer of packets and simulate the propagation delay of the point-to-pointI
connections of the ring.

* The full paper for the I/ITSC Conference was written and submitted for final

review.

.

I

I

.
6

I

I

I

I
I
I
I

I

Months 11-12

*

*

*

More performance results were collected from the ETHBRNET simulation

models.

The development of the simulation models for token-ring networks was com­

pleted and performance results were collected. A copy of the documented listing

of the Concurrent-C code of the token-ring SIMNET simulation program is

attached (Appendix B).

Our IJITSC paper was accepted for presentation and publication in the 11th

IJITSC Conference Proceedings, November 1989. The paper is entitled "Real­

Time Simulation Networking- Network Modeling and Protocol Alternatives"

authored by M. Bassiouni, M. Georgiopoulos, and 1. Thompson. Copy of this

paper is attached (Appendix D).

7

I

I

I
I

2. Network System Configuration Models

Various choices exist for the implementation of a local area network (LAN), (e.g.,

transmission medium, topology, access protocols, etc.) to interconnect simulation dev­

ices. In this project, we have performed research aiming at modeling and analyzing the

performance of two network configurations having different topologies and protocol

access methods. The first configuration has a bus topology and uses the ETHERNET

protocol which belongs to the class of Carrier Sense Multiple Access with Collision

Detection (CSMNCD) protocols. The second configuration has a loop topology and

employs a non-contention protocol that avoids collision by a token-passing mechanism.

ETHERNET is a CSMNCD protocol used for LANs with bus topology and is

based on a distributed network control whereby each node on the bus determines its

own channel access time based on the information collected by monitoring the traffic

activities on the common bus. Figure 1 gives the bus network configuration for an

ETHERNET-Based LAN. In this implementation, up to eight nodes can be connected

through a multi-port transceiver to a single point on the coaxial cable (via a medium

access unit). If a node on the bus has a packet ready for transmission, it first monitors

the network to determine whether any transmission is in progress. If a transmission is

in progress, the network is said to be "busy", otherwise it is "idle". If the node finds

the network bus busy, transmission of its data packet is deferred until the bus becomes

idle. The node waits a certain time interval (inter-frame gap) after the bus becomes

idle and then starts the transmission of its packet. If multiple nodes attempt to

transmit at the same time, their transmissions interfere resulting in "packet collision".

8

I

I

I

I

I
I

I
•

The collision is acknowledged by each transmitting node by it sending out a bit

sequence referred to as a "jam signal". After the jam signal has been transmitted, the

nodes involved in the collision schedule a retransmission attempt at a randomly

selected time in the future. A packet is discarded if its transmission does not succeed

(due to collisions) after sixteen consecutive transmission attempts. The performance

of the ETHERNET protocol is directly related to how efficiently nodes avoid collisions

and handle retransmissions. The problem of data collision is directly related to the

network traffic load.

Figure 2 gives a block diagram of the basic configuration of the token-ring LAN.

Simply stated, a token passing ring is a LAN with a loop topology in which a token (a

unique bit sequence in a data packet) is passed around the network in a round-robin

fashion from one node to the next. Contention for transmission is resolved by stipulat­

ing that only the node currently in possession of the token is allowed to transmit a

frame or a sequence of frames onto the ring. When the transmission is finished, the

token is passed to the node downstream which then gains the right to transmit. Since

there is a single token on the ring, only one node can be transmitting at a time. Other

(non-transmitting) nodes, however, continuously receive the bit stream, examine it and

repeat it onto the network (Le., place it on the medium to the next station). A station

repeating the bit stream may copy it into local buffers or modify some control bits if

appropriate.

9

I
8(2)

J 5(2)

0
8(2)

0
8(8) 8(8) 8(8) 8(8)8(1) S(1} 8(1) 8(1)

......

MT1

yUI

MT2 MT3 MTn

...

cable

I MAU",-"

FIGURE 1. Bus Network Topology System Configuration

I

I

I

I
Cable

FIGURE 2. Ring Network Topology System Configuration

I

I

I
•

I

3. The SIMNETIETHERNET Simulation Model

Below, we give a high-level description of the simulation model used in evaluat­

ing and predicting the performance of SIMNET with ETHERNET. The simulation

model is written in Concurrent-C (an extension of the C language with concurrent pro­

gramming facilities based on the "rendezvous" concept). The powerful synchroniza­

tion and concurrency aspects of Concurrent-C have provided us with a notationally

convenient and conceptually elegant tool for modeling the parallel activities of SIM­

NET nodes and the underlying networking layer. The complete listing of the simula­

tion program for SIMNET with ETHERNET is given in Appendix A.

The process interaction model of Concurrent-C has been used in our simulation to

map the different entities and activities of the simulated network to its corresponding

Concurrent-C processes. The following 'process types are the major generic entities

used in our simulation.

* Process "Simnode" is used to represent a vehicle simulator on the network. A pro­

cess of this type is created for each such simulator.

I * Process "Busnode" is used to represent the point of contact of each SIMNET node

with the ETHERNET bus. A process of this type is created for each such point

I

of contact on the bus.

* Process "Lserver" is used to implement and control the flow of data (packets and

jam signals) in the direction from right to left for each SIMNET node. A pro­

cess of this type is created for each SIMNET node.

11

I

I

I

I
I

•
I

*

*

Process "Rserver" is analogously defined for traffic flowing in the direction from

left to right.

Process "Scheduler" is used to order time events and control the sequencing of

activities of the entire simulation.

Figure 3 gives a block diagram showing the interactions among the different processes

used in the SIMNET/ETHERNET simulation model. Typically, eight simulators con­

nect to the coaxial transmission cable at a single point via a multi-port transceiver.

Each of the simulators is modeled as a Simnode process. A Busnode process for each

point of contact is created to accept and transmit local traffic from anyone of the eight

SIMNET nodes as well as retransmit any external messages arriving at this node.

For this purpose, we use two separate processes called Rserver and Lserver. The

Rserver process implements the transfer of data from its left Busnode process to its

right Busnode process. This transmission is actually simulated by calling the

Scheduler process to wait for the propagation delay (the time needed by the message

to travel from one SIMNET node to the next). The Lserver similarly carries data sig­

nals from the right Busnode to its left neighbor. The.Busnode process detects collision

by checking for the existence of local traffic, left traffic or right traffic.

Below, we give a brief description of the different processes mentioned above.

Although the complete code is given in Appendix A, we use high-level pseudo-code

in this section to illustrate the important features and main activities of each process.

12

I

.

I

I

I

I

I
I

The Simnode Process:

This process is the source of local traffic. It generates packets according to a

specified input method such as using traces of real data or stochastically generated

interarrival times (e.g., exponential, uniform, fixed with jitters, etc.) Upon the arrival of

a local packet, the Simnode process makes a request to the corresponding Busnode

process in order to transmit the new packet This is done by calling a specific transac­

tion in the Busnode process as illustrated by the pseudo code given later. At this

point, the Busnode process checks for a carrier flag. If the flag has been off for at least

the interframe gap, the Simnode process can proceed with its transmission. If the car­

rier flag is on, the Simnode process has to wait for the interframe gap then retry its

request. When a collision is detected during transmission, the Simnode process sends

a jam signal and increments the collision counter. This is followed by invoking a

backoff algorithm for retransmission. A packet is discarded after 16 unsuccessful

attempts for transmission. Also, if a new update message arrives before successful

transmission, the old message is simply replaced by the new message. The

specification and major activities of the Simnode process are described by the follow­

ing code:

Process spec simnode (process sched s,

process bus bid,

long meanIit, name t name)

Process body simnode (s, bid, meanIit, name)

/* Initialization phase * /

14

-
I
I
I

I
I

I
I

I

I

c _setname(c _ mypidO. name.str);

s.adduserO; bid.addProdO;

/* Main processing phase */

while (simulation time not expired) do

Interrupt

{

/* Get next arrival time * /

t= erand(meanIit)

/* Call Scheduler to wait for arrival * /

arrive = s.wait(s.reqDelay(t»;

/* Attempt transmission * /

while ((dt = bid.transReq(c_mypidO)!= 0)

s.transDelay(dt);

/* Code for collision check and

subsequent backoff algorithm */

collision_handler (collis_counter);

/* Increment counter for successful

or discarded packets */

sst.success += 1;

}

/* Termination phase */

statistic _funO;

15

I

I

I

I

I

I

The Busnode Process

The Busnode process acts like a server process ready to accept transaction calls

from the local Simnode processes, the Lserver processes or the Rserver processes. The

Busnode is responsible for detecting collisions and it continuously monitors the carrier

flag to see if it is busy. In the case of a collision, the Busnode process calls the

Scheduler to awaken the transmitting Simnode process which then stops the transmis­

sion and sends the jam signal. The following code gives the Concurrent-C

specification and body of the Busnode process.

Process spec busnode (process sched s,

process statProc stp,

float simt,

name_t name)

Process body busnode (s, stp, simt, name)

{

/* Initialization phase * /

s.addUserO; s.passiveO;

/Main Processing Phase * /

while (# of producers + consumers> 0)

select {

16

I
I

I

I

I
I

I

/* Handle request from left or right servers */

accept putReqO;

/* Make sure that a Simnode which detect

collision gets a slot in the waiting

queue of the scheduler * /

or accept insureO;

/* Take request from left or right server */

or accept takeReqO;

or accept takeWaitO;

/* Local transmission request from Simnode * /

or accept transReqO;

/* Terminate local transmission */

or accept stopTranO;

/* Increment consumer or producer count * /

or accept addConsO;

or accept add Prod();

/* Decrement consumer or producer count */

or accept dropConsO;

or accept dropProdO;

/* Update local Simnode count */

or accept addLoProdO;

or accept dropLoProdO;

} /* end of while * /

17

/* Get performance statistics * /

s.active(); s.dropUser();

/* end of Busnode body */

I
The Rserver and Lserver Processes

These processes transmit the traffic delivered to the Busnode process by any

I ttansmitting Simnode process to the right and left, respectively. The specification and

body of the Rserver process are given below.I
Process spec Rserver(process schoo s,I

process bus inbus,

process bus outbus)

.

Process body Rserver(s, inbus, outbus, name)

typedef struct { /* data submitted by simnode * /

I /* Time of arrival */

long arrive;

/* Packet length */

int packet_length ;

I 1* No. of update messages per sec *1

int update_num;

/* No. of attempts to ttansmit */

int attempt_index;

I 18

I

I

I
I

} local traffic

/* Initialization phase * /

c _ setname(c _ mypidO, name.str);

s.adduser(); inbus.addCons();

outbus.addProd();

/* Main processing phase */

while (takereq(l){

/* Wait for propagation delay */

t = arrivetime + propagation delay;

ts = s.wait(s.reqDelay(t»;

/* Deliver message */

put FLTR(type);

}

The body and specification of the Lserver process are similar to those of Rserver.

The Scheduler Process

Delays in the simulated network (such as transmission delays) are handled by the

Scheduler process. This process maintains the simulated cl'?Ck and advances it

I appropriately. For each delay request from a process, the Scheduler determines the

time when the process needs to be reactivated and saves this time in an "activation

request" list. When all processes are waiting, the scheduler picks the next process to'

run, advances the simulated clock and reactivates the process. The simulated clock

19

advances only when all processes are waiting; thus any (non-delay) computation done

I by a process takes place in zero simulated time. At any given moment, each client

process is in one of the following three states:

I

I
I

* Waiting: for an explicit delay request from the scheduler;

* Active: computing in zero simulated time;

* Passive: waiting for an event other than a delay request from the Scheduler.

The specification and the body of the Scheduler are given below:

process spec schedO (

/* Return current simulated time * /

trans long nowO;

/* Request a delay */

trans long reqDelay(long);

/* Wait for reqDelay */

trans long wait(long);

/* Add or delete client process * /

trans void adduserO,dropuserO;

/* Change client to new state * /

trans void passiveO, activeO

/* Handle collision * /

trans void collision(id);

};

20

I
I
I

I

typedef struct (

/* Structure describing a delay request */

long ts; /* time stamp * /

int next; /* index of next entry or -1 * /

/* Number of clients waiting for this time */

int nwait;

} reqent;

static reqent Rtab[MAXREQ];

static int !free; /* first free entry * /

/* Thead is entry with lowest timestamp * /

static int Thead =-1;

process body schedO

(int nclients, nactive, i;

long curtime = 0;

/* Initialization phase * /

c _ setname(c _ mypidO, tlschedtl);

rqlnitO;

accept adduser() {nclients = nactive = 1}

/* Main processing phase: accept requests while

clients exist * /

while :nclients >0) {

21

I

I

I
I

select {

accept adduserO {nclients += 1; nactive += 1;}

or

accept drop user() {nclients -= 1; nactive -= I;}

or

accept passiveO {nactive -= I;}

or

accept activeO {nactive += I;}

or

accept nowO {treturn curtime;}

or

accept reqDelay(x)

Inactive -= 1; treturn addreq(curtime+x);}

or

accept jam(id)

{change timestamp of record with this id}

}

/* If all clients are waiting, find the first event */

/* and allow all clients waiting for it to proceed * /

if (nactive == 0 && !head != -1){

curtime = Rtab[Ihead].ts;

nactive = Rtab[Ihead].nwait;

While (--Rtab[Iheadlnwait >= 0)

22

•
I
I

I

accept wait(key) such that (key = !head)

{tretum curtime;}

4. The Token-Ring Simulation Model

The simulation model for ring LAN topology is also written in Concurrent-C. A

functional diagram of the simulation model for SIMNET with the token-ring LAN is

shown in Figure 4. The following process types are the major generic entities used in

our simulation for the ring structure.

*

*

Process "Simnode" is used to represent a vehicle simulator on the network. A

process of this type is created for each such simulator. This process is the source

of local traffic and is capable of generating packets according to a specified input

method (e.g., using traces of real data or random stochastically generated interar­

rival times such as exponential, uniform, fixed with jitters, etc.)

Process "Ringnode" is used to monitor the ring traffic at the location of each node

on the ring. A process of type Ringnode is created for each node on the ring.

This process is responsible for implementing the token-based medium access pro­

tocol.

* Processes "Server" is used to simulate the propagation delay between each pair of

LAN nodes. A process of this type is created for each pair of adjacent nodes on

I the ring .

• 23

I

I

I

8

I
.
,

I

I

I

I

, r

e'

5. Performance Results

The detailed simulation models described earlier have been used to gain insight into

the performance of simulation networks under both the ETHERNET and token-ring

protocols. In what follows, we summarize the results of the numerous performance

tests and the statistics gathered by the simulation models.

5.1. Performance of ETHERNET

The tables given on the following pages present some selected statistics gathered when

the CSMNCD ETHERNET configuration is driven by 80 SIMNET simulators. The

assumptions made for the configuration used in these tables are given below.
I

Each simulator uses an exponential stochastic distribution for packet arrivalsI
*

with a cumulative rate that drives the network at various levels of total traffic

load for the entire LAN.

* The simulation uses a total of ten multi-port transceivers. A multi-port tran-

sceiver is used to connect eight STh1NET nodes to a single point on the coaxial

cable.

I The speed of data propagation in the coaxial cable is assumed to be the speed of*

light.

.

I

.
2S

I
I

I
I

I

•
I
I

ETHERNET STATISTICS

80 Simulators

Measure Value

Average LAN load 5000 frames/sec

Packets discarded 0.0%

Max. Attempt 9

Avg. Attempt 1.47

Throughput 5000 frames/sec

Utilization 52.5%

Avg. Packet Delay 270.7 micro sec

26

I
I

I

n
I

I

I

ETHERNET STATISTICS

80 Simulators

Measure Value

Average LAN load 7200 frames/sec

Packets discarded 0.026%

Max. Attempt 16

Avg. Attempt 2.81

Throughput 6912 frames/sec

llJtili~ti()ll 76.3%

Avg. Packet Delay 7842.3 micro sec

28

I
I

I

I
I
I

I

•
I
I

ETHERNET STATISTICS

80 Simulators

Measure Value

Average LAN load 8000 frames/sec

Packets discarded 0.283%

Max. Attempt 16

Avg. Attempt 3.11

Throughput 7044 frames/sec

1lJtil~tioIl 78.8%

Avg. Packet Delay 21469.9 . mlcrosec

29

, ()
~
ct)

'& ~

J}g)

='
0

-:S
"

2

3

4

5

6

7

8

1 J
~

r-

v
~

."

4

v

f

V1
1

-r

10

~.

12

--.

14
-~

16

a

-.

18 200 2 6

Traffic Load

I

I

I soo

I

m

400-
:B'
~
~

g.
§
~

-""
I ."..

:s~
-u
~I
Q

ft)

D

"-' 'jia'.~~~: ~300 -

200-

100

I

L
8

0-

~

0 2 4 6 10 12 14 16 18 20

Traffic Load
(thousand packets/sec)

Graph 2. Average Discarded Packets vs Traffic Load (ETHERNET)

I

I

I

I

I
I
I

•
I
•

ETHERNET STATISTICS

80 Simulators

Measure Value

Average LAN load 5000 frames/sec

Packets discarded 0.0%

Max. Attempt 8

Avg. Attempt 1.38

Throughput 5000 frames/sec

Utilization 52.7%

Avg. Packet Delay 232.4 microsec

34

I
I

I

•
I
I

ETHERNET STATISTICS

80 Simulators

Measure Value

Average LAN load 6667 frames/sec

Packets discarded 0.0%

Max. Attempt 14

Avg. Attempt 2.25

Throughput 6667 frames/sec

Utilization 72%

Avg. Packet Delay 1029.7 microsec

35

I
ETHERNET STATISTICS

80 Simulators

Measure Value

Average LAN load 8000 frames/sec

Packets discarded 0.086%

Max. Attempt 16

Avg. Attempt 2.88

Throughput 6986 frames/sec

Utilization 77.3%

A vg. Packet Delay 2682.9 microsec

•
• 37

I

I
I

I

I

•
I

I

ETHERNET STATISTICS

80 Simulators

Measure Value

Average LAN load 9000 frames/sec

Packets discarded 0.159%

Max. Attempt 16

Avg. Attempt 3.04

Throughput 7045 frames/sec

Utilization 78.4%

Avg. Packet Delay 3678.9
.

Dllcrosec

38

I
ETHERNET STATISTICS

80 Simulators

Measure Value

I
Average LAN load 13333 frames/sec

Packets discarded 0.421%

Max. Attempt 16

Avg. Attempt 3.46

Throughput 7093 frames/sec

Utilization 80.6%

Avg. Packet Delay 5571.4 micro sec

•
• 40

I
I S.2. Performance of TOken-Ring

I

-

I

Numerous tests have been performed using the token-ring simulation program given in

Appendix B. In this section, we present the results of token-ring LANs under the fol­

lowing assumptions:

*

*

The recreation of the free token (F.T.) onto the ring is assumed to follow the

"early token release protocol." According to this protocol, the transmitting sta­

tion (the one which removed the free token from the ring) recreates the free

token and puts it onto the ring immediately after it finishes transmitting its

packet This protocol results in better LAN throughput and smaller packet

delays than protocols that require the header (or the tail) of the transmitted

packet to complete one cycle around the ring before the free token is recreated.

The length of the free token has been used as a variable whose value ranged

from 1 bit to 24 bits (the case of 1 bit is theoretical in nature and is given to

help evaluate the overhead of token management).

* To make this model correspond closely to the ETHERNET configuration, LAN

concentrators were used. Each concentrator was assumed to connect 8 SIMNET

nodes to the token-ring (similar to the TeL box used in the ETHERNET simula­

tion). Delays in these concentrators were assumed to be negligible. We have also

conducted tests without the use of concentrators (but the results are not discussed

in this report).

41

I
I

I
I
I

I
I
I
I

I

The tables given on the following pages present the numerical results of

throughput, average packet delay, and the F.T. cycle time for different values of F.T.

length. Although the results show that at high loads token-ring LANs have packet

delays that are order of magnitude better than those of ETHERNET, the above

assumptions have undoubtedly contributed to widening the perfonnance gap between

the two models. Using "late free token release" policy and increasing the F.T. length

would certainly result in an increase in the value of packet delays and would therefore

reduce the performance gap between the two configurations.

42

I
TOKEN-RING STATISTICS

Length of Free Token= 24 bits

Load Throughput Packet Delay Free-Token Cycle Tune

(packets/sec) (packets/sec) (microsecond) (microsecond)

140 140 1.03 2.43

1,075 1,075 6.51 2.70

2,400 2,400 14.35 3.20

3,100 3,100 26.42 3.54

5,150 5,150 54.78 5.16

6,083 6,083 102.75 6.50

8,000 8,000 166.21 14.13

8,800 8,300 450.28 16.98

44

I

TOKEN·RING STATISTICS

Length of Free Token= 1 bit

Load Throughput Packet Delay Free-Token Cycle Time

(packets/sec) (packets/sec) (microsecond) (microsecond)

210 210 0.74 1.64

I 2.100 2,100 5.95 2.04

3,400 3,400 31.67 2.45

I 5,100 5,100 64.09 3.29

9,300 9,300 310.65 29.50

I
• 45

I

I
6. Conclusions

In this section. we present the conclusions of this project concerning the evaluation of

ETHERNET and token-ring protocols and their suitability for real-time simulation net­

works.

6.1. Comparative Results of the Simulation Models

* The numerous simulation tests that we have conducted show that the throughput

of SIMNET with the ETHERNET protocol reaches a maximum of approximately

60-70% of the transmission medium bandwidth. As explained below. the satura­

tion in throughput is primarily due to the excessive collision rate that characterize

the behavior of ETHERNET at high loads. The token-ring configuration, however,

has consistently yielded maximum throughput in the range 90-95% of the

transmission medium bandwidth. The token-ring configuration uses a collision­

free protocol and does not therefore suffer from the problem of declining

throughput at high loads.

* Our simulation results show that ETHERNET is an excellent choice for lightly

loaded networks. For example. loads of 10% to 20% of ETHERNET bandwidth

represent ideal condition for the ETHERNET medium access protocol (very small

collision rate, negligible packet delays. and zero packet loss rate due to excessive

collision count). As the traffic load on the ETHERNET bus increases, the per­

fonnance of the network deteriorates quickly resulting in significant increases in

packet delays. With further higher loads, some packets are lost due to exceeding

the limit of rel;ansmission attempts, andJle performance of ETHERNET rapidly

46

I

I

*

collapses causing packet delays to become too large to be acceptable for real-time

simulation.

Token ring LANs, on the other hand, are much less sensitive to increased

transmission rates compared to ETHERNET. Unlike collisions in ETHERNET,

the overhead of token management in ring LANs does not result in throughput

decline as the traffic load on the LAN increases. Therefore at very small loads,

the time overhead of token management in ring LANs would be more costly (in

terms of packet delays) than the overhead of collision handling in ETHERNET

LANs. As the traffic increases, collision rates in ETHERNET become significant

while the token-passing algorithm shows a more stable behavior. Since token

rings are collision free, a maximum packet delay can be guaranteed for a given

number of stations. Thus the real-time requirements of applications having high

traffic loads (e.g., networks with large number of simulation training devices) can

be handled more gracefully using the contention-free token ring scheme.

6.2. Other Considerations

In addition to the comparative results obtained by the simulation models, many other

factors need to be considered when choosing and/or designing a medium access proto­

col for simulation networks. Below, we discuss some important considerations relevant

to the comparison of ETHERNET and token-ring LANs.

47

I
•

I

I

I

*

*

Unlike E1HERNET, token rings provide a priority-based scheme for packet

transmission across the network. In the ANSl/IEEE 802.5 ring implementation,

the passing token has three bits indicating the current priority level of the ring

(this gives 8 priority levels: 0 is the lowest priority and 7 is the highest priority).

A station that captures the token, can only transmit packets whose priority is

equal to or higher than the priority of the passing token. The 802.5 protocol also

provides mechanisms that enable stations to request/change the priority of the

passing token. In simulation networks, this means that it will be possible to assign

priorities to the different types of messages in order to optimize real-time perfor­

mance and visual display at peak load conditions.

Because of its point-to-point connection property, rings readily accommodate the

use of optical fiber as a transmission medium. In addition to offering, reduced

size/weight and enhanced safety features, optical fiber also offers very high signal

bandwidth. One very promising implementation of ring networks using optical

fiber is the Fiber Distributed Data Interface (FODI). FDDI is a 100 Mbits/sec

token ring LAN protocol that is rapidly becoming accepted as the premier high

speed LAN standard. With its embedded extensibility to support even higher

speeds (500 to 1000 Mbits/sec), FODI is poised to become the dominant high-end

LAN of the 1990's. The paradigm for FDDI topology is known as a "dual

counter-rotating ring of trees". The physical layer topology consists of indepen­

dent, full-duplex, point-to-point physical connections, while the logical layer con­

sists of one or two rings. The FODI MAC (medium access control) protocol pro­

vides data services similar to those of tl.e IEEE 802.5 token rings. An extension

48

I

I *

I
*

I

I

I

to FDDI (called FDDI m is currently being investigated to add an isochronous

data transmission capabilities to the network, thus enabling it to handle both voice

and data. FDDI technology will eventually provide the simulation/training indus­

try with powerful real-time LANs capable of interconnecting an unprecedented

number of stations.

One main advantage of the bus structure over ring LANs is the reliability of net­

work operation following a node failure. Bus-based LANs are persistent to node

failures since the propagation of messages on the bus does not require the partici­

pation of any given node. A failure of a station on the ring structure, however,

can bring the entire LAN down. This problem has been considerably reduced by

the increased reliability of today's ring chips and off-the-shelf ring attachments.

Furthermore, FDDI rings use optical bypass switches in order to allow inactive

(off-line) stations to pass the traveling data-carrying light waves directly from one

neighbor to the next without active power.

Bus-based E1HERNET LANs have enjoyed economic advantages because of their

widespread use in the past two decades. These advantages, however, are about to

disappear since VLSI technology, fiber optics, and other near-term advances will

soon be supplying the market with ring chips at the same low cost as bus chips.

Also, hardware support for FDDI is rapidly growing and the projected increased

development/installation investments in FDDI are expected to drive the cost of

FDDI hardware by as much as 30% per year.

49

I

I

I
I

I
•
I

Acknowledgements

I would like to thank the three graduate assistants: Samir Chatterjee, Ming Chiu and

Hon Chu for their help in coding/debugging the Concurrent-C simulation programs and

for performing the numerous evaluation tests of the EmERNET and token-ring LANs.

Special thanks go to Mr. Jack Thompson, Dr. Michael Georgiopoulos, and Mr. Jorge

Cadiz for their technical support during the course of this project. I would also like

to thank Mr. Ernie Smart for his guidance and administrative assistance. Finally, I am

indebted to the Department of Computer Science and the Institute for Simulation and

Training for providing the facilities needed to carry out this project.

50

I
I

I
I

I
I

I
I

Appendix A

Source Code Listing of the ETHERNET
Simulation Model

I

I

I

I

/**/
/**/
/* This is a header file. It contains declarations & specification */
/* part of each of the concurrent C processes.It also contains some */
/* structures and functions that are used in the simulation. */
/* */
/**/
/**/

fdefine FRTL 0 /* FRTL stands for "from right to left" */
fdefine FLTR 1 /* FLTR stands for "from left to right" */
fdefine T NORMAL 1
fdefine T-COLLIDE 2
fdefine T-START 3
fdefine T-NOWAIT 4
fdefine BUSY 1

/* mode=l, transmission terminated normally */
/* mode=2, terminatrion after collision */
/* mode=3, start transmission */
/* server takes message without waiting */
/* the medium is busy */

fdefine IDLE 0 /* the medium is idle */

/* The type name t is a structure containing a character string
/* and is passed-by value to any process that calls it.

typedef struct {char str[20];} name_t;

/* stats is a structure
typedef struct {

long
float
double
double
} stats;

nv;
maxv:
sumv;
sumsq;

for obtaining statistics.
/* Statistics for items */

/* number of values */
/* max value */
/* sum of all values */
/* sum of squares */

1* sltem is a structure for keeping the overall transmission stats.
at a simnode and the whole system as well. */

typedef struct {
int nSend; /* number of packets sent */
int success; /* number of successful transmission */

*/
*/

*/

int discard: /* number of packets failed to transmit */
int maxAt: /* maximum attempts required to transmit */
float sumAt; /* sum of attempts made by each packet */
} sltem:

/* This is the specification part of the time scheduler *1

process spec sched(float simt) {/* Virtual time scheduler process */
trans float now(); /* return current simulated time */
trans long reqDelay(float, process simnode); /* request a delay */
trans float wait(long); /* wait for delay request */
trans void addUser(); /* add a client process */
trans void dropUser(); /* delete a client process */
trans void passive(); /* active client became passive */
trans void active(); /* passive client became active */
trans void jam(process simnode); /* transmit jam signal after collision */
} ;

/* This is the specification part of statistical process which keeps track */
/* of system parameters such as average delay,utilization,throughput and */
/* mean interarrival times. */

process spec statProc(float simt) {
trans void addCus(), dropCus(); /* add, drop a client process */
trans void doSystime(stats); /* get delay stats. of whole system. */
trans void doIit(stats); /* get interarrival time stats. */
trans void doSst(sItem): /* get transmission stats. */
trans void doUtiliz(float); /* get network utilization stats. */
} :

I

I
I

I
I

/* specification for busnode process */

process spec busnode(process sched s, process statProc stp,

trans
trans
trans
trans
trans
trans
trans
trans
trans
trans
} ;

void
void
void
void
int
void
int
int
float
void

float simt, name t name) {
addProd(), dropProd(); 7* add/delete a producer */
addCons(), dropCons(): /* add/delete a consumer */
addLoProd(); /* add local producer (simnode) */
dropLoProd(sltem, stats, stats); /* drop local producer */
putReq(int, int); /* initiate put request */
insure (int, int):
takeReq(int); /* initiate take request */
takeWait(int); /* complete take request */
tranReq(process simnode);/* request by simnode to transmit */
stopTran(int);/* stop transmission due to collision */

/* specification for simnode process. */

process spec simnode(sched s, process busnode bid,
float meanlit, name t name);

/* function call by server to request a packet from busnode */
int qTake(process busnode, int, int*);/* function to take an item */

/* specification for right server ,it carries the messages from left */
/* busnode to its right neighbor . */

process spec Rserver(process sched s, process busnode inbus,
process busnode outbus, name_t name);

/* specification for left server,it carries the messages from right */
/* busnode to its left neighbor . */

process spec Lserver(process sched s, process busnode inbus,
process busnode outbus, name t name);

void
void
void
void
double
double
double

stlnit(), stVal(): /* functions to initialize & add a value */
stMerge(): /* merge statistics contained in two stats structure */
sstlnit(); /* initiate sltem structure */
sstMerge(); /* merge statistics contained in two sltem structure */
stMean(), stSdev();/* to get mean & std. deviation */
drandOl(); /* return random number uniform in [0,1] */
erand(); /* return exponential random number */

I

I

I
I

/**/
/* The main process creates all the processes that simulate the entities */
/* of ETHERNET model for SIMNET. It assigns unique names to each process */
/* and also supplies appropriate values for system parameters either by */
/* default or command line arguments. The input parameters are: */
/* */
/* simt :simulation time desired to run the program; */
/* iit :inter arrival time; */
/* seed : for random number generation; * /
/* */
/**/

finclude "dcls.h"
finclude "stdio.h"
int c_nprocs = 500;

/* makeName function returns names for each of the processes. */
/* Return the char* argument as a name t structure. */
name t makeName(narg, name, ch1, ch2) -

{

}

int narg;
char *name:
char ch1, ch2;
name t ret;
int i:

i = 0:
while «ret.str[i] name[i])!= '\0')

i++:
ret.str[i++] = ch1;
if (narg == 3)

ret.str[i++] - ch2:
ret.str[i] ... '\0':
return ret:

/* Main
main (ac, av)

int
char

process -- create all simulation processes. */

ac:
*av[];

{ process
process
process
float
int

sched s: /* process variable for sched */
statProc stp; /* process variable for stats process */
busnode b[21]; /* array of busnodes */
simt = 20000000., iit = 1200000.0;
seed = 12345;

int i, j;
int nBusnode ... 10:

if (ac > 1) sscanf(av[l],
if (ac > 2) sscanf(av[2],
if (ac > 3) sscanf(av[3],
srandom (seed) :

"%f" ,
"%f",
"%d",

&simt) ;
&iit) ;
&seed):

printf("main: simt %10.1f iit %7.1f seed %d nBus %d\n",
simt, iit, seed, nBusnode):

/* create virtual time scheduler */
printf("Creating sched!\n"):
s = create sched(simt):

/* create process that gathers statistics */
stp = create statProc(simt);
s.addUser(); /* for main */

/* create busnodes */
printf("Creating busnode!\n"):
for (i=l; i<=nBusnode: i++)

b[i] = create busnode(s,stp,simt,

I
I
I

I

I
I

I

I
I

I
I

makeName(2,"Busnode",'A'-1+i,'0'»;

/* create left and right servers */
/* first, create the leftmost Lserver */

printf("Creating servers!\n");
create Lserver(s, b[1), c nullpid, makeName(3,"Lserv",'A','0'»;
for (i=1; i<=nBusnode-1; I++) {

}

create Rserver(s,b[i),b[i+1),makeName(3,"Rserv",'A'+i-1,'A'+i»;
create Lserver(s,b[i+1),b[i),makeName(3,"Lserv",'A'+i,'A'+i-1»;

1* last, create the rightmost Rserver */
create Rserver(s, b[nBusnode], c nullpid,

makeName(3,"Rserv",'A'+nBusnode-1,'0'»;

/* create simnodes, each busnode connects up to eight simnodes (similar
to a TCL box) */

printf("Creating simnodes!\nlt);
for (i=1; i<=nBusnode; i++)

for (j=1; j<=8; j++)
create simnode(s, b[i), iit,

makeName(3,"Sim",'A'+i-1,'0'+j»;

/* wait for all processes to tell sched they are clients */
delay 2.0;

/* all started -- can delete main as scheduler client. */
s.dropUser();
printf (ItMain.cc terminate! \n");

I

I

/***/
/* SIMNODE is a process type that simulates the transmitting stations */
/* in the SIMNET configuration. When a node has nothing to transmit, it*/
/* monitors the transmission medium by sensing a carrier signal. */
/* Whenever the medium is busy, the node defers to the passing frame by*/
/* delaying any pending transmission of its own. After the last bit of */
/* the passing frame, the simnode continues to defer for a proper inter*/
/* frameSpacing. Now at the end of this interval, if a frame is waiting*/
/* to be transmi~ed, transmission is initiated. When transmission */
/* has completed, simnode resumes its original monitoring of carrier */
/* sense. */
/* Collision detection and handling is also done by simnode. */
/* */
/* VARIABLE and FUNCTION DICTIONARY */
/* --------------------------------- */
/* SLOT TIME :unit of time for collision handling; */
/* packetTime :time to transmit a packet of 1024 bits: */
/* s :process scheduler : */
/* bid :process busnode to which simnode is connected; */
/* simid :identification of the simnode process type: */
/* wait carrier :a procedure which defers for the proper */
/* interFrameSpacing before transmission: */
/* backOff :a procedure which computes the retransmission */
/* schedule due to collision backOff; */
/* count :integer which keeps track of the number of */
/* retransmission attempts; */
/* range :integer between 0 and 2 A count; */
/* timeout :integer multiple of SLOT TIME to delay; */
/* float t1,t2 :floating point variables-to hold exponential */
/* times; */
/* float arrive :time that the locally generated packet arrives */
/* int tranCount :integer to count the number of transmission */
/* attempts due to collision; */
/* stats iit,sysTime :two variables of stats structure, one to keep */
/* statistics for inter arrival time and the othe */
/* to gather statistics for average delay; */
/***/

finclude "dcls.h"
finclude "stdio.h"
fdefine SLOT TIME 512.0
fdefine packetTime 1024.0

/**/
/* waitCarrier is a procedure which the simnode calls to defer itself */
/* before transmitting its packets. This procedure calls a transmission */
/* request transaction of its corresponding busnode, and thereby delays */
/* itself for the appropriate interFrameSpacing .If the channel is busy */
/* then the packet is kept in the pending list of the busnode. */
/**/

static float waitCarrier(s, bid, simid)
process sched s;
process busnode bid;
process simnode simid;

{ float dt;
float curT = -1.;
/* makes a transmission request to the busnode */
while (curT != O. && (dt = bid.tranReq(simid» != 0.)

curT = s.wait(s.reqDelay(dt, c_nullpid»;
return curT;

/**/
/* When a transmission attempt has been aborted due to collision, it is */
/* retried by the transmitting simnode, until either it is succesful or a */

/* maximum number of attempts have been made without success. */
/* Truncated binary exponential backoff process is used. At the end of */
/* a collision it delays an integer multiple of SLOT_TIME. The number */
/* of SLOT TIMES to delay before the nth. transmission attempt is chosen */
/* as a unIformly distributed random integer r in the range */
/* 0 <= r <- 2~k where k -min(n.l0); */
/**/

I static float backOff(count)
int count;

{ float timeout;
int range;
int i, k;

if (count> 10)
k = 10:

else
k = count:

range = 1:
for (i=O: i<k: i++)

range = 2 * range:
timeout = SLOT_TIME * range * drandO1():
return timeout:

}

/* Main body of the simnode process */

process body sirnnode(s, bid, meanlit, name)
{ float tl,t2;

float timeOut, timeNow;
float arrive, curTime;
int tranCount;
int waitFlag = 1;
process simnode simid;
stats iit, sysTime;
sItem sst;

/* Initialization phase */
simid = c mypid();
c setname(simid, name.str);
/* calling the sched and busnode to tell that its a producer */
s.addUser(); bid.addLoProd();
stInit(&iit); /* initialize sturctures for inter- */
stInit(&sysTime); /* arrival, system delay and */
sstInit(&sst); /* transmission statistics. */

I

/* Main processing phase */
/* generating an exponentially distributed interarrival time */

t1 = erand(meanlit)i
stVal(&iit, t1)i
t2 = erand(meanlit)i /* t2 is the expected inter-arrival */
stVal(&iit, t2)i /* time for the next packet. */
while (1) { /* run until similation time expires */

if (waitFlag) /* packet hasn't arrived yet! wait t1 time */
if «timeNow = s.wait(s.reqDelay(tl, c_nullpid))) != 0.)

arrive = timeNowi /* arrival timestamp of packet */
if (timeNow != 0.)

if «timeNow = waitCarrier(s, bid, simid)) != 0.) {
/* delay for transmitting packet */

tim~Now -s.wait(s.reqDelay(packetTime, simid))i
/* printf("%s tran:1 return curTime = %10.2f id = %ld\n",

name.str,timeNow,simid)i */
}

tranCount = 1:
/* start counting the number of attemps for each packet */
/* timeNoe < 0 indicates a collision. */

I while (tranCount < 16 && timeNow < 0.) {
bid.stopTran(T COLLIDE); /* due to collision */
timeOut -backOff(tranCount);
timeNow -s.wait(s.reqDelay(timeOut, c nullpid»;if (timeNow != 0.) -

if «timeNow -waitCarrier (s, bid, simid» !- 0) {
timeNow -s.wait(s.reqDelay(packetTime, simid»;

/* printf ("%s tran2: return curTime = %10.2£ id = %ld\n"
name.str,timeNow,simid); */

}
tranCount += 1;

}
curTime = s.now();
if (timeNow == 0.) {

break;

if (timeNow> 0.) { /* normal termination of transm. */
bid.stopTran(T NORMAL);

/* append systime with the delay of the packet */
stVal(&sysTime, curTime-arrive);
/* printf (II delay time = %10. 2f curTime = %10. 2f\n",

s.now()-arrive, s.now(»; */
/* update transmission statistics(a success) */
sst.success += 1;
sst.nSend += 1;
sst.sumAt += tranCount;
if (tranCount > sst.maxAt)

sst.maxAt -tranCount;

I

}
else {

/* update transmission statistics (a discard) */
bid.stopTran(T COLLIDE); /* due to collision */
stVal(&sysTime~ curTime-arrive);
printf("%s a packet discarded! curTime -%10.2f\n"

name.str, s.now(»;
sst.discard += 1;
sst.nSend += 1;
sst.sumAt +- tranCount;
if (tranCount > sst.maxAt)

sst.maxAt = tranCount;
}
/* next packet hasn't arrived yet, wait for t1 time */
if (curTime <= t2 + arrive) {

waitFlag = 1;
t1 = t2 + arrive -curTime;
t2 = erand(meanlit); /* t2 is the expected inter-arrival */
stVa1(&iit, t2); /* time for the next packet. */

}
else { /* There is a packet waiting to be transmitted. There is

only one packet in the queue which is the most recent one.
The older one is discarded whenever a new one comes. */

while (curTime > t2 + arrive} {
arrive = t2 + arrive; /* update the arrival time of the

newest packet */
t2 = erand(meanlit)i
stVal(&iit, t2)i

I
waitFlag = 0;

} /* else */
} /* while */
/* tell busnode to drop simnode as a producer */
bid.dropLoProd(sst, iit, sysTime);

printf("%s success = %d maxAt = %d sysTime = %10.2f curTime = %12.2f\n",

name.str,sst.success,sst.rnaxAt, stMean(&sysTime),s.now(»;
s.dropUser(); /* tell sched that it is terminating */

}

I
I

I
I

I

/***/
/* Rserver is a process type whose main function is to carry messages from */
/* its left busnode to the neighboring right busnode. Whenever a packet is */
/* delivered by simnode, the right server delays itself by the propagation */
/* time needed to transmit the packet from one busnode to the other.It then */
/* delivers the packet to the right busnode by calling a putrequest trans- */
/* action. */
/* CONSTANT AND VARIABLE DICTIONARY */
/* -------------------------------- */
/* prop_delay :time taken by a packet to propagate a distance */
/* of SOm at the speed of light: */
/* s : scheduler: */
/* inbus,outbus :identification of input & output bus: */
/* float ts :floating point time: */
/* int qt,mode :qt is an integer to hold the value returned by qTake */
/* function : */
/* qTake() : a function to take an item from the busnode: */
/* */
/***/

#include "dcls.h"
#include "stdio.h"
#define prop_delay 1.6

process body Rserver(s, inbus, outbus, name)

}

float
int

ts:
mode:

/* initialization phase */
c setname(c mypid(), name.str):
s -=-addUser () ;-
if (outbus != c nullpid)

outbus.addProd();
inbus.addCons();
/* main processing phase */
while (qTake(inbus, FLTR, &mode» {

/* delay for prop time */
ts = s.wait(s.reqDelay(prop_delay, c_nullpid»;
if (outbus != c nUllpid)

if (outbus.putReq(FLTR, mode» {

}

ts == s.wait(s.reqDelay(O.0001, c_nullpid»:
outbus.insure(FLTR, mode):

/* termination phase */
if (outbus != c nullpid)

outbus.dXopProd(): /* notify output busnode of termination */
inbus.dropCons(): /* notify input busnode of termination */
printf("%s terminate! curTime == %12.2f\n", name.str, s.now(»:
s.dropUser(): /* notify sched of its termination */

I

I

I

/**/
/* Busnode is a process type whose main function is to coordinate */
/* the transmission of packets by simnodes and to handle collision */
/* as specified in the CSMA/CD standards. */
/* There are three types of traffic that passes each busnode: left */
/* traffic, right traffic and local traffic. Locally, each busnode */
/* handles up to eight simnodes as does a TCL box. */
/* */
/* TRANSACTIONS AND THEIR MEANING * /
/* */
/* putReq{) :this transaction is called by both L & R */
/* servers to put a packet: */
/* insure{) :busnode detects a collision and the trans- */
/* mitting simnode gets a delay request slot */
/* in the scheduler: */
/* takeReq{) :servers call busnode to take any available */
/* packet that is either loacl or moving traffic: */
/* tranReq{) :request by simnode to transmit local packet. */
/* stopTran{) :terminate local transmission due te either */
/* normal transmission or collision: */
/* addProd{),addCons{) :change producer & consumer count: */
/* dropCons{),dropProd{) :delete producer & consumer count: */
/* addLoProd{) : increment simnode count (eight simnodes */
/* are connected to each busnode): */
/* dropLoProd{) : simnode calling to terminate & thereby */
/* decrementing count: */
/**/
/*
*/
/* Each data transmission from simnode is simulated by 2 requests: */
/* the first is START TRANSMISSION (mode = T START), the other is */
/* TERMINATE TRANSMISSION which can be either-normal termination */
/* (mode = T NORMAL) or collision (mode = T COLLIDE). */
/**/

tinclude "dcls. hi'
tinclude "stdio .h"
tdefine IFG 96.0 /* Inter frame gap between frame transmissions

equal to 96 bit_times. */

/* qTake is an interface function between the busnode and the servers. */
/* A server wants to take a packet from the busnode and it supplies the */
/* correct direction. The qTake function in turn makes a takeReq trans- */
/* action where pending packets in the appropriate direction are checked. */
/* If there is a pending packet, it returns a mode else -1. If there is */
/* no packet but the server has requested, then it does a takeWait trans- */
/* action which returns a different mode to the function. */

int qTake(bid, dir, modep)
process busnode bid;
int dir;
int *modep;

{
if«*modep = bid.takeReq(dir» > 0)

return T_NOWAITi
else

return (*modep = bid.takeWait(dir»;
}

typedef struct { /* structure for maintaining busnode information */
process sched s;
process simnode curSimid; /* the id of simnode currently

transmitting data locally */
int carrier; /* indicates whether the medium is currently busy */
int local; /* indicates whether there is local transmission,

either normal or jam signal */

int uno; /* indicates normal transmission is going on */
int nProd, nCons; /* number of server processes to busnode */
int nLoProd; /* number of simnodes connected to local busnode */
/* for the following arrays, the indices correspond to FRTL(=O)

and FLTR(-l). */
int Traffic[2]; /* * of traffics(with start transmission request)

existing in the medium from either direction */
int Pending[2]; /* * of pending requests(can be any mode) waiting

to be taken by server */
int head[2], tail[2]; /* pointers to pending list */
int Mode[2] [10]; /* pending list(a circular queue) contains mode

of each pending request */
float timeOn; /* starting time of busy period of the medium */
float timeOff; /* ending time of busy period */
float busyTime; /* duration of the busy period */
float util; /* utilization of the medium observed from each busnode */
name_t name;

} blnfo;
I /* retrieve the mode of the oldest pending request and update the pending

mode = bp->Mode[dir] [bp->head[dir]];
bp->head[dir] = (bp->head[dir] + 1) % 10;
bp->Pending[dir] -= 1;
return mode;

}

/* insert new pending request to the pending list */
static void addPending(bp, dir, mode)

bInfo *bp;
int dir, mode;

{
bp->Pending[dir] +- 1;
if (bp->Pending[dir] > 2) { /* usually trere should be at most 2 */

if(dir == FRTL)
printf ("%s has %d pending in FRTL diretion\n",
bp->name.str, bp->Pending[oir]);

else
printf ("%s has %d pending in FLTR diretion\n",
bp->name.str, bp->Pending[dir]);

}
bp->Mode[dir] [bp->tai1[dir]] = mode;
bp->tai1[dir] = (bp->tai1[dir] + 1) % 10;

/* initialize busnode information */
static void initBlnfo(bp, name)

blnfo *bp;
name t name;

{ int I, j;

I
bp->name = name;
bp->curSimid = c nullpid;
bp->carrier = bp~>local = bp->uno = 0;
bp->nProd = bp->nCons = bp->nLoProd = 0;
bp->timeOn = bp->timeOff = bp->busyTime = 0.;
for (i=O; i<2; i++) {

bp->Traffic[i] = bp->Pending[i] = 0;
bp->head[i] = bp->tail[i] = 0;

for (j=O; j<lO; j++)
bp- >Mode [i] [j] = 0;

list */
static int takeMode(bp, dir)

blnfo *bp;
int dir;

{ int mode;

}

I process body busnode(s, stp, simt, name)
{ bInfo b;

int sound;
float dt;
stats iit, sysTime;
sItem sst;

/* Initialization phase */
c setname(c mypid(), name.str);
s ~ addUser () ;-s .passive () ;
initBInfo(&b, name);
stInit(&iit); stlnit(&sysTime);
sstlnit(&sst);
accept addProd() {b.nProd +- l;}
stp.addCus();

I /* Main processing phase */
while (b.nProd + b.nCons > 0) {

select {
/* Put request from left or right server */

accept putReq(dir, mode)
{if (mode --T_START) { /* a start transmitting request */

/* data transmission is taking place locally,
therefore it is a collision. */

if (b.local && b.uno) { /* check uno flag as well
to make sure that we don't do this twice, while
jam signal is being generated locally */

b.uno = 0;
treturn 1;

}
/* no local transmission or transmitting

jam signal */
b.Traffic[dir] += 1; /* increment count */
/* the medium was previously idle */
if (!b.carrier) {

b.timeOn -s.now(); /* record the start time
of busy period */

b.carrier = BUSY; /* set carrier to busy */
}

}
else { /* This is a request of second type indicating
a remote simnode has just finished transmitting. */

sound = --b.Traffic[dir] +
b.Traffic[(dir+l) % 2] + b.local;

if (!sound) { /* the medium is silent again! */
b.carrier = IDLE;
b.timeOff = s.now(); /* record the ending time
ond get the duration of busy period */
b.busyTime += b.timeOff -b.timeOn;

1
}addPending(&b,

dir, mode): /* insert pending request */
treturn 0:

/* To insure that simnode gets a slot in scheduler waiting queue first.
Note that there is possibility that the moment local transmission
gets admitted to the medium, a T_START request arrives (d putReq
transaction call) from some remote simnode. The collision is
detected (since b.local bit is set) but the sched process hasn't started
processing reqDelay call from the local simnode yet, therefore its
id is not in the wait queue. An s.jam call issued subsequently founds
no match of the id in the waiting queue. An error! So, let server
delay for a very small amount of time and then make insure call. */

I or accept insure(dir, mode)
{ b.Traffic[dir] += 1; b.carrier = 1;

s.jarn(b.curSirnid);
addPending(&b, dir, mode);
/* printf ("%s: a collision! curTime = %10.2f\n",

narne.str,s.now(»; */
}

/* Take request from left or right server */
or accept takeReq(dir)

/* there are pending requests, retrieve the oldest one */
{if (b.Pending[dir] > 0)

treturn takeMode(&b, dir);

else { /* no pending request, go to passive state */
s.passive()i
treturn -Ii}

I
}

Or accept takeWait(dir) suchthat (b. Pending [dir] > 0)
{s.active(); /* a new request is here, wake up the

server which is waiting */
treturn takeMode(&b, dir);}

/* local transmission request from simnode */
or accept tranReq(simid)

{if (b.carrier == BUSY)
/* The medium is busy now, wait for another IFG time, since

it is the least time you have to wait */
treturn IFG;

else if «dt -s.now()-b.timeOff) < IFG)
/* The medium has just become idle, you need to wait until

it is idle for IFG time */
treturn (IFG -dt);

else { /* The medium is available for transmitting locally */
b.local -1; /* set local transmission flag */
b.carrier = BUSY;
b.curSimid = simid; /* get id of the sending simnode */
b.timeOn -s.now(); /* record start time */
addPending(&b, FRTL, T_START); /* insert request to */
addPending(&b, FLTR, T_START); /* pending list */
b.uno -1; /* set uno flag whenever a local

transmission is started afresh */
treturn 0.:

}
}

/* terminate local transmission */
or accept stopTran(mode)

/* The medium is back to idle again under the following
condition:
1. the mode is T NORMAL indicating a successful local

transmission.-or,
2. the mode is T collide but there is no other traffic

in the medium-:-
*/
{if (mode == T NORMAL II b.Traffic[FLTR] +

-b.Traffic[FRTL] == 0) {
b.carrier = 0;
b.timeOff = s.now();
b.busyTime += b.timeOff -b.timeOn;

}
b.local = 0;
addPending(&b, FRTL, mode); /* add pending request */
addPending(&b, FLTR, mode);
b.curSirnid = c_nullpid; /* no local transmission now */

I

I

I

I

1* When all local simnodes terminated reactivate the server blocked
by the busnode *1

or (b.nLoProd -- 0):
accept takeWait(dir)

{s.active ();
treturn O:}

1* other transactions *1
or accept addCons() {b.nCons += 1i}
or accept addProd() {b.nProd += 1i}
or accept dropCons() {b.nCons -- 1i}
or accept dropProd() {b.nProd -= 1:}
or accept addLoProd() 1* process local simnode on add request *1

{b.nProd += 1;
b.nLoProd += 1;}

or accept dropLoProd(sstItem, iItem, sysltem)
{b.nProd -= 1;
b.nLoProd -= 1;

1* merge the statistics gathered on the simnode just dropped out
one by one *1

sstMerge(&sst, &sstItem)i
stMerge(&iit, &iItem)i
stMerge(&sysTime, &sysltem)i}

} 1* select *1
} 1* while *1
1* get utilization of the medium as viewed from the busnode *1
b.util - b.busyTime/simti
1* merge statistics to the whole system *1
stp.doSystime(sysTime)i /* delay stats. *1
stp.doIit(iit)i 1* Inter-arrival time stats. *1
stp.doSst(sst)i 1* transmission stats. */
stp.doUtiliz(b.util)i /* utilization *1
stp. dropCus () ;

printf("%s success = %d meanIit ., %10.2f sysTime - %10.2f curTime - %12.2f\n",
printf(" Utilization - %8.5f timeOn - %10.2f timeOff - %10.2f\n",

b.util, b.timeOn, b.timeOff)i
s .active () i
s.dropUser()i

} 1* process *1

#include "dcls.h"
#include "stdio .h"
#define MAXREQ 300 /*max # of request clients */
typedef struct{

float ts;
float start time;
long ticket;
process simnode id;
char type;
}request;

static request Rtab[MAXREQ];
static int qSize=O;
static long ticket = 0;

/* other inserting routine */
static void siftUp (m)

int m;
{ int i ,j;

request x;

i -m:
while «j = i/2) > 0) {

if (Rtab[j] .ts <= Rtab[i] .ts)
break:

else {
x = Rtab[i];
Rtab[i] = Rtab[j];
Rtab[j] = x;

i = J;
}

}

static int enqueue(ct,ts,id) /* add a request to priority queue */
float ts,ct;
process simnode id; /* and return a index */

{ if (qSize < MAXREQ -1) {
qSize=qSize+l;
Rtab[qSize] .ts = ct + ts;
Rtab[qSize] .id = id;
Rtab[qSize] .start time = ct;
Rtab[qSize] .type ~ 'N';
ticket += 1;
Rtab[qSize] .ticket = ticket;
siftUp(qSize);
/* if (id 1= c nullpid)
printf ("enqueue: Rtab [qSize] .ts = %10.lf id = %ld ticket = %ld curT = %f\n",

Rtab[qSize] .ts,id,Rtab[qSize] .ticket,ct); */
}

return ticket;
}

/* This procedure is for inserting into heap */
static void Insertheap (x,a,b)

request x;
int a,b;

{ int m;
m = 2*a;
while(m <= b)

{ if (m < b)
if (Rtab [m] .ts > Rtab [m+l] .ts)

m= m+l;
if (x.ts <= Rtab[m] .ts)

m = b+l;

else { Rtab[a) -Rtab[m);
a = m;
m = 2*a;

}
}

Rtab[a] = x;

I
}
/* This is for building heap */
static void buildheap(n)

int n;
{ int p;

request X;
for (p = n/2;p >= l;p--)

{x = Rtab[p];
Insertheap(x,p,n);
}I

}

process body sched(simt)
{ int nClients,nActive,i;

float curTime = 0.0;
float t,coll time;float temp; -

/* Initialization phase */
c setname(c mypid(),"sched");
accept addUser() {nClients -nActive=l;}

/* Main processing phase:accept requests while clients exists */
while(nClients > 0) {

select {
accept addUser() {nClients +=l;nActive +=1;}

or accept dropUser() {nClients --l;nActive --1;}
or accept passive() {nActive --1;}
or accept active() {nActive +-1;}
or accept now()

{ treturn curTime;}
/* { if (curTime > simt)

treturn simt;
else

or

or

treturn curTimei} */
accept reqDe1ay(x,id)

{ nActive -= Ii
/* if (ticket == ticket/l00*100)

printf("sched: curTime = %13.2f qSize = %d\n",

curTime,qSize)i */
treturn enqueue(curTime,x,id)i }

accept jam(id){ co11 time = curTimei
for (I = qSizeii >= Ii i--)

if (Rtab[i] .id -= id)
breaki

if (i == 0) {
printf ("No? there should be a collision with id %ld\n", id);

treturn;
}
temp = Rtab[i] .ts;
t = Rtab[i] .start time + 64.0;if (colI_time <t) -

{Rtab[i] .ts = t + 32.0;
Rtab[i] .type = 'J';

}
else {

Rtab[i] .ts = colI time+ 32.0:
Rtab[i] .type = 'J':

if (temp < Rtab [i] .ts)
printf("HOW STRANGE!\n");

/* printf("Rtab.ts = %10.lf i = %d ticket = %ld janm'ling!\n",
Rtab[i] .ts,i,Rtab[i].ticket); */

siftUp(i);
}I }

/*1f all clients are waiting ,find the first event and allow all clients
waiting for it to proceed */

if (nActive == 0 && qSize != O){
/* buildheap(qSize); */
curTime -Rtab[l] .ts;

while(Rtab[l].ts == curTime && qSize !- 0)
{
accept wait(key) suchthat (key == Rtab[l] .ticket)

{nActive += 1;
if (curTime> simt) {

treturn 0.;
}
else {

if (Rtab[l] .type -= 'N') {
/* if (Rtab[l] .id !- c nullpid)
printf ("Sched: type N curTime = %10.lf ticket = %ld\n",

curTime, Rtab[l] .ticket); */
treturn curTime;

}
else {

/* printf("Sched: type J curTirne -%lO.lf ticket -%ld\n",
curTirne, Rtab [1] .ticket); */
treturn -curTirne;

I
}

}
} /* accept */

if (qSize>l)
Insertheap(Rtab[qSize],l,qSize-l);

qSize = qSize-l;
} /* while */

}
} printf ("Sched terminate! curTime -%10. 2f ticket = %ld\n",

curTime, ticket);
} /* terminate */

I

I

I

I

I

I

I
I

I
I
I

/**/
/* This process takes various statistics structures passed from */
/* busnodes upon their completion and combines them into system */
/* overall statistics. */
/**/

iinclude "dcls.h"
iinclude "stdio.h"

process
{

body statProc(simt)
stats iit, sysTime;
sItem sst;

}

int nCus = 0;
int num = 0;
float sumUt 0.;

/* Initializing */
c setname(c mypid(), "statProc");
sst Init (&sst);
stInit(&iit); stInit(&sysTime);
accept addCus() {nCus += 1;}

/* Main processing phase */
while (nCus > 0) {

select {
accept doSystime(sysItem) {stMerge(&sysTime, &sysItem);}
or accept doIit(iItem) {stMerge(&iit, &iItem);}
or accept doSst(sstItem) {sstMerge(&sst, &sstItem);}
or accept doUtiliz(fator) {sumUt += fator; num += 1;}
or accept addCus() {nCus += 1;}
or accept dropCus() {nCus -= 1;}
}/* select */

}/* while */

/* print statistics */
printf("stat:\n nSend - %d\n success - %d\n discard %d\n",

sst.nSend, sst.success, sst.discard);
printf(" maxAt = %d\n avgAt = %5.5f\n",

sst.maxAt,sst.sumAt/sst.nSend);
printf(" utilization = %5.5f\n",sumUt/num);
printf(" throughput = %10.2f\n",sst.success*10000000./simt);
printf(" meanIit = %10.2f\n sysTime = %10.2f\n",

stMean(&iit), stMean(&sysTime»;

iinclude "dcls.h"
iinclude "math.h"

double drandOl() /* Return random number uniform in range [0,1].
{ double p;

extern long random();

*/

p -random() & Oxffffff:
return p / Oxffffff:

}

double erand(mean) /* Return exponentially distributed random number. */

r = -(mean) * 10g(1.0 -drand01()) + 0.5;
/* if (r == 0)

r = 1; */
return r;

}

/* Initialize a "stats" structure. */void stlnit(p)
stats *Pi

{ p->sumv = 0; p->sumsq = 0;p->nv = 0; p->maxv = -1:
}

/* Add a value to a "stats'l structure. */void stVal(p, v)
stats *p;
float v;

{
if (p->nv == 0 II v > p->maxv)

p->maxv = v;
p->nv++; p->sumv += v;
/* p->sumsq += v*v; */

}

void stMerge(pl, p2)
stats *pl;
stats *p2;

{
pl->nv = pl->nv + p2->nv;
if (p2->maxv > pl->maxv)

pl->maxv = p2->maxv;
pl->sumv = pl->sumv + p2->sumv;
pl->sumsq = pl->sumsq + p2->sumsq;

void sstInit(p)
sItem

*p;

{
p->success = p->discard = p->nSend = 0;
p->sumAt = 0;
p->maxAt = 0;

I }

void sstMerge(pl, p2)
sItem *pl;
sItem *p2;

{
pl->success += p2->suCceSSi
pl->discard += p2->discardi
pl->nSend += p2->nSendi
pl->sumAt += p2->sumAti
if (p2->maxAt > pl->maxAt)

pl->maxAt = p2->maxAti

float mean;
{ double r;

I }

double stMean(p)
stats

// Return the mean value for a "stats" structure.*p:

{
return p->nv 1- 0 ? p->surnv/p->nv : 0;

}

double stSdev (p) /* Return the std deviation for a "stats" structure. */

if (p->nv == 0)
return 0;

else {
avg = p->sumv/p->nv;
return sqrt(p->sumsq/p->nv -avg*avg);

}

I }

I

I

I

I

I

I

I

stats "lfp;
{ double avg;

I
I
I

I

I

I
I

Appendix B

Source Code Listing of the Token-Ring
Simulation Model

/**/
/* */
/* This is a header file containing the declarations of variables and */
/* functions that are global to all processes in the simulation. Moreover, */
/* it contains the specification part of each of the Concurrent C */
/* processes. */
/* */
/**/

I

/* The type name t is a structure containing a character string and is
/* passed by value to any process that calls it.
typedef struct {char str[20];} name_t;

*/
*/

/* Specification of the virtual time scheduler */
process spec sched(float simt) { /* simt is the total simulation time */

trans float now(); /* return current simulated time */
trans long reqDelay(float); /* request a delay */
trans float wait(long); /* wait for a request delay */
trans void addUser(int id),dropUser(); /* add/delete a client process */
trans void passive(),active(); /* client changed to new state */

} ;

*/
*/
*/

/* nltem is a structure type for packets/tokens circling the network */
typedef struct {

int code; /* code distinguish if the packet is a free or connector token
/* code=O means a free token, code=l means a connector token &
/* packet

long length; /* length of the packet */
int id; /* the id of the node sending the packet */

} nltem;

*/
*/

/* Specification of the process that collects statistics from individual
/* process and performs statistics on the network as a whole.
process spec statProc(float simt) {

trans void addCus(), dropCus()i /* add/delete a client process */
trans void doThruput(int)i /* compute throughput for network */
trans void doUtil(float)i /* calculate network utilization */
trans void doDelay(float)i /* calculate packet transmit delay */
trans void doFT(float)i /* calculate free token cycle time */
} i

/* Specification of the node process */
process spec node (process sched s, process statProc stp, float simt,

float transRate, name t name, long FTlength, long CTlength) {
trans void addProd(), dropProd(); /*-add/delete a producer */
trans void addCons(), dropCons(); /* add/delete a consumer */
trans int transReq(long,float); /* initiate to transfer packet from source */
trans void transWait(long,float); /* complete transfer of packet */
trans void put(nltem); /* accept a packet/token from server */
trans nltem takeReq(); /* initiate to transmit packet by server */
trans nltem takeWait(); /* complete transmission of packet by server */
} ;

*/
*/

/* Specification of the source process which produces packets and
/* transfers them to the node process
process spec source(process sched s,process node nid,float iit,

float meanlength,name_t name);

/* Specification of the server process, which takes packet/token */
/* from the input node and transmits the packet/token to .)utput node */
process spec server(process sched s,process node inN,process node outN,

float propTime, float transTime, name_t name);

/* A function called by source to initiate a transfer of packet to node */
float nTransfer{/* process node, process sched, long length float start_t */);

I

I

I

•

I
I
I

I
I
I

I

/* A function called by server to initiate getting a packet from its */
/* input node */
void nTake (/* process node, nltem */);.

/* Structure used to obtain statistics */
typedef struct {

long nv; /* number of values */
float maxv; /* maximum value */
double sumv, sumsq; /* sum and sum of squares of all values */
} stats;

double drandOl(); /* return a uniform random from 0 to 1 */
double erand(float): /* return exponential random number */
void stlnit(), stVal(); /* Initialize and add a value to the statistics */
double stMean(), stSdev(); /* obtain the mean and standard deviation */

/* of the statistics */

/**/
/* */
/* The main process creates all the processes -scheduler process */
/* statistical process, node processes, source processes, and server */
/* processes, that simulate the entities in the token ring model. */
/* During initialization, it assigns a unique name to each of the new */
/* processes and supplies appropriate values for system parameters */
/* by either default or command line arguments. It also initiates the */
/* simulation by putting a free token in the first node. */
/* */
/* VARIABLE DICTIONARY :- */
/*. simt : simulation time desired to run; */
/* iit : inter-arrival time; */
/* seed: for random number generation; */
/* packlength : length of the packet generated; */
/* apart2Nodes : distance between two nodes; */
/* transRate : transmission rate expressed as ibits per bit time */
/* propTime : propagation delay between 2 nodes in bit time */
/* FTlength : length of a free token in terms of ibits */
/* CTlength : length of a connector token in terms of ibits */
/* FT : a free token used to initialize the simulation */
/* */
/**/

I

iinclude "dcls. hI'
iinclude "stdio.h"
int c_nprocs = 500;

#define NUMNODE 80 /* number of nodes in the tokenring network */

I
/* makeName function returns a char* argument to the calling function *,
/* It returns a string to the calling function based on the arguments *
/* supplied by the caller. *
name t makeName(narg,name,chl,ch2)

-int narg; /* number of arguments supplied */
char *name; /* the initial characters of the string
char chl,ch2; /* the other two characters of .the string

{ name t ret; /* the resulting string */
int -i;

*/

*/

i = 0;
while «ret.str[i] = narne[i]) != '\0')

i++;
ret.str[i++] = chl;
if (narg == 3)

ret.str[i++] = ch2;
= '\0';I ret.str[i]

return ret;
}

main(ac,av)
int aCi
char *av[]i

I

{
process sched s; /* the virtual time scheduler ~/
process statProc stp; /* the process to calculate statisties */
process node n[NUMNODE+l]; /* an array of node processes */
float simt=15000,iit=500,packlength = 1024;
float apart2Nodes=500/NUMNODE, transRate=l;
float propTime;
long FTlength = 1, CTlength = 4;
int seed = 12345;
int i;
nltem FT; /* FreeToken used to initiate the simulation */

I if (ac> 1) sscanf(av[l],"%f",&simt);
if (ac> 2) sscanf(av[2],"%f",&iit);
if (ac > 3) sscanf(av[3], "%f",&seed);

I srandom(seed);

printf ("simt- %f, iit-%f \n", simt, iit);
printf (" Main process is created \n");

I printf ("simt -%f, iit -%f, no of nodes -%d \n", simt, iit, NUMNODE);

/* determine the propagation delay between any two adjacent nodes */
propTime -1.6*apart2Nodes/50;

I /* create virtual time scheduler */
s = create sched(simt);

/* create statistics process */
stp = create statProc(simt)j
s.addUser(l)j /* for main */

/* create nodes in ring */
for (i=l;i <= NUMNODE; i++)

if (i<10)
n[i) -create node(s,stp,simt,transRate,makeName(2,"node",'0'+i ,'0'),

FTlength, CTlength);
else

n[i] = create node(s,stp,simt,transRate,
makeName (3, "node", , 0' +i/10, , 0' +i%lO) , FTlength, CTlength);

/* create source for each of the nodes */
for (i=l;i <= NUMNODE;i++)

if (i<lO)
create source(s,n[i],iit,packlength,rnakeNarne(2,"source",'0'+i,'0'»;

else
create source (s, n [i] , iit, packlength, rnakeNarne (3, "source", , 0' +i/lO,

'0'+i%10»;

I /* create servers to transmit packets/tokens between nodes */
for (i-l;i < NUMNODE;i++)

if (i<lO)
create server(s,n[i],n[i+l],propTime,transRate,

makeName(2,"server",'O'+i,'O'»;
else

create server(s,n[i),n[(i+l»),propTime,transRate,
makeName(3,"server",'O'+i/1O,'O'+i%lO»:

I
/* create the last server in the network */
if (NUMNODE < 10)

create server (s,n[NUMNODE],n[1],propTime,transRate,
makeName (2, "server", , 0' +NUMNODE, , 0')) i

else create server (s,n[NUMNODE],n[1],propTime,transRate,
makeName (3, "server", , 0' +NUMNODE/10, , 0' +NUMNODE%10)) i

/* To put a free token in the first node to initiate the flow of tokens
in the ring */

FT. code = 0;
n [1] .put (FT) ;

/* wait for all processes to tell the sched that they are clients */
delay 2.0;

/* all started :can delete main as sched client */
printf("Main.cc terminate!\n ");
s.dropUser();
}

I

I /***/
/* */
/* The sched process is a virtual time scheduler. It keeps a list of */I /* pending delay requests, ordered by the time at which the client is */
/* to be reactivated. List entries are pairs (t,n) where t is a */
/* simulated time and n is the number of processes to be awakened at */
/* that time. */

I /* */
/* After initialization, the scheduler process repeatedly accepts */
/* requests until no clients are active. For each delay request, the */
/* scheduler calculates the absolute time at which that process */

I /* should be re-activated, and adds an entry to the list of pending */
/* delay requests. List entries are allocated from an array; the */
/* reqDelay transaction uses the array index as a "ticket" value. */

I /* When no client processes are active, the scheduler takes the next */
/* request from the list, advances the simulated time, and accepts the */
/* wait requests from all clients waiting for that time. */
/* */

I /* VARIABLE AND FUNCTION DICTIONARY */
/* */
/* addReq() : Add a request for delay until time ts, and return */
/* Rtab index. */

I /* curTime : current time. */
/* Ifree : index of first free entry. */
/* Ihead : index of entry with lowest timestamp. */

I /* MAXREQ : maximum no of requests in the table. */
/* nActive : no of active processes. */
/* nClients : no of client processes. */
/* rqlnit() : function to initialize a request table. */

J /* Rtab : a request table. */
/* */
/***/

I

I
iinclude "dcls.h"
iinclude <stdio.h>
idefine MAXREQ 300

typedef struct { /* reqent:structure describing a delay req*/
float ts;
int next;
int nwait;

}reqent;

static reqent Rtab[MAXREQ];
static int Ifree;
static int Ihead = -1;

/* index of first free entry */
/* index of entry with lowest timestamp */

/* Initialise request table */static void rqInit()
{ int i;

Ifree = O;Ihead = -1;
for (i = O;i< MAXREQ;i++)

Rtab[i] .next -i+1;
Rtab[MAXREQ-1] .next = -1;

I

}
static int addReq(ts) /* add a req for delay until t~e ts */

float ts;
{ int i,iprev;
/* printf("Sched : Start to add a request for delay \n"); */
/*
printf ("Sched : inside addReq: timestamp to be awakened after delay=%f \n", ts) ;
*/

for (iprev = -l,i=Ihead;i != -l;iprev =i,i=Rtab[i] .next)
if(Rtab[i] .ts >= ts)

break;I

if (i== -1 II Rtab[i] .ts > ts){ /* add new entry */
i -Ifree;

Ifree -Rtab[i].next;
Rtab[i] .ts c ts;Rtab[i].nwait -0;

if (iprev !- -1){
Rtab[i] .next -Rtab[iprev] .next;
Rtab[iprev] .next -i;
} else {

Rtab[i] .next -Ihead;Ihead c i;
}

I

I

Rtab[i] .nwait += 1;/*
printf ("Sched : After adding a request for delay \n"); */

return i;

I

}
process body sched(simt)
{ int nClients,nActive,i;

float curTime -0;
/* Initialization phase */

c setname (c mypid () , "sched") ;rqlnit(); -

printf ("Scheduler is created \n");

accept addUser(id) {nClients -nActive -1;
/* printf ("Sched: no of clients = %d\n", nClients);

printf ("ID of process requesting addUser is %d \n", id); */

I

/* Main processing phase:accept requests while clients exists */
while (nClients > 0) {

select {
accept addUser(id) {nClients += l;nActive += 1;

/* printf ("Sched: in adduser, nclients = %d, nActive \n",nC1ients,nActive);

printf ("ID of process requesting addUser is %d \n", id); */ }
or accept dropUser() {nClients --l;nActive --1;

/* printf("Sched: inside dropUser, nActive -%d \n",nActive);*/ }
or accept passive() {nActive --1;

/* printf ("Sched : inside passive, nActive -%d \n", nActive); */ }
or accept active() {nActive += 1;

/* printf("Sched : inside active, nActive = %d \n",nActive); */ }

or accept now() {treturn curTime;}
or accept reqDelay(x) {nActive --1;

/* printf ("Sched: in reqDelay, curtime = %f\n ", curTime) ;
printf ("Sched : in reqDelay, nActive -%d \n", nActive) ;

*/
treturn addReq(curTime + x);}

}/* end select */
/* If all clients are waiting, find first event,

and allow all clients waiting for it to proceed */
/*
printf ("Sched: check if increment time, nActive =%d, Ihead=%d \n", nActive,

Ihead);
*/
if (nActive == 0 && Ihead != -1) {
/* printf("Sched: none of the processes are active \n"); */

I curTime = Rtab[Ihead] .ts;
nActive = Rtab[Ihead] .nwait;
/*
printf("Sched: nActive = %d \n",nActive);

*/
while (--Rtab[Ihead] .nwait >= 0)

accept wait(key) suchthat (key == Ihead)

I {if (curTime > simt)
curT~e --999999999;

treturn curT~e;

I

}
i = Ihead;
Ihead = Rtab[i] .next;
Rtab[i] .next = Ifree;
Ifree = i;
}
}
/* Termination phase *//* printf ("\nSched done; final time %10. 2f\n", curTime); * /

}

I

I

I

I

I

I

I

I

I

I

I

I

I
I

I
I
I

I
I

I
I

/***/
1*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
1*

The node process is a passive process which waits to accept
requests from other processes - the source and the server.
After a source has generated a packet, it requests to transfer the
packet to the node. If there is no packet in the node, the transfer
is successful, else the source is blocked until the packet
originally present is transmitted from the node to the network.
Then, at that time, the transfer of the packet from source to node
is made.

From the viewpoint of the node, there are two types of server
processes - producing server and consuming server. The producing
server puts a packet or token to the node. The node identifies if
the packet is a free token (FT) or a connector token (CT). If it
is a FT, it checks if an available pakcet is ready for transmission
to the next node. If yes, a CT and a new packet is transmitted to
the next node. If not, the FT is just passed to the next node. The
node also checks if the received packet is initiated by the
node itself. If yes, it is withdrawn from the network. Otherwise,
it is passed to the next node.

The consuming server requests to take a packet from the node. If a
packet is available, the transmission is made. If not, the
requesting server is blocked until a packet is ready for
transmission.

The node process also calculates its local statistics and prints
them at the end of the simulation. The statistics includes

(1). Utilization (Traffic intensity) of the node.
(2). Transmission delay for a packet.
(3). The time period between two successive free token

passing through the node.

VARIABLE AND FUNCTION DICTIONARY

begin_t
datalen
FTcur
FTtime
FTprev
item
nCons
nid
noItem

noPackets

nProd
nTake ()

nTransfer()

packPresent

sendFT

take! assive

takeReady

totalLength

time when a packet is generated from source.
length of packet transferred from source to node.
time when a current FT is encountered.
time in between 2 FTs pass through the node.
time when a previous FT is encountered.
packet transferred from node to source.
number of consumer clients to the node.
the identity number of the node.
a packet used to notify server that no packet is
available for transmission.

total no of packets that have completed transmission
through this node.

no of producer clients to the node.
a function called by server to request a new packet
from the node.

a function called by source to request to transfer
a packet from source to node.
a flag to indicate if a packet is available in the
node.

a variable to determine if a free token needs to be
transmitted next. If it is 0, FT not to be sent. If
it is 1, a CT & packet has been transmitted after the
CT. If it is 2, a FT has to be transmitted now.

a flag to show if a server is blocked when trying
to take a packet from node.

a flag to indicate if a packet is ready for trans­
mission to server.

total length of all packets that were transmitted
through the node.
transmission delay for a packet.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/* transmit t : time when a packet is transmitted from node to network*/
/* transpassive : a flag to show if a source is blocked. */
/* */
/***/I
#include "dcls .h"
#include "stdio .h"

*/
*/

/* This function is called by the source process to request to transfer
/* a packet to its corresponding node.
float nTransfer (nid,s,length,start_t)

process node nid;
process sched s;
long length;
float start_t;

{

I
1*

int success = nid.transReq(length,start t);
if (success --0) nid.transWait(length,start_t);

printf("Sched : inside nTransfer, time = %f \n",s.now()
*/

return s.now();
}

/* This function is called by the server process to request to take
/* a packet from its corresponding node.
void nTake (nid,itemp)

process node nidi
nItem *itemp;

*/
*/

I
{

*itemp = nid.takeReq();
if (itemp->code == -1) {/* printf ("takereq is blocked \n"); * /

*itemp -nid.takeWait(); }

1*

printf ("takereq is completed \n");
*/

}

I /* The main body of the process, node. */
process body node (s, stp, simt, transRate, name, FTlength, CTlength)
{

nItem
int
int

I int
long
int
float
float
float
float
stats

I

item, noltemi
nProd=O, nCons=Oi
packPresent = 0,
takeReady = 0,
transPassive = 0,
takePassive = 0,
sendFT = Oi
nidi
datalen=Oi
noPackets=Oi
totalLength=O.Oi
begin t=O.O, transmit tiFTprev= -1.0, FTcuri -

utilizationi
trans_delay, FTtimei

/* Initialization */
nid = c mypid();
c setname (nid, name.str);

/* printf ("%s is created \n", name. str); */
s.addUser(nid);
s.passive();

stp.addCus();

noItem.code = -1:

stlnit(&trans_delay);
stlnit (&FTtime) ;

/* Accept a producer client */
accept addProd() {nProd +- 1;

.

while (nProd+nCons > 0) {
I

select {

I /* Transfer data(packet) from source to node */

/* No packet is in the node, the transfer of packet from source to */
/* node is successful. */
(packPresent == 0) :

accept transReq(length,start_t)
{ datalen -length;

begin t -start t;
packPresent ~ 1;

/*
printf ("%s : packet successfully transferred from source \n",name.str);

*/
treturn 1;

}

I /* Packet is already present in the node, transfer is unsuccessful, */
/* Source is being blocked. */

or (packPresent -= 1) :
accept transReq(length,start_t)

{ s .passive () ;
transpassive = 1;

1*
printf ("%s : packet not transferred from source, source is blocked \n",

name.str)j
*/

treturn 0;I l

/* Packet originally in the node has been transmitted to server, now */
/* a previously blocked source can transfer packet to the node. */

or (packPresent == 0) :
accept transWait (length,start t){ datalen = length; -

begin t = start t;
packPresent = 1;

/*
printf ("%s : packet transferred to node after source has waited \n",

name. str) ;
*/

}

unblocked.

// Simulation time is up, any source that is blocked will be
or (s.now()<O.O) :

accept transWait(length,start_t)

if (transPassive == 1) {
/*

printf("%s : forced unblocking in transWait \n",name.str);
*/

s.active();
transpassive = 0;

}
}

/* Accept put requests of packets/token from adjacent producing-server */
accept put (nodeitem)

{
or

if (nodeitem.code --0)
{

/* this is a FT */

I
/* Calculate the time for the FT to make a complete cycle */
FTcur -s.now();
if (FTprev >- 0 && FTcur >= 0) {

/*
printf("%s : FTcur=%f, FTprev=%f \n",name.str, FTcur, FTprev);

*/
stVal(&FTtime, (FTcur -FTprev));
stp.doFT(FTcur -FTprev);
FTprev = FTcur;
}

else if (FTprev < 0 && FTcur >= 0)
FTprev -s.now();

if (packPresent == 1) { /* A packet is ready for transmission */
/* Get ready for the transmission of the packet */
item.code -1;
item.length -CTlength + datalen;
item.id -nid;
packPresent -0;
/* Calculate transmission delay for the packet */
transmit t = s.now();
if (transmit t >= 0.0 && begin t >= 0.0) {

stVal(&trans delay, (transmit t -begin t»);stp.doDelay(transrnit_t -begIn_t); -

/*
printf ("%s: begin_t-%f, transmit_t=%f, transmit delay=%f\n",

name.str,begin t,transmit t,transmit t-begin t);printf ("%s: no=%d,max=%f, sumv=%f-\n", name. str, -

trans_delay.nv, trans_delay.maxv,trans_delay.sumv);I
*/

if (transPassive == 1)
{ transPassive = 0;

/* Unblock a blocked source */

/*
printf("%s : unblock a blocked source to transmit packet\n",name.str)i

*/

s.active();

I
}

/* a FT has to be sent after the packet is transmitted */
sendFT = 1;

/*
printf ("%s : a CT & data ready for transmission \n", name. str) ;

*/
}

else {
/* No packet is available for transmission, just */
/* pass the FT to the server. */item.

code = 0;item.
length = FTlength;

item.id = 0;

printf ("%s : a FT is received, no data ready for transmission \n",
name. str) ;

*/
}

/* Set the flag to notify that a packet/token is ready */
/* for transmission to network. */

I
I
n

I

I

I
I
I

Appendix E

Literature Search Summary

I
•

I
I
I

I
I

I

I

Appendix E

Summary of Literature Search

A bibliographic list of the technical reports, research articles, and books exam­

ined during the one-year period of this project is given at the end of this appendix.

Below, we give a brief discussion summarizing our literature survey.

Local Area Networks- General

Various choices exist for the implementation of the medium access protocol of

local area networks. Three of these protocols are known as the Carrier Sense Multiple

Access with Collision Detection (CSMA/CD), Token-Passing Bus, and Token-Ring

access methods. Standards of these protocols are given in [ANSI85a], [ANSI85b], and

[ANSI85c], respectively. In this project, we focussed our efforts on examining and

evaluating the CSMA/CD and the token-ring protocols.

Several books and articles contain overviews and general treatment of the

different aspects of local area networks. A survey and a comparison study of real-time

transport protocols are given in [STRA88]. General discussions on the concept of

LANs and their technology can be found in [TR008t], [STAL84], and [TANE8t].

Articles and books on the performance evaluation and simulation of computer

systems/networks [e.g., LA VE83, YEH79] also contain information and concepts

relevant to the analysis and evaluation of local area networks.

E-l

I
I
•

I
I

I

I

I

Simulation Networks

This project has focussed on SIMNET as a model for interconnecting a large

number of combat vehicle simulators. Description of SIMNET protocols and the

developmental progress of the SIMNET project in the last two years are given in

[POPE89], [POPE88], and [POPE87]. A technical report published by BBN [FRIE88]

presents the results of a high-level simulation for computing estimates of the perfor­

mance of the SIM:NET protocol running under ETHERNET. The implementation of a

wide-area network for SIM:NET is discussed in [MILL88]. This latter article discusses

techniques to successfully link ground and aircraft simulators (at widely dispersed

LAN sites) into a long-haul communication network.

CSMAlCD and ETHERNET Protocols

The literature on CSMNCD and ETHERNET protocols is rich and growing. The

ANSI/IEEE standards for the CSMNCD protocol are given in [ANSI85a]. A classical

description of the technical aspects of ETHERNET -type protocols is given in

[METC76]. Methods to determine the maximum and mean data rates in LANs is pro­

posed in [STUC83]. Theoretical aspects of the ETHERNET protocols are covered in

several papers and journal articles which present approximate analytical models for the

evaluation of ETHERNET performance. A simple model for computing an estimate of

the maximum throughput of ETHERNET is presented in [METC76]. Two more

sophisticated models for computing estimates of the maximum throughput and the

delay-throughput characteristics of ETHERNET are presented in [LAM80] and

E-2

I
I

I

[TOBA80]. All these models assume that the channel is slotted with slot-time related

to the end-to-end propagation delay. According to Gonsalves' work [GONV85], the

analytical predictions of these models are estimated to vary from approximately correct

to quite optimistic.

Token-Ring Networks

Token ring LANs have received considerable attention in the past decade. A

tutorial and discussion of the important aspects of the mM token-ring architecture can

be found in [STR083] and [DIX083]. A real-time messaging system for token-ring

networks is described in [SIM088a]. This system is operational in shipboard environ-

ment and its design conforms to the IEEE 802.5 standards and is consistent with the

Navey's SAFENET specifications. More aspects of this real-time token-ring LAN is

given in [WEAV88]. A heuristic algorithm for computing estimate values of mean

packet delays in a token-ring LAN is presented in [BERR83].

I Recently, a token-ring protocol based on fiber-optics technology has emerged.

The protocol, called Fiber Distributed Data Interface (FODI), is poised to become the

dominant high-end LAN of the 1990's. A discussion of the emerging FODI standards

along with some technical and commercial considerations are given in [MARR89]. A

preliminary performance evaluation study on FDDI token-ring networks is presented in

[SIM088b]. In [KOLN87], a fiber optic LAN called FINEX is proposed to meet the

specifications of the FODI standards. The FINEX LAN implements the lower four

layers of the OSI protocol stack; the medium access controller and physical layer are

implemented in discrete logic to the FDDI specification.

Eo3

I
I

I

I
I

I
•
I

Programming Languages for LAN Simulation

Several programming languages were considered and evaluated for the pwpose of

simulating ETHERNET and token-ring local area networks. Based on both suitability

for simulation and availability, the final set of candidate languages was narrowed down

to six members: the concurrent language Concurrent-C [GEHA86], the simulation

language SIMSCRIPT [CACI87], the general-purpose language C [KERN78], the con­

current language CSP/K [HOL 178], the concurrent language Concurrent-Euclid

[HOLT83], and the simulation language SLAM [PRIT84]. Because of its powerful

synchronization and concurrency aspects, the Concurrent-C language was selected for

the implementation of the simulation models of ETHERNET and token-ring LANs.

Network Analyzers

LAN protocol analyzers are useful in analyzing network traffic problems and in

evaluating existing protocols. The network analyzer HP 4972A has been used in this

project to monitor and intercept packets transmitted on the SIMNET ETHERNET net­

work at the Simulation Networking Laboratory at 1ST. Documentation of the HP

4972A analyzer is given in [HEWL87]. The paper by Haugdahl [HAUG88] examines

LAN analyzers from a benchmarking perspective and discusses some of the basic data

capture, filtering and traffic analysis features of LAN analyzers.

-
I
I

I
I

I

I

I
•
•
I

References

[ANSI85a] ANSI/IEEE- International Standard 8802/3 "Carrier sense multiple

access with collision detection (CSMNCD) access method and physical

layer specification" IEEE Computer Society Press, 1985.

[ANSI85b] ANSI/IEEE- Draft International Standard ISO/DIS 8802/4 "Token-

passing bus access method" IEEE Computer Society Press, 1985.

[ANSI85c] ANSI/IEEE- International Standard 8802/5 "Token ring access" IEEE

Computer Society Press, 1985.

[BERR83] Berry, R. and Chandy, K. "Performance models of token ring local area

networks" Proceedings of ACM SIGMETRICS Conference on Measure­

ment and Modeling of Computer Systems, 1983, pp. 29-31.

[CACI87] CACI, Inc. SIMSCRIPT II.5 Programming Language. CACI, Inc.­

Federal Los Angeles, CA, 1987,

[DIX083] Dixon, R. ; Strole. N. and Markov, J. "A token ring network for local

data communication" mM system Journal, Vol. 22, 1983, pp. 74-62.

[FRIE88] Friedman, D. and Haimo, V. "SIMNET ETHERNET performance" BBN

Technical Report No. 6711, BBN Communications Corporation, MA

1988.

[GARV88] Garvey, R. and Radgowsjki, T. "Data collection and analysis: the keys

for interactive training for combat readiness" Proceedings of IJITSC

Conference, 1988, pp. 572-576.

E-S

I -
I

I

I

I

[GEHA86] N. Gehani and Roome, W. "Concurrent CIt Technical Report, AT & T

Bell Laboratories, 1986.

[HAUG88] Haugdahl, 1. "Benchmarking LAN protocol analyzers" Proceedings of

13th IEEE Conference on Local Computer Networks, 1988, pp. 375-

384.

[HEWL87] Hewlett-Packard, HP 4792A LAN Protocol Analyzer: Vol. I: Getting

Started, Vol. II: Operating Manual. HP Telecommunication Division,

Colorado, 1987.

[HOLT83] Holt, R. Concurrent Euclid, The Unix System and Tunis. Addison­

Wesley, Reading MA, 1983.

[HOLT78] Holt, R. et al Structured Concurrent Programming with Operating Sys­

tem Applications. Addison-Wesley, Reading MA, 1978.

[KERN78] Kernighan, B. and Ritchie, D. The C programming Language.

Prentice-Hall, 1978.

[KOLN87] Kolnik, I and Garodnick, J. "First FODI local area network" Proceed­

ings of 12th IEEE Conference on Local Computer Networks, 1987, pp.

7-11.

[LAM80] Lam, S. "A Carrier sense multiple access protocol for local networks",

Computer Networks, Volume 4, Number 1, February 1980, pp. 21-32.

[LA VE83] Lavenberg, S. Computer Performance Modeling Handbook. Academic

Press, 1983.

E-6

I
I

I

I

I

[MARR89] Marrin, K. "Emerging standards, hardware, and software light the way

to FDDI" Computer Design, Vol. 28, No.7, April 1989, pp. 51-57.

[METC76] Metcalfe, R. and D.R. Boggs "Ethernet: Distributed Packet Switching

for Local Computer Networks", Communications of ACM, Vol. 19, No.

7, 1976, pp. 395-403.

[MILL88]

[POPE89]

[POPE88]

[POPE87]

[PRIT84]

[SIM088a]

[SIM088b]

Miller, D.; Pope, A.; Waters, R. "Long-haul networking of simulators"

Proceedings of 10th I/ITSC Conference, 1988, pp. 577-582.

Pope, Arthur "The SIMNET network and protocols" BBN Report No.

7102, BBN Communications Corporation, MA, July 1989.

Pope, Arthur "The SIMNET network and protocols" BBN Report No.

6787, BBN Communications Corporation, MA, May 1988.

Pope, Arthur "The SIMNET network and protocols" BBN Report No.

6369, BBN Communications Corporation, MA, February 1987,

Pritsker, A. Introduction to Simulation and Slam II (2nd Edition) Sys­

tems Publishing Corp., West Lafayette, Indiana, 1984.

Simonson, R. et al "SHIPNET: a real-time local area network for ships"

Proceedings of 13th IEEE Conference on Local Computer Networks,

1988, pp. 424-432.

Simonson, R. "Performance analysis of the FDDI token-ring" Technical

Report TR-88-02, Department of Computer Science, University of Vir­

ginia, 1988.

E·7

/* Now, a FT should be sent following this.
or (takeReady --0 && sendFT --2) :

accept takeReq()
{

*/I

item.

code -OJitem.
length -FTlengthj

item.id -OJ
sendFT = OJ
if (s.now() + (float)item.length <- simt)

totalLength +- (float)item.lengthj
else totalLength +- (simt -s.now(»j

/*
I printf ("%s: A FT has been transmitted to R server \n", narne.str);

*/
treturn item;

I }

/* No packet/token is available for transmission, and a FT should */
/* not be sent. The consuming-server is being blocked. */
or (takeReady --0 && sendFT !- 2) :

accept takeReq()
{ s.passive();

takePassive = 1;

I /*
printf ("%s : inside takeReq, the R server is blocked \n", name. str) ;

*/

I treturn noltemi
}

/* A token/packet is now available, and can be transmitted to a */
/* previously blocked server. */
or (takeReady == 1) :

accept takeWait()
{ if (sendFT == 1)

sendFT -2;
takeReady -0;
if (s.now{) + (float)item.length <- simt)

totalLength += (float) item. length;
else totalLength += (simt -s.now(»;I

/*
printf("%s : data transmitted to R server after being blocked \n",name.str);

treturn item;

// Simulation time is up, unblock any blocked server.
or (s.now()<O.O) :

accept takeWait()
f

if (takePassive == 1) {
/*

printf("%s : forced unblock a server in takeWait\n",name.str);I */

I
s .active () ;
takePassive = 0;
}

treturn item;
}

/* Accept add and drop requests from producer and consumer clients */
or accept addCons() {nCons += 1; }
or accept addProd() {nProd += 1; }
or accept dropCons() { nCons -= 1; }
or accept dropProd() { nProd -= 1; }

}I

I takeReady -1:
if (takePassive --1)

{ takepassive -0:
/* Unblock any blocked server */

/*
printf("%s : unblock a server as a FT permits transmission\n",name.str);

*/
s.active();

else /* This is a CT */

/* The CT/packet is not initiated by this node, therefore */
/* just pass the CT/packet to the next node. */
if (nodeitem.id!- nid) {

item.code -1;
item.length = nodeitem.length;
item.id -nodeitem.id;
takeReady -1;

I /*
printf("%s : a CT is ready to be passed to the next node\n",name.str)i

*/
if (takePassive == 1) {

takePassive -0;
/*

printf("%s : unblock a blocked server as a CT avail for transmit\n",name.str);
*/I s.active();

}
}
else {

/* The CT/packet just received is initiated by the node, */
/* it has to be withdrawn from the network. */

1*

printf ("%s: CT&data withdrawn from network \n", name. str);
*/

/* Increment the number of packets that have completed */
/* transmission through the network. */
noPackets++;

}

I
/* take Requests by the consuming-server. */

/* A packet/token is ready to be passed to the server */
or (takeReady --1) :

accept takeReq()
{

takeReady = 0;
/* If the CT/packet is sent by this node, then a FT has to be */
/* sent after the packet has been transmitted. */
if (sendFT == 1)

sendFT = 2;
/* Keep statistics of the total length of packet that has been */
/* transmitted. */
if (s.now() + (float)item.length <= simt)

totalLength += (float) item. length;
else totalLength += (simt -s.now(»;I /*

printf ("%s : A CT or FT has been transmitted to R server \n", name.str);
*/I treturn item:

/* A CT/packet has just been initiated and transmitted by this node. */

I
I

I

I
I
I

I
I
I

}

}

/* Print out the statistics for the node */
printf("%s : total no of packets transmitted through this node - %d \n",

name.str, noPackets);
utilization'"" totalLength/(transRate * simt);
printf("%s : total length - %f, utilization in the node'"" %f \n",

name.str, totalLength, utilization);
printf("%s : Transmit delay: Avg - %f, Sdev-%f, Max-%f \n",

name.str, stMean(&trans delay), stSdev(&trans delay),
trans_delay .maxv) ; - -

printf("%s : FTtime : Avg-%f, Sdev-%f, Max-%f \n", name.str,
stMean(&FTtime), stSdev(&FTtime), FTtime.maxv);

stp.doThruput(noPackets);
stp.doUtil(utilization);
stp.dropCus();

printf ("Node process

s.active():
s.dropUser();

%s terminates \n", name.str);

I

/***/
/* */
/* The source process produces packets according to an exponential */
/* distribution. Once a packet is generated, the sourcee attempts to */
/* transfer it to the node process. If there is already a packet waiting */
/* to be transmitted in the node, the source and the transfer is blocked */
/* until the packet originally in the node has been transmitted to the */
/* network. At that time, the source is reactivated to complete the */
/* transfer. After transfer is made, the source will determine if a */
/* delay request (and if yes, how long) is needed to produce the next */
/* packet based on the curreent time and the time that the next packet */
/* should be generated according to the exponential distribution. */
/* */
/* VARIABLE DICTIONARY */
/* */
/* done: a flag to determine if the loop for generating packets */
/* should be exited. */
/* length: length of the packet generated. */
/* sid: id of the source process. */
/* start t: time when the packet is generated. '*/
/* t, ts- : variables to keep track of time after a delay request. */
/* tl : a variable to hold the random number generated from the */
/* exponential distribution. */
/* time: time after a packet has been successfully transferred to */
/* the node. */
/* */
/***/

#include "dcls. hI'
#include "stdio .h"

/* Poisson source -make transmission request to node */
process body source(s,nid,meanlit,packlength,name)
{
float t,tl,time,ts,start_ti
int done=Oi
int sidi

/* Initialization phase */
sid = c mypid();c_setname(sid,name.str);

/*
printf (" Source: % s is created, id -%d \n ", name. str, sid) ;
*/

/* Add to the scheduler and to the associated node */
s.addUser(sid); nid.addProd();

/* Generate a random inter-arrival time */
t = (float)erand(meanlit);

/* length = (long) (drandOl()*2500); */

/* Request to delay for the inter-arrival time */
ts -s.wait(s.reqDelay(t»;

/* Keep track of the time when the packet is generated */
start_t = s. now () ;

time = nTransfer(nid,s,packlength,start t);while(!done) { -

tl = (float) erand(meanIit);
/* length = (long) (drandOl()*2500); */
/* printf ("%8 : random time, tl= %f, length of packet = %d \n", name.8tr

I

tl,

length);

/* Request for additional delay is made if the time after a transfer
is made, is less than the time that the next packet should be
generated according to an exponential distribution.

if (time <= t+tl)
ts = s.wait(s.reqDelay(t+tl-time»:
t += tl;

I

*/

/*
printf("%s : before transfer A, want to transmit packet to node \n",name.str);
*/

start t = s.now();
time ~ nTransfer(nid,s,packlength,start_t);

/*
printf("%s : after transfer A, time -%f \n", name.str, time);
*/

if (time < 0)
done = 1;

} /* end while */

/* Termination phase */nid.dropProd();

printf ("Source: %s terminates \n", name. str);
s.dropUser();
}

1 /***1

1* */

1* The server process acts as a transmission medium between two nodes: */
1* input node and output node. The server requests to take a packet/ */1
/* token from the input node. If the request is unsuccessful, the server */

,1* is blocked until a packet/token is available. Upon receiving a packet/ */
1* token, the server will start to transmit it to the output node. Each *11
/* server maintains a linked list to keep track of the id of the originat- */
1* ing node, remaining transmission and propagation time, etc. of the */
/* packets/tokens that are in the transmission process to the output node. */
/* */

I /* Depending on the type of packet received (a FT or a CT with message), */
1* the remaining propagation time of the packet in the front, and the */
1* remaining transmission time for the packet just received, the server */
1* makes the appropriate request for delay. */
/* */

-/* When the packet/token in the front arrives at the output node, the */
1* server calls the output node to receive it. */
/* */
/* VARIABLE AND FUNCTION DICTIONARY */
1* */
1* freeTokenReceived : a flag to indicate if a free token has been */1
/* received or not. */
/* *front : pointer to the front of the linked list. */
1* nid : id of the server process. */

I 1* nodeitem : the packet received from the input node. */
/* *p : pointer to a structure of the linked list. */
/* prtlist() : function used to print the contents of the linked list. */
/* *rear : pointer to the rear of the linked list. */

I /* t : time after a request delay. */
/* testandCall() : a function used to check if the packet in the front */
/* has arrived the output node. If so, the server */
/* will call the output node to receive the packet. */

I /* timeUpdate() : a functionn to update the remaining transmission */
/* time and propagation time for all the packets in the */
/* linked list after a time delay. */

I /* transTime : the remaining transmission time for the packet. */
/* */
/***/

I

I

"'include "dcls. hi'
"'include "stdio .h"

/* a structure to contain information about a packet during transmission */
struct sItem {

int code; /* to indicate if it is a FT(O) or a CT(l) */
long length; /* the length of the packet */
int id; /* the id of the node initiating the packet */
float remainprop; /* the remaining propagation time for packet */
float remainTrans; /* the remaining transmission time for packet */
int arrived; /* flag to check if the 1st bit of packet has arrived */
struct sItem *next; /* pointer to the next structure */

} ;

.I

I

*/
*/
*/

/* This function is used to update the remaining transmission time and
/* propagation time for all the packets in the linked list after a time

/* delay.
void timeUpdate (front, time)

struct sItem *front;
float time;

I

*s;

{
struct sItem

/*
printf("Server : beg of timeUpdate \n");

I

printf("%s is created \n",name.str);
*/
s.addUser(nid);
inN.addCons();outN.addProd();

front=rear=NULL;

while (s.now() >=0) { /* simulation has not ended */

I

/* printf ("%s : 1st line after while loop \n", name. str) ; * /
nTake (inN, &nodeltem);

/* printf("%s : 2nd print line after while loop \n",name.str); */
p -(struct sItem *)malloc(sizeof(struct sItem»;
p->code = nodeltem.code;
p->length = nodeltem.length;
p->id -nodeltem.id;
p->arrived = 0;
transTime = nodeltem.length/transRate -l/transRate;
t=s.wait(s.reqDelay(l/transRate»;

/*
printf("%s : p-%d, packet code -%d, packet length -%d ,p->arrived-%d \n",

name.str,p, p->code, p->length,p->arrived);
*/

*/
*/

if (p->code --0) { /* This is a free token, nothing will follow it
if (front --NULL) { /* There is no C.T. & packets in front of it

if (transTime <- propTime) {
t = s.wait(s.reqDelay(propTime»;

I /*
printf ("%8 : 1 FT propagated to next node, curtime -%f \n", name.8tr

t) ;
*/

I outN.put(nodeltem);
free(p);

}
elseI { /* transTime greater than propTime */

/*
printf("%s : 2 FT, request to delay for propTime \n",name.str);

*/

I t = s.wait(s.reqDelay(propTime»;
/*

printf("%s : 3 FT, curTime = %f \n", name.str,t);
*/

outN.put(nodeItem);
/*

printf("%s : 4 FT, request to delay for the remaining transTime \n",
name. str) ;

*/
t = s.wait(s.reqDelay(transTime -propTime»;

/*
I printf{"%s : 5 FT, curTime = %f \n", name.str,t);

*/

free(p);

}

/*

}
else { /* still a FT but there are still packets in front of it */
p->remainProp = propTimei
p->remainTrans = transTimei
p->arrived = Oi
p->next = NULLi
rear->next = pi
rear = p:
prtlist(front,name)i
Remark: There should be no packet immediately following

a FT so that all the packets and the FT can be

I transmitted to the next node, without any incoming
tokens or packets */

while (front !- NULL) {
if (rear->remainTrans > 0) {

if (front->remainProp <- rear->remainTrans) {

printf("%s : 6 FT, request to delay for the front remainProp \n",
name.str);

*/
t = s.wait(s.reqDelay(front->remainProp»i

/*
printf("%s : 7 FT, curTime -%f \n",name.str,t);

*/
timeUpdate (front,front->remainProp);
}

else {
/*

printf("%s : 8 FT, request to delay for rear rernainTrans \n",
name.str);

*/
t = s.wait (s.reqDelay(rear->remainTrans));

/*
printf("%s : 9 FT, curTime -%f \n",name.str,t);

*/
timeUpdate (front, rear->remainTrans);
}

I }
else

/*

I printf("%s : 10 FT, request to delay for front remainProp \n",
name.str);

printf("%s : 10.5 FT, front->remainProp -%f \n",name.str,
front->remainProp);

I */
t -s.wait (s.reqDelay(front->remainProp»;

/*
printf("%s : 11 Ft, curTime -%f \n",name.str, t);

*/
timeUpdate (front,front->remainProp);
}

/*
printf("%s : before testandCall, front=%d, rear-%d\n",name.str,front,rear);
prtlist(front,name);

*/

I if
testandCall (front,rear,outN);

«front->remainProp <= 0.0001) && (front->remainTrans <= 0.0001)) {
P -front;
front = front->next;
if (front == NULL)

rear = NULL;
free(p);
}

/*
prtlist(front,name);

*/
/*
printf("%s : after, front=%d,rear=%d \n",name.str,front,rear);
*/

1
}

else { /* This is a CT, note that a CT is immediately followed by another
CT or a FT */

if (front == NULL) {
if (transTime <= propTime) {

p->remainProp = propTime -transTime;

I p->remainTrans -0;
p->arrived -0;
p->next -NULL;

/*

printf("%s:

before, front-%d, rear-%d \n",name.str, front,rear);
*/

front-rear-p;
/*

printf("%s:

after, front-%d, rear-%d \n",name.str,front,rear);
prtlist(front,name);

*/
/*

printf("%s : 12 CT, request to delay for transTime \n",name.str);
*/

t=s.wait(s.reqDelay(transTime»;

/*
printf("%s : 13 CT, curTime = %f \n",name.str, t);

*/
}

else {
p->remainProp -0;
p->remainTrans -transTime -propTime;
p->next = NULL;
front-rear-p;I

/*

I prtlist(front,name);
printf ("%s : 14 CT, request to delay propTime \n", name. str) ;

*/
t = s.wait(s.reqDelay(propTime»;

/*
printf("%s : 15 CT, curTime = %f \n", name.str,t);prtlist(front,name);

*/
testandCall(front,rear,outN);

if «front->remainProp <= 0.0001) && (front->remainTrans <= 0.0001))
p = front;
front = front->next;
if (front == NULL)

rear = NULL;
free(p);
}

I

I /*
prtlist(front,name);
printf("%s: after, front=%d,rear=%d \n",name.str,front,rear);

printf ("%s : 16 CT, request to dealy for remain transTime \n", name. str);
*/

t = s.wait (s.reqDelay(p->remainTrans»i
/*

printf("%s : 17 CT, curTime = %f \n",name.str, t);
*/

timeUpdate (front,p->remainTrans);
/*prtlist(front,name);

*/
testandCall(front,rear,outN);

if (front->remainProp <= 0.0001) && (front->remainTrans <= 0.0001» {
p -front;
front = front->next;
if (front == NULL)

rear = NULL;
free(p);
}

/*prtlist(front,name);printf("%s:

after, front=%d,rear=%d \n",name.str,front,rear);
*/

}
}

else { /* a CT but there are packets in front of it */
p->remainProp -propT~e;
p->remainTrans -transTirne;
p->arrived -0;
p->next = NULL;
rear->next=p;
rear=p;

/*

prtlist(front,name);

*/
while (rear !- NULL && rear->remainTrans > 0.0) {

if (front->re~LainProp <= rear->remainTrans && front->remainProp > 0.0) {
/*

printf("

%s : 18 CT, request to delay for front remainProp \n",name.str);
*/

t = s.wait(s.reqDelay(front->remainProp»i
/*

printf ("%5 : 19 CT, curTime -%f \n", name.str, t);
*/

timeUpdate (front,front->remainProp);

else {
/*

printf ("%s : 20 CT, request to delay for rear remainTrans \n", name. str) ;

I */
t = s.wait (s.reqDelay(rear->remainTrans»;

/*
printf("%s : 21 CT, curTime= %f \n", name.str, t)i

*/
timeUpdate (front,rear->remainTrans);
}

/*prtlist(front,name);

*/

I
testandCall(front,rear,outN);

if «front->remainProp <- 0.0001) && (front->remainTrans <= 0.0001» {
p = front;
front = front->next;
if (front == NULL)

rear = NULL;
free(p);
}

/*prtlist(front,name);printf("%s:

after, front=%d,rear=%d \n",name.str,front,rear);
*/

}

}
}

outN.dropProd();
inN.dropCons();

/*
printf ("%s terminates \n", name.str);
*/

s.dropUser();

1

I

I
I
I

/***/
/* */
/* statProc collects statistics from all the node processes, calculates */
/* the overall network statistics and prints them at the end of simul- */
/* ation. The statistics include network throughput, network utili- */
/* zation, time between a packet is generated and transmitted, */
/* average time delay for a free token to make a complete cycle. */
/* */
/* VARIABLE DICTIONARY */
/* */
/*FTtime a structure to collect statistics for a free token cycle */
/* time. */
/* nCus number of client processes. */
/* totalPackets total number of packets that have finished trans- */
/* mission and propagation through the network. */
/* trasmit a structure used to collect statistics for a packet */
/* transmission delay. */
/* util a structure used to collect statistics on utilization. */
/* */
/***/

linclude "dcls.h"
linclude "stdio.h"

process body statProc(simt)
{

int nCus=O:
int totaIPackets=O:
stats util, transmit, FTtime:

c_setname (c_mypid () , "statProc") :

stInit(&util): stInit(&transmit): stInit(&FTtime):

accept addCus() {nCus++:}

while (nCus > 0) {
/* Accept calls from other processes and collect the statistics */

select {
accept doThruput(noPackets) { totalPackets += nOPackets: }
or
accept doUtil(utilization) { stVal(&util,utilization): }
or
accept doDelay(trans_delay) { stVal(Gtransmit, trans_delay): }
or
accept doFT(FTdelay) { stVal(&FTtime, FTdelay): }
or
accept addCus() {nCus++:}
or
accept dropCus() {nCus--:}
} /* select */

} /* while */

/* Print the statistics at the end */
printf ("\n************** STATISTICS **************\n"):
printf (" total no of completed packets = %d \n",totaIPackets):
printf (" network throughput = %f \n",totaIPackets*lOOOOOOO/simt):
printf (" network utilization = %f \n", stMean(&util»:
prLltf (" delay before packet is transmitted = %f \n", stMean (&transmit)) ;
printf (" cycle time for a free token = %f \n", stMean(&FTtime»:
printf ("**\n\n"):

l

/***/
/* */
/* This is a file containing a number of functions called by processes */
/* within the program, mainly for sending information about statistics. */
/* The functions used are: */
/* drandO1() : return a random number uniformly distributed in */
/* the range 0 to 1. */
/* uniform() : returns a uniformly distributed number. */
/* erand() : returns exponentially distributed random number. */
/* stlnit() : initializes a stats structure by setting its */
/* components to zero. */
/* stVal() : adding a value to a stats structure pointed to by */
/* p, the value added is v. */
/* stMean() : computes the mean of a stats structure. */
/* stSdev() : computes standard deviation of a stats structure. */
/* */
/***/

iinclude "dcls. h"
iinclude "math.h"

double drandOl() /* Return random number uniform in range [0,1]. */
{ double Pi

extern long random()i

p = random() & Oxffffff;
return p / Oxffffff;

}

int uniform()
{

static int cc -0

long random(), g;

if (cc <= 0){
srandom(getpid ()
cc++ ;

;

g = (random() & Ox7f);
while (g <- 0)
{g = (random() & Ox7f);}
return(g);

}

/* returns an exponentially distributed random number
double erand(meantime)

float meantime;

*/

{
double mul;
double num, numl;

mul -1 / meantime;
num -uniform()/127.0;
numl = -log (num) / mul ;

return (numl) ;
}

/*
long erand (mean)

long mean;

.

long r;r--«double)mean)
* log(1.0 -drand01()

if (r --0) r -1;
return r;

+ 0.5;

}
*/

/* Initializes a 'stats' structure
void stInit(p)

stats *p;

*1

{
p->nv -0; p->maxv --1; p->sumv -0; p->sumsq -0;

}

// Add a value to a 'stats' structure.
void stVal(p, v)

stats *p;
float v;

I
{
/*
printf ("Inside stVal : beginning, v-%f\n",v):
*/

if (p->nv --0 II v > p->maxv)
p->maxv -v;

p->nv++; p->sumv +~ v; p->sumsq +- v*v;
/*
printf("End of stVal \n");
*/

// Returns the mean for a "stats" structure
double stMean(p)

stats *p;

return p->nv != 0 ? p->sumv/p->nv : 0.0;
}

// Returns the standard deviation for a "stats" structure
double stSdev(p)

stats *pj
{ double avgj

if (p->nv == 0)
return 0.0;

else {

I
avg = p->sumv/p->nvi
return sqrt(p->sumsq/p->nv -avg*avg)i

}

}

I

I

I

I
I
I
I

Appendix C

Copy of Paper Published in Proceedings
of the First 1ST Networking Conference

April, 1989

SIMULATION NETWORKING AND PROTOCOL ALTERNATIVES

M. Busiouni. Department or Computer Science
M. Georgiopouloi. Department or Electrical Engineering

J. Thompson. Institute for Simulation and Training

Graduate Stud~nt AaIi.tants: S. Cbaterjee, M. Chiu and N. Chriatou

U mverai ty or Central Florida
Orlando. ~ 32816

I

I

smrEM MODEL

Our .Yltem conliltl of a complex web of armor,
fixed and. rotary 'Iring aircrafl, and air-defense
.Iimulated vehicles linked together via a Local Area
Network CLAN) to create a limulated world in which
war-raming can be conducted. In our Iystem, combat
forces and their commander. mu.t move, shoot,
communicate and navigate just as they do in a real
battle. Hence, a tremendous amount of information
mutt be exchanged among the limulators in real-time if
a realistic battle lCenario is to be created.

Local Area Networks can be characterized by the
following factors:

.tra~mialion medium (coaxial cable, twisted pair,
optical fiber)

.modulation acheme (baseband, broadband)

.,,"ring acheme (bU8 or ring)

.medium-accell control achemes (random-access or
controlled-acce.l) .

We intend to investigate the capability of three
LAN'I to interconnect the limulator.. Two of these
LAN'. are bu. network., which utilize baseband
tranamislion to Bend meaaages over a coaxial cable. The
medium.access control schemes for one is the
ETHERNET protocol [2) and for the other is Generalized
Broadcast Recognizinr Access Method (GBRAM)
protocol [3). The third LAN is a riD, network, which
utilizes baseband tranamiaaion to lend messages over a
fiber optic cable. Its medium-access control scheme is a
token palsq protocol.

In the ETHERNET protocol, if a simulator, or other
node, baa a packet ready. to transmit onto the network, it
monitoR the network to determine whether any
tranalni.liona are in proaresl. If a transmission is in
ProlT8U, the network is Aid to be ~U8y". otherwise, it

.is -idle-. If the node finds the network busy,
tranamiuion or the data packet is deferred. When it
finds the network idle, packet transmission is initiated.
If multiple nodes attempt to tranamit at the lame time,
their tr8n&lnialiODl interfere. or collide. The collision is
acknowledged by each tranlmitting node sending out 8
bit Bequence onto the network referred to as 8 "jam-
~.. After the jam-lignal baa been transmitted. the
nodes involved in the colli lion schedule a
retransmilBion attempt at a randomly selected time in
the future.

ABSmACT
In this paper. we focus on the implementation of an

efficient local area network (LAN) which will be uaed to
interconnect simulation training devices. In particular,
we prespnt preliminary efforts in modeling and
analyzing the performance of three different network
protocol access methods: CSMA/CD (Carrier Sense
Multiple Access with Collision Detection), Virtual
Token-Passing Bus Access Protocols and Token-Ring
Access. A detailed discussion of the advantages and
disadvantages of the above access protocols and
anticipated results are also presented.

INTRODUCTION

The networking of simulation training devices
departs from the traditional use of computer networks
whose purpose is to allow for the sharing of computing
resources among multiple computers. In the
application of networking simulators. the network is
used almost exclusively for communication of process
state information between training devices engaged in
the training ezercise.

There are many inherent limitations to using a
network in this application. For ezample, as the
number of simulators on the network and workload per
simulator increases, there will be a deterioration in
throughput and degradation of other performance
measures. If throughput delays become significant, the
effectiveness of a real-tiiDe training simulation may be
overly compromised due to the time-critical response
requirements in the simulation of true-to-life. action-
requiring training scenarios. Depending upon
communication protocols. there may also be an increase
in the frequency of retransmissions and lost or distorted
messages. The magnitude of this problem is
functionally related to how data is distributed
throughout the system, and the 8oundness of the
network access and internal network protocols,

Various choices ezist for the implementation of a
local area network (LAN). (e.g. transmission medium,
topology. access protocols, etc.) to interconnect
aimulation devices. In this paper, we present efforts in
modeling and analyzing the performance of three
different network protocol 8ccesa methods. In
particular, the Carrier Sense Multiple Access with
Collision Detection (CSMA/CD) 8utb as ETHERNET
(ANSI/IEEE 802.3 Standards [1,2). the Virtual Token-
Passing bus protocols such as the Generalized Broadcast
Recognizing Access Methf'ds (GBRAM) [3). and Token-
Ring Access protocols (AN~L'IEEE 802.5 Standards [4,5)
are examined.

I
I

-l...I

--I~.~-

I
BinI!' ~~ Tn~ ~ ('..IWtft~Y'Atinn

The system configuration corresponding to the ring
network topology is shown in Figure 2. A ring network
consists of a closed aeque~ of individual point-w-point
(node-to-node) links. For efficient operation, the token
protocol dictates a minimaJ delay per .tation, and the
ability to change a lingle bit in the data .tream (e.g. the
token) Mon-the-Oy". An important parameter pertaining
to the implementation of a tDken ring prot0c41 is the time
it take. for the data tD propagate throu&h a node on the
network.
Nodf'c 'INfti~ r--tinn

Each node generates a certain amount of traffic into
the network. In the .imulation of the network traffic,
8Ome of the options for the packet inter-arrivaJ time at a

'node lite are:

.

E%ponential .the traffic generated by the simulator
is a Poillon procelS

Fixed with a specified percentage or "jitter" .a fixed
time, plus or minUI a random time within the
specified per~tage of the fixed time

Uniformly diltributed in a specified interval

Trace-driven. the traffic used to drive the network
is a tra~ of real network traffic data.

One of the nodes in our network operates differently
from ordinary simulator units. It produces network
packets for a large quantity of different types of
simulated vehicles. It transmits the data packets for a
portion of its simulated vehicles at regular intervals.
Hence. its traffic can be characterized as periodic.

I

Jr. the GBRAM protocol, the nodes employ a
"virtual-token" 8cheme in which each node gains
network access (the virtual token) at a unique time
which is determined by a decentralized 8cheduling
function, hence avoiding co~lisions completely.

The Token-ring access protocol is even more
straight-forward. A node gains the right to tranamit
onto the network when it detects and captures a free
token passing on the network medium. The token is a
control signa] that circulates on the medium following
each information transfer. Any node, upon detection of
a free token, may capture the token, set it to busy, and
then send its packet. Upon completion of transmitting
its data, and after appropriate checking for proper
operation, the node generates and transmits a "free
token" which begins circulating around the network and
provides other nodes the opportunity to gain network
access.

Bu-~ N@twnrir TnTW\1Qf!V ~pm (".nnAftlY'Rtinn

The system configuration corresponding to the bus
network topology is shown in Figure 1. In this
CSMAlCD (ETHERNET) implementation, up tC' eight
simulators or other types of nodes can be connected
through an ETHERNET D)ulti-port transceiver to a
single point on the ETHERNET coaxial cable, via a
media-access unit (vampire tap). A single coaxial cable
is available to link all simulators together.

Some important parameters pertaining to the
implementation of the ETHERNET and the GBRAM
protocols are as follows:

.the time that it takes for a message to traverse the
medium

.the time elapsed from the instant the coaxial cable, becomes idle or becomes busy until the node

"realizes" that the cable is idle or busy

.the time elapsed from the moment that a
transmitting node realizes that it is involved in a
collision until it generates the first bit of the jam-
signal

I

Figure 1. Bu6 Network Topology Sysum Configuration

~--- -
~

I
.Proceu lAerver is used to implement and control

the flow of data (packets and jam signals) in the
direction from right to left for each network node. A
proceas of this type is created for each network
node.

.Proce.s Raerver is analorouaJy defined for traffic
flowine in the direction from left. to right.

.~.. Scheduler il UMd to order time events and
~trol the Hquencing of actiYitiea of the entire
aimulation.

Typically, eight aimulaton connect to the coaxial
transmission cable at a aingle point via a multi-port
t~iY.r. Each of the .imulaton ia modeled as a
SiJDDode proc.-a. A BuaDode proceas for each point of
contact. it created to receive and transmit loc&! traffic
from anyone of the eight. network nodes, as well as
retranlmit any external messages arriying at the node.
For thia purpoae. we Ute two 8eparate processes called
B88ner and Wener. The Raerver process implements
the transfer of data from its left. Bulnode process to its
right BusDode proeels. This transmission is actually
limulated by calling the Scheduler process to wait for
the propagation delay (the time needed for the message
to travel from one network node to the next). The
Laerver Iimilarly carries data signals from the right
Bu8node to its left. neighbor. The Bu8Dode process
detects collisions of transmitted data by checking for the
exUunce of local traffic, left traffic or right trafti~.

'1M SilnYVW ~--
This process is the source of local traffic. It

generates packets according to a specified input method
(e.g. usin& traces of real data or random stochastically
generated inter-arrival timea such as exponential.
uniform, fixed with jitter, etc.). Upon arrival of a local
packet. the SimDode process makes a request to the
corresponding Bu8node process in order to transmit the
new packet. This is done by calling a specific
traDuction in the Buanode process as illustrated by the
code presented later. At this point, the Busnode process
checks for a carrier nag. If the flag has been off for at
least the inter-frame gaP. the Simnode process can
proceed with its transmission. If the carrier nag is on,
the SimDode process must wait for the inter-frame gap

Fi~e 2. Ring Network Topology System Configuration

THE ~.l BERNET SIMULA.11 ON MODEL

In this section. we give a high-level description of
the simulation mode1 used in evaluating and predicting
the performance of the CSMA/CD implementation of
ETHERNET. The simulation model is written in
Concurrent.C (an extension of the C programming
language with concurrent programming facilities based
on the "rendezvous" concept). The powerful
synchronization and concurrency aspects of
Concurrent-C [6] have provided us with a notationally
convenient and conceptually e1egant too1 for modeling
the parallel activities of the simulation network nodes
and the underlying networking layer.

The process interaction model of Concurrent.C has
been used in oW" simu1ation to map the different entities
and activities of the simulated network to corresponding
Concurrent-C processes. The following process types
are the major generic entities used in our simulation.
Figure 3 gives a block diagram showing the interactions
among these different processes.

.Process Simnode is used to represent a vehicle
simulator on the network. A process of this type is
created for each such simulator.

.Process Bu8node is used to represent the point of
contact of each network node with the ETHERNET
bus (coaxial cable). A process of this type is crea~d
for each such point of contact on the bus.

Figure 3. ETHERNET Simulation Mode1 Process Interactions

--1..

II

~~8nd'-~ These proceuea traDamit the traffic delivered to the

BU8Dode proc:-.s by any Uanlmitting Simnode p~ss to
the left and/or richt. The apecification and body of the
B8erYer PrOc:8II are liven ~.

Proceu IpeC RMrver(prOC»u ached s.
proC88l Buanode inbua,
procell Buanode outbus, Proceas Simnode

name)

ProceIs body RMrver(s, inbua. outbus. name)
typedef Itruct ,. data 8u1xDiUed by Simnode -/

(,. time of arrival -/
long arrive;
,. Packet length -/

.int paCket_IeDlth;
,. No. of update messages per let -/
int Update_num;
,. No. of attempta t4 tranamit -/
int attempt_index;

) local_U'affic

,. Initialization phase -/
c_setname(c_mypidO. name.str);
s.adduaer(); inbus.addCoDSO;
outbus.addProdO;

,. Main processing phaae -/
while (takereq<l» (
,. wait for propagaaOD delay -/
t .arrivaltime + prop8iaaon delay;
t8 .s.wait(s.ftQDelaY(t»;
,. deliver mealage -/
putftTR(type);
)

'nIP: ~w ~..x-.

Delays in the aimulated network (such a,
transmission delays) are handled by the Scheduler
process. This process mainwDl the simulated clock
and advances it appropriately. For each delay request
from a process. the Scheduler determines the time when
the process needs to be reactivated and laves this time in
an -activaaon request" li.t. When all processes are
waiting. the acheduler picks the next proce.. to run,
advances the aimulated clock and reactivates the
procell. The lilDulated c1ock advances only when all
processes are waitine; thus any (non-delay) computlaon
done by a p~" takes p1a~ in zero simulated ame. At
any given moment. each client process is in one of the
followm, three atatea: .

.Waiting: for an explicit delay requeat from the
ScheduJer,.

.AcQve: computin& in ~ro lilDulated time;

-Passive: waitiDf for an event other than a delay
nquest from the ScbeduJer.

and then retry its transmibMion. When a collision is
detected during transmission. the SimDode process
generates and transmits a jam signal and increments
the collision counter. This is followed by invoking a
back-ofT algorithm for retranlmi8sion. A packet is
discarded after 16 unsuccessful tr8D8mission attempts.
The specification and major activities of the SimDode
proceS8 are described by the followiDe code:

Process spec Simnode (process ached s,
process bus bid,

long meanIit. name_t name)

Process body Simnode (s. bid. meanIit, name)
,. Initialization phase ./

c_Ietname(c_mypid(), name.str);
a.adduserO; bid.addProdO;

,. Main processing phase ./
while (not done) do

./* get arrival time ./
tcerand(meanlit)
,. call Scheduler to wait for arrival ./
loc_traffic.arrive c s. wait(a.reqDelay<t»;
/* attempt transmission ./
while «dt c bid.transReq(c_mypidO)!c 0)

s.transDelay(dt);
,. code for collision check and
subsequent backoff algorithm .,
collision_handler (collis_counter);
/* Tennination phase ./
st.atistic_fun();

I

I

~

'niP B na1odPc ~

The BUSDode process acts like a server process
ready to accept transaction calls from the local SimDode
processei, the Llerver processes or the Rlerver
processes. The Bu8Dode is responsible for detecting
collisions and it continuously monitors the carner Oal
to see if it is busy. In the case of a collision, the Buanode
process calls the Scheduler to awaken the tJ'aDImitting
SimDode process which then stops transmission and
sends the jam signal. Tbe following code gives the
Concurrent C specification of the Buanode p~as.

Process spec Busnode (process ached I,
process Raerver idr.
process Laerver idl,
process SimDode name)

!*transactions to change producer count *'
ttans void addProdO. dropProdO; .
,. transactions to change a>naumer a>unt-'
trans void addConsO. dropCona();
!* transaction to handle Jieht to left traffic *'
trans put_FRTL(type); 1* type can b:e start,

completion or Jam -,
1* transaction to handle left. to ri~t traffic *'
trans put_FLTRCtype);
1* transaction to transmit local traffic *'
trans done(type);
!* transaction to accept requests *'
trans trans_req(send_id); 1* for Simnode *'
trans takereqO; '* for Rserver & Lserver 8'

IiiI The specification and the body of the Scheduler are
lliven below.

I

I
I

process IJ)eC lChedO
,. return CWTent simulated time -,
trans lung DOWO; .

,. request a delay *'
tZ'ans long reqDe1ay(long);
,. wait for a reqDelay *'
trans long waitOong);
,. add or delete elient process *'
trans void adduserO, dropuser();
"c:hange client to new state *'
trans void paasive(), activeO

,. handle collision -,
tZ'ans void collision(id);
typedef struct (
,. structure describing a delay request -,
long ts; ,. time stamp */

int next;" index ofnen entry or -1 *'
,. number of clients waiting for this time -,
int nwait;
) reqent;
static reqent Rtab MAXREQ ;
static int lfree; '* first free entry -,
,. !head is entry with lowest timestamp -,
static int !head co -1;

process body schedO
int nelients, nactive, i;

long curtive = 0;
,. initialization phase *1
c_Ietname(c_mypidO,"sched");
rqlnitO;
accept add user{) nclients co nactive • 1
,. main processing phase: accept requests while
clients exist -/
while (nclients >0)
(
select
accept add user() nclients +. 1; naetive +. 1;
or
acC'.ept dropuser() nclients -. 1; nactive -. 1;
or
accept passiveO nactive -.1;
or
accept activeO nactive +.1
or
accept nowO treturn curti.me;
or
accept reqDelay(x)
nactive -. 1; treturn (addreq(curti.me+x»;
or
accept jam(id)
change timestamp of record with this id
}

,. If all clients are waiting, find the first event -,
,. and allow all clients waiting for it to proceed -,
if(nactive - 0 && Ihead I. -1)
eurtime • RtabIhead.ts;
nactive .. RtabIhead.nwait;
While <--RtabIhead.nwait >=0)
accept waitOtey) such that (key .= Ihead)
treturn eurtime;

In addition to the above entities, several other
auxiliary procelleslroutines are used to collect/print
statistic:a and appropriate performance measures,
perform eonsiatency chew, print error messages,
create and initialize all required proceeaes, and
.tart/terminate the concurrent .imulation. The
IOftware .,..tem is written in a modular fashion with
empbuis on .. se-of-modification and the use of
parameterised values that facilitate the testmg of a wide
l1lD&'e of Detwork characteristica and the aimulation of
different load conditions and difTerent network
parameten.

In the real-time networking of aimulators. two
perfOI'Dl8llCe aspects are of particular interelt: the
delay-thrvuahPut characteristic of the medium-access
control acbemu, and network .ystem behavior under
heavy traffic loads. Thea~ characteristics will be
conaidered for the general classes of contention and non­
contention <token paasing) protocols.

Contention protocola such as ETHERNET perform
well in environments with a large number of bursty
(ratio of average to high traffic is small) users. For its
reliable operation, however, the ETHERNET bus protocol
requiru that a tnmaceiver must be capable of detecting
the weakest other tranamitter on the network during its
own tranamissiona, and of distinguishing the signals
from other tranlmitters from the echoes of its own
tra.nmritter. Because of this, the use of high-quality
cou:ial cable is required to cover longer distances and a
limitation on the maximum distance which can be
covered by a aingle segment network cable is impos-:d.

An advantage of the bus structure (where
ETHERNET and GBRAM operate) over the ring
structure is that users attached to the bus are passive
units, while users connected to the ring are active units.
An immediate consequence of thia observation is that if a
node on the ring breaks down it can bring the entire
network system down. This is highly unlikely to happen
in the bus confiru,ration.

A disadvantage of contention protocols is there is no
guarantee of packet delivery time due to the
undetenninistic nature of contention and collisionlback·
oft'.

D+m Pwi"gPnwmh
An advantap of token paaaing protocola is that they

are much leu IeJUlitive to inc::reased transmission rates
and smaller packet lengths compared to contention
protocols. and they operate more efficiently with longer
length cables than the contention protocols [5).
Furthermore, aince token passing protocols are conflict
free, a maximum packet delivery can be guaranteed for
a given number of users, making them desirable
protocol a for real-time applications.

I

II

The models developed under this effort offer a very
flexible tool for the evaluation and analysis of important
classes of networking lChemel that can be used to
interconnect larfe numbers of real-time simulation
traininI devices. Further investigations will be carried
out to perfonn a ~pariIOn atudy of the three access
method. and to evaluate different delign decisions
aimed at improvinc the OYeraII throughput and
enhancing the ~pability of aimulation networks.

ACKNOWI.EDGDIEN'IS

This work is IUpported by the U.S. Army Program
Manager for Training Devices (PM TRADE) under
Broad Agency Announcement' 88-01. The opinions
exprelled herein are thOle of the authors' and not
necessarily thole of the U.S. Government. The authors
would like to thank J. Cadiz and E. Stadler for their help
in obtaining and analY%XDg network traffic data and
preparine this report.

UQ~CES

[1) ANSI/IEEE -International Standard 8802/3
"Carrier Sense Multiple Accel. with Collision
Detection (CSMA/CD) Access Method and Phvsical
Layer Specification", IEEE Computer Society Press,
1985.

[2) Metcalfe, R. M. and Boggs, D. R., "Ethernet
Di.tributed Packet Switching for Local Computer
Networks", Communication Ass. Comput. Mach.,
Vol 19, no. 7, pp. 395-403, 1976.

[3) Liu, T. T., Li, L. and Franta, W. R. "A
Decentralized Conflict-Free Protocol, GBRAM for
Large Scale Local Networks", Computer Network
Sympoaium Proceedings, pp. 39-54, Dec. 1981.

[4) ANSI/IEEE -International Standard 8802/5 "Token
Ring Access", IEEE Computer Society Press, 1985.

[5) Dixon, R., Strole, N. and Markov, J. "A token ring
network for local data communication", IBM
System Journal, Vol. 22,1983, pp.62-74.

[6) Gehani, N. and Roome, W. "Concurt"ent C"
Technical Report, AT&T Bell Laboratorie&, 1986.

~.

Token-Ring LAN's [5] offer other advantages
including the following:

.Because of its point-to-point connection protlerty,
rings readily accommodate the use of optical fiber
as a transmission medium. In addition to offering
reduced size and weight, and enhanced aafety
features, optical fiber also offers very high aignal
bandwidth (100 Mbps for fiber token-rings).

.Token-rings easily provide a priority-based scheme
for packet transmission across the network. This is
because the token has bits indicating the priority
assigned to it, thereby providing multiple levels of
access to the ring. In simulator networking this
means that it will be possible to assign priorities to
the different types of messages in order to optimize
real-time performance and visual display at peak
load conditions.

.The technolor:ical advantages enjoyed by bus
topologies to date are about to disappear. Inevitably,
VLSI technology and other near-term advances will
soon be suppl.ving the industry with ring chips and
off-the-shelf ring attachments at the same low COlt
as bus chip£. This low cost, combined with their
reliabiljt~' and ease of configuration and
implementation, will make token-ring LAN'a a very
promising tool for simulator networking,

CONCLUSIONS

In this paper we have described aD ongoing effort to
model and evaluate the performance of three different
network protocol access methods suitable for networking
of simulation training devices: a contention access
method based on the CS~CD (ETHERNET) protocol,
and two contention-free methods baaed on Virtual Token
Bus Access BUch as GBRAM and Token-Ring Access
protocols. The system models pertaining to the above
three access methods were addreased and a hirh-level
description of a detailed simulation software BYBtem
implemented for evaluating the performance of an
ETHERNET scheme was given.

The models developed for the three access methods
will enable us to perform a comparison study and
evaluate different design decisions. Some of the
numerical performance meuures that will be pthered
by the models are:

.The overall throughput of the network.

.The utilization of the transmission medium.

.The collision ratio for contention access.

.The average delay time per packet.

.The average ratio of lost packets (data loss rate).

.The relationship of the number of nodes on the
netWork and the above parameters.

.The effect or packet arrival ratei on network'
performance,

I ABOUT mE AU'11IO~
JrL A. BuaiouDi received his Ph.D. degree in Computer

I Science from Pennsylvania State Umverlity in 1982. He
is currently an Associate Professor of Computer Science
at the Univeraity of Central Florida. Orlando. His
current reaearch interests include computer networks.
distributed systems. databaseG, and performance

.evaluations. He has authored several papers and has
m been actively involved in research on local area

networks. concurrency control, data encoding. I/O
measurementS and modeling, schemes of file allocation1

1 and user interfaces to relational database systems. Dr.
Bassiouni iG a member of the IEEE Computer Society,
the Association for Computing Machinery, and the
American Society for Information Science.

I JrL Georgiopoulos received his Ph.D degree in Electrical
En~neering from the Umversity of Connecticut in 1986.
He is currently an Assistant Professor in the
Department of Electrical Engineering and

I Communication Sciences at the University of Central
Florida, Orlando. His current research interests
include multi-user communication theory,
communication networks, computer networks, and

I spread spectrum communications. Dr. Georgiopoulos is
a member of IEEE and the Technical Chamber of
Greec:e.

I J. Thompson received his BS degree in Electrical
, Engineering from the Umversity of Central Florida in

1978. He is currently a Research Associate for the
Institute for Simulation and Training aST) at the
University of Central Florida, Orlando. Mr. Thompson
has technical responsibility for all 1ST research
activities involving computer networking.

I

I

I

I

i

I
I
I

I
I

I

I
I

I

Appendix D

Copy of Paper Accepted for Publication in
Proceedings of the 11th IIITSC Conference

November, 1989

I
I

I

I

Real Time Simulation Networking:
Network Modeling and Protocol Alternatives

M. Bassiouni, Department of Computer Science
M. Georgiopoulos, Department of Electrical Engineering

J. Thompson, Institute for Simulation and Training

Graduate Student Assistants: S. Chaterjee, M. Chiu and N. Christou

University of Central Florida
Orlando I FL 32816

ABSTRACT

In this paper, we present the findings of a comparison study using predictive 'detailed
simulation models for three different network protocol access methods: Carrier Sense
Muttiple Access with Collision Detection (ANSIIIEEE 802.3 STD), Token-Passing Bus Access
(ANSI/IEEE 802.4 STD) and Token-Ring Access (ANSIIIEEE 802.5 STD). Discussions of
network performance, the implications of the resutts of the comparison study, and the insight
gained from this project for improving real-time simulation networking are presented.

INTRODUCTION

A local area network (LAN) is a
geographically confined communication
system that uses a shared transmission
medium. Various choices usually exist for
the main ingredients of LAN (Le.,
transmission medium, topology, access
protocols, etc.), with each exhibiting
advantages and providing benefits that
depend on the objectives of the LAN. The
ability to model, analyze and evaluate the
impact of these choices on network
performance is essential to ensuring
maxiDJum utilization of the LAN.

One of the pioneering LAN's for
~. connecting computers was a bus-based

.. ETHERNET developed by Xerox Corp. in the
early 1970's. The contention access method
used by each node in ETHERNET is based
on a pre-emptive protocol of first listening for
network activity and then broadcasting the
message onto the network. If a collision with
another message ocqurs, each sender

(node) backs-off from transmitting their
message for a random period of time and
then attempts the transmission again. This
access technique is known as Car:rier Sense
Multiple Access with Collision Detection
(CSMNCD) [1, 2]. Standards for CSMNCD
protocols such as ETHERNET are known as
IEEE 802.3 standards approved by the
American National Standards Institute
(ANSI).

The networking of real-time, interactive
simulation training systems departs from the
traditional use of a computer network whose
function is to provide sharing of computing
resources among muttiple users (nodes) on
the network. When used to interconnect
real-time training simulators, the network is
used almost exclusively for communication
of process state information between the
simulators engaged in the training exercise.

There are many inherent limitations to
using a network in this application. For
example, as the number of simulators on the

I

I

I

I

network and the workload per simulator
increases, there may be a deterioration in
throughput and a degradation of other
network performance parameters. If
throughput delays become too large, for
example, the effectiveness of a real-time
training simulation may be overly
compromised due to the time-critical
response requirements in the simulation of
true-to-life, action-requiring trail)ing
scenarios. Depending upon the network
communication protocol being used, there
may also be an increase in the frequency of
retransmitted and lost or distorted messages.

Recently, there has been a tremendous
interest in LAN's implemented using the
non-contention class of network protocols
known as-Token-Passing protocols. Two
schemes falling under this class are Token­
Ring and Virtual Token-Bus protocols. In a
Token Ring LAN, a distinctive bit sequence,
called a token, is passed from one node to
another in order to signify the availability of
the network medium for the transmission of
data for that node. Possession of the token
by the node gives it,and only it, permission to
transmit across the network, as opposed to
having all nodes contend for this privilege.
In a Virtual Token-Bus LAN, a virtual, or
imaginary token, is passed from user to user
thus providing access to the network. This
virtual token is actually a predetermined
instant in time when each user knows it is its
turn to access the network. Each of these
three protocols will be discussed in detail in
later sections.

The primary goal of this research effort
has been to develop predictive and
analytical models for network performance of
three LAN configurations operating under
real-time, interactive simulation and training
constraints. Two of these LAN's are bus
networks which utilize baseband
transmission to send messages over a
coaxial cable which is common to all users.
The medi'Jm-access control schemes for the
tirst is ETHERNET which is a member of the

Carrier Sense Multiple Access with Collision
Detection (CSMAlCD) protocol family and for
the second is the Generalized Broadcast
Recognizing Access Method (GBRAM) [3]
which is a member of the Virtual Token-Bus
protocol family. The third LAN is a ring
network, which sends its messages over
either coaxial or fiber optic cable. Its
medium-access control scheme is the
Token-Ring [4] protocol.

NETWORK MEDIUM-ACCESS
PROTOCOLS

ETHERNET
CSMA/CD protocols, including

ETHERNET, are characterized by their
distributed network control whereby each
node on the network determines its own
channel access time based only on
information available from the common
network channel (bus), When a node is
ready to transmit a message onto the
network, it first monitors the network bus to
determine whether any other transmissions
from other nodes are in progress, If the node
senses the network channel to be busy, it
simply waits for the channel to become idle
before attempting to transmit its message.
Once the channel is sensed to be idle, the
node waits a pre-specified amount of time to
assure the channel is clear and then begins
transmitting its message, During its own
transmission, the node also monitors the
channel in order to detect whether its
message is ~nterfering (colliding) with
messages from other nodes, If a collision is
detected, each node involved in the collision
transmits a btt sequence onto the network
known as a jam signal, after which each
node involved in the collision waits (backs­
off) for a randomly generated amount of time
before reattempting its transmission.

The performance of contention" protocols
is directly related to how efficiently nodes
avoid collisions and handle retransmissions.

I

I

The problem of data collisions is' directly
related to the network traffic load.

Token-Ring
In Token Passing protocols [4, 5], which

the Token-Ring LAN is a member, there is no
contention for the network channel because
only one node at a time is allowed to access
the channel. In Token-Ring LAN's this is
accomplished by arranging the nodes in a
serial ring configuration such that the
network channel actually passes through
each node. The token is a control signal
that circulates around the channel. An
individual node gains the right to transmit
onto the network when it first detects, and
then captures a free token passing on the
channel. Once a node captures the free
token, it changes it to a busy token and
begins transmitting its message onto the
network. Upon completing the transmission
of its message, the node generates and
transmits a free token which begins
circulating around the network channel, thus
providing other nodes the opportunity to gain
access to the network.

Generalized Broadcast Recognizing
Access Method (GBRAM)

The GBRAM protocol is also a member of
the Token Passing protocol family. It differs
significantly,however, from the Token-Ring
protocol. In the GBRAM, rather than each
node having to capture the free token from
the network to gain transmission access, an
imaginary (virtual) token is passed from
node to node achieving the same result.
The virtual token scheme provides each
node access to the network at a unique time
instant which is determined by a
decentralized scheduling function.

NETWORK SYSTEM
CONFIGURATION MODELS

Bus Network
The bus ne'work configuration

(applicable to both ETHERNET & GBRAM) is

shown in Figure 1. In this implementation,
up to eight nodes can be connected through
a mUlti-port transceiver to a single point on
the coaxial cable, via a media-access unit. A
single coaxial cable links all nodes together.

Ring Network
The ring network configuration (Token­

Ring) is shown in Figure 2. The ring network
consists of a closed sequence of individual
point-to-point (node-to-node) connections.

NETWORK PROTOCOL COMPUTER
SIMULATIONS

Simulation Models
The simulation models for both the bus

and ring LAN topologies are written in
Concurrent C (an extension of the C
language with concurrent programming
facilities based on the "rendezvous"
concept). The powerful synchronization and
concurrency aspects of Concurrent C [6]
have provided us with a notationally
convenient and conceptually elegant tool for
modeling the parallel activities of LAN nodes
and the underlying networking layer.

A functional diagram of the simulation
model for the bus topology is shown in
Figure 3. The following process types are
the major generic entities use~ in our
simulation for the bus structure.

Process Simnode is used to represent a
vehicle simulator on the network. A process
of this type is created for each such
simulator. This process is the source of local
traffic and is capable of generating packets
according to a specified input method (e.g.,
using traces of real data or random
stochastically generated inter-arrival times
such as exponential, uniform, fixed with
ptters, etc.)

Process Busnode is used to represent
the pOint of contact of each network node
with the bus (coaxial cable). A process of
type Busnode is created for each such

~) a 5(2)

"')
5(2-)

08(8) 8(8)
8(1)5(1) 5(1) 5(1)

............

I
MT2I MT3 MTn

...

cable

MAU",,-

Figure 1. Bus Network Topology System Configuration

.'

Figure 2. Ring Network Topology System Configuration

I

I

I

point of contact on the bus. Upon receiving
a transmission request from a Simnode
process, the Busnode attempts to fulfill the
request based on the medium access
protocol of the LAN. For example, in the
CSMAlCD case, the Busnode process
checks for a carrier flag and will allow
transmission only if the flag has been off for
at least the interframe gap. If a collision is
detected during transmission, the Simnode
process sends a jam signal and increments
the collision counter. This is followed by
invoking a back-off algorithm for
retransmission.

Processes Lserver and Rserver are
used to simulate the propagation delay and
control the flow of data packets and jam
signals in the direction form right to left and
from left to right, respectively, for each
network node. A pair of these processes is
created for each network node.

Process Scheduler is used to order
time events and control the sequencing of
activities of the entire simulation.

Figure 4 shows a block diagram showing
the simulation model for the ring topology.
Process S i m nod e is responsible for
generating the load (data packets) on the
ring. Process Ringnode monitors the ring
traffic and implements the token-based
medium access protocol. Process Server is
used to simulate the propagational delay
between each pair of LAN nodes. As in the
bus model, the simulation of the ring
structure uses a Sched uler process to
control the sequencing of activities.

DISCUSSION

'Token Ring vs Contention Access
A token passing ring is a LAN with a loop

topology in which a token is passed around
the network in a round-robin fashion from
one node to the next. Contention fOl
'transmission is resolved by stipulating that
only the node currently in possession of the

token is allowed to transmit a frame or a
sequence of frames onto the ring. When the
transmission is finished. the token is passed
to the node downstream which then gets a
chance to transmit. Since there is a single
token on the ring. only one node can be
transmitting at a time. Other (non­
transmitting) nodes. however. continuously
receive the bit stream. examine it and repeat
it (I.e .• place it on the medium to the next
station). A station repeating the bit stream
may copy it into local buffers or modify some
control bits as appropriate.

In general. Token-Ring LAN's are much
less sensitive to increased transmission
rates and smaller packet sizes compared to
contention protocols (e.g .• ETHERNET with
CSMAlCO). Since token-rings are collision
free, a maximum packet delay can be
guaranteed for a given number of stations.
Thus. the real-time requirements of
applications having high traffic loads (e.g.,
networks with large number of simulation
training devices) can be handled more
gracefully by using a contention-free ring
scheme.

Because of its point-to-point eonnection
property. rings readily accommodate the use
of optical fiber as a transmission medium. In
addition to offering reduced size. weight and
enhanced safety features. optical fiber also
ofters very high signal bandwidth. One very
promising implementation of ring networks
using optical fiber is the Fiber Distributed
Data Interface (FOOl). FOOl is a 100
Mbits/sec token-ring LAN protocol that is
rapidly becoming accepted as the premier
high speed LAN standard (7). With its
embedded extensibility to support even
higher speeds (500 to 1.000 Mbits/sec),
FOOl is poised to become the dominant
high-end LAN of the 1990's. The paradigm
for FOOl topology is known as a "dual
counter-rotating ring of trees". The physical
layer topology consists of independent. full­
duplex, point-to-point physical connections.
while the logical layer consists of one or two

I

Figure 3. Simulation Model for Bus Topology Networks

e

E~-.E~ ~304--~Ey

e
Figure 4. Simulation Model for Ring Topology Networks

I

rings. The FDDI Medium Access Control
(MAC) protocol provides data services
similar to those of the IEEE 802.5 token-
rings. An extension to FOOl (known as FOOl
II) is currently being investigated to add
isochronous data transmission capabilities
to the network, thus enabling it to handle
both voice and data. FOOl technology will
eventually provide the simulation and
training industry with powerful real-ti~e
LAN's capable of interconnecting an
unprecedented number of stations.

bypass switches in order to allow inactive
(off-line) stations to pass the traveling data-
carrying light waves directly from one
neighboring node to the next without active
power and with little or no degradation of the
optical signal.I

Bus-based ETHERNET LAN's have
enjoyed economic advantages because of
their widespreac1 use in the past two
decades. These advantages. however. are
about to disappear since VLSI technology.
fiber optics, and other near-term advances
will soon be supplying the market with ring
chips and devices at the same low cost as
comparable bus products. Also, hardware
support for FDDI is rapidly growing and the
projected increase in development and
installation investments in FOOl are
expected to drive down the cost of FDOI
hardware considerably.

Another promising feature of Token.
Rings is that they provide a priority-based
scheme for packet transmission across the
network. In the ANSI/IEEE 802.5 ring
implementation, the passing token has three
bits indicating the current priority level of the
ring (this gives a total of 8 priority levels). A
station that captures the token can only
transmit packets whose priority is equal to or
higher than the priority of the passing token.
The ANSI/IEEE 802.5 protocol also provides
mechanisms that enable stations to request
and change the priority of the passing token.
In simulation networks, this means that it will
be possible to assign levels of priority to
different types of messages which may be
beneficial in attempting to optimize real-time
system performance, especially under peak
load conditions.

GBRAM vs Contention Access
The GBRAM LAN protocol

implementation shares the same bus
topOlogy as the ETHERNET implementation
(see Fig. 1). The nodes connected onto the
network via the same multi-port transceiver
belong to the same group and each node
within the group has a unique identity. This
node identity scheme plays an important part
in the assignment of channel access time
slots for each node. Every node on the
network perceives the channel state under
the. GBRAM as consisting of cycles of
scheduling and transmission periods.
Roughly speaking, the end of a transmission
period designates the beginning of a
scheduling period and the end of a
scheduling period signals the beginning of
the next scheduling period. During a
scheduling period. every node gains the
right to access the network channel starting
with the node whose identity sequentially
follows the node which transmitted last.

On the other hand, token rings are
outperformed by bus topology LAN's in
certain areas. One main advantage of the
bus structure over ring LAN's is the reliability
of network operation following a node
failure. In general, bus-based LAN's are
more resistant to network crashes due to
node failures since the propagation of
messages on the bus does not require the
participation of any given node. Failure of a
station on the ring structure, however, can
bring the entire LAN down. This problem
has been considerably reduced by the
increased reliability of today's ring chips and
off-the-shelf ring attachments. Furthermor1,
new fiber optic ring devices use optical

I

I

I
GBRAM avoids collisions by scheduling

different users at uni ~ue time instances. The
time interval between two successive

I

I

scheduling instances depends on the
physical location of the users who are
allowed access to the network channel at
these instances. In fact, this time interval is
equal to the propagation delay between the
two users who are scheduled to transmit at
these two unique instances. In the GBRAM,
therefore, the physical location of each user
on the network is extremely important in
calculating the network's scheduling
algorithm.

observe the state of the channel at all times.
There are other versions of GBRAM (3],
however, that do not require the users to
have a complete knowledge of the network
topology. These versions of GBRAM will not
perform as well as the GBRAM version
considered in this paper.I

I NETWORK SIMULATION RESULTS

ETHERNET Simulated Performance
The network protocol simulation models

described earlier have been used to gather
information about the performance of local
area networks used for real-time training,
under various conditions of node (simulator)
placement on the network, traffic load levels
and packet scheduling policies. One
configuration considered in our analysis is
unique to the application of local area
networks to the interconnection of simulation
and training devices. In this configuration,
an optimization is made to reduce the load
on the network. An explanation of this
optimization for the ETHERNET case is
given below.

I It has been observed that in large scale
simulation networks not all users are active
at all times. Consider, for example, a vehicle
simulator which is active at the beginning of
a battle, but is destroyed by enemy fire
during the simulation. These inactive users
must be taken out of the token passing
sequence list in order to reduce the number
of wasted idle slots which will be scheduled
for the network. Hence, there must be a
procedure to sign-off users from the network.
This procedure might be implemented as
follows: an active user signs off by
broadcasting, at its scheduled transmission
time instant, a sign-off packet which would
be read by all other active users who would,
in turn, update their scheduling sequence
accordingly.

I

I

I

I

I Upon a state change, a simulator (node)
on the network sends the information
concerning its new state to other nodes on
the LAN. Each new state results in the
generation of a new data packet at the
application layer (j.e.,.at the node level).
The packet is then submitted to the data
link layer in order to start the process of its
transmission. In ETHERNET, only one
packet per node is delivered for transmission
at a time. Other packets are normally
queued up at the application level waiting for
the end of the ongoing transmission attempt.
In this context, ttle arrival of a new packet
(carrying the most current state of the node)
simply replaces the previous packet (stored
at the application layer) which represents a
now outdated state condition. The
discarding of the outdated packet helps
speed up the transmission)f the most
current state of the node. Notice that the

I The successful operation of the version of
the GBRAM presented in this paper depend
on the fact that all the users know a common
time epoch. This common time epoch
corresponds to the beginning of a
scheduling period. In our version of GBRAM,
the beginning of a scheduling period
corresponds to either the end of a
transmission period (as perceived by the
transmitting user) plus the propagation delay
along the cable or a complete scheduling
cycle after the beginning of the previous
scheduling period. It is obvious that the
common time epoches can be determined
by any user who observes the channel state
at all times and knows its propagation delay
from any other user in the network. Note that
contention protocols require only that users

I

I

I

I

I

I
packet already submitted to the ETHERNET
data link layer is under the control of
ETHERNET protocol (board) which is not
accessible from the application layer and,
therefore, is not affected by new packet
arrivals.

traffic load continues to increase. Since the
actual throughput of this configuration is
dependent on both the number of obsolete
packets discarded by the application layer
and the colliding packets discarded by
ETHERNET boards, the performance of the
network may show some slight perturbations
in actual throughput; but otherwise will stay
in the saturation throughput level it has
attained.

The performance of this specific
ETHERNET configuration is given in Graphs
1 & 2, and Table 1. Graph 1 gives the
relationship between the throughput of the
LAN and the total initial traffic load from all
simulators (i.e., before any discarding at the
application level). Graph 2 gives the
relationship between the total initial load and
the packets discarded by ETHERNET as a
result of exceeding the maximum count for
transmission attempts (16) due to excessive
collisions. Notice that Graph 2 gives the
packets discarded by the ETHERNET
protocol and not the obsolete packets
discarded at the application level. Statistics
about the average transmission delay and
average and maximum number of
transmission attempts are given in Table 1.

I
Token Ring Simulated Performance

Token ring LAN's exhibit quite different
behavior as compared to the ETHERNET. In
some versions of token ring protocols, a
transmitting station recreates the free token
and puts It onto the ring as soon as it finishes
packet transmission. In IEEE 802.5 rings,
however, a transmitting station checks to see
if its address (affixed at the header of the
transmitted packet) has returned to it
(indicating a complete cycle around the
ring). Only after receiving this address is the
station allowed to transmit the free token
onto the ring, thus giving other stations an
opportunity to transmit. This latter protocol is
more conservative (from a reliability point of
view) but imposes extra time -overhead for
token management. At low network traffic
loads, the IEEE 802.5 token ring protocol
causes more transmission delays for packets
than the CSMA/CD counterpart. Unlike
collision handling, the overhead of token
management is largely independent of the
LAN load. Therefore, the throughput of
token-ring LAN's continues to increase as
the traffic load increases. No degradation in
performance at high loads is exhibited by
token rings in contrast to the ETHERNET
LAN.

At low traffic load levels, the effect of
collisions is small and no packets are
discarded due to excessive collision counts.
All packets submitted to the data link layer at
such low loads eventually get transmitted
successfully and the throughput of the
network is equal to the total traffic load minus
the obsolete packets discarded at the
application level. As the traffic load
increases, more collisions occur and the
average number of transmission attempts
per packet (and consequently the average
packet delay) increases (see table 1). Since
a packet is thrown away (by ETHERNET) if
its transmission fails 16 consecutive times,
the growing collision rate eventually results
in the loss of some packets. At some point,
the network becomes overwhelmed by the
collision overhead and less LAN bandwidth
becomes available for actual packet
transmission. This is the reason that the
throughput of this ETHERNET LAN starts to
reach a saturation level even though the

I

I

I GBRAM Simulated Performance
Preliminary GBRAM simulation results

indicate that GBRAM should perform well for
medium to high input traffic loads, but may
be inferior to contention protocols for light to
medium input traffic loads. let us try to
justify this ob~ervation based on the

I

I

I

I
I

I

I

::J~ -
= ~~ ~
'2 !

1 ~
~ s
l !
~<

-
~

i

11m
g
a

2

s -

~

413.

6

1~

7

8

Graph 2.

1.-

2

rr

1

~

,"

4

17

Jl

.-

6

r

I1

]

1

VB Traffic Load (ETHERNET)

.I

10

I

VB'

.

12

T

I

Load

-.

14

1

.-

16

I

I

1

a

-.
18

1

200

I I I I II.

. I

I-Q
)

.cE
U

)
~Z
EE
Q

)
~

~
E

-
'x

0
tV

..

~

~(,)

_tV
00.
I-"U

S
Q

)-
..Q

E
E

Q
)

~
=

Z
c(

Q
)c:

0')0
~

'0
Q

)(/)
>

"-

c(E
(/)
c:~t-

>
-

~Q
)

Cc:0"0"~E

.-C
\JC

\JO
)C

\JC
W

).-
(/)

.-Lt>
C

W
)C

\Jcocor-..
c:

C
\J°tD

.-Lt>
tV

..."'"

I-
.-C

\J.qoLt>

t-Q
)

0')
cuI-Q

)
>c(

(,)
Q

)
(/)

'O
~

cuQ
)

0
ox:

-J~

O
O

O

r-..
o

O
r-..

(,)
tD

C
\JO

tD
O

°tD

=
'O

.-(f)Lt>
cO

cri°tD
roc:

~
~

~
cu

t-(/)
~0..c:
-

.,... co
(X

) U
)(X

)
U

)co
0.,...

C
t)(\J(X

).,...v
N

N
M

M

C
\ltt)Q

)~
<

O
<

O
<

O
-~

-~

.,...
Q

)

:aca:
~ ~()
;~;m-C

/)

~()cmE..0-..Q
)

Q
.

I-WZ~W~I-~

I

description of the GBRAM
presented in the previous section. protocol

Consider the case where there is only
one out of a total of 100 users that generates
traffic onto the network and that, for the
majority of its transmissions, this user has
one packet in its buffer every time a
scheduling period of the GBRAM protocol
starts. Let us assume that the propagation
delay between two users in the same group
is 30 bits, the propagation delay along the
cable is 20 bits, and the packet length is
1000 bits. This is a case of light input traffic.
It is easy to see that GBRAM induces an
average and maximum packet delay of
(30x 100+20)/2 + 1,000 = 2,510 bits and
~:30x1 00+20) + 1,000 = 4,020 bits,
respectively. Every contention protocol
tJnder the aforementioned light input traffic
(:onditions, induces an average and a
maximum packet delay of 1000 bits (the
packet length). The performance difference
widens as the number of the users in the
network increases.

I
CONCLUSIONS

In this paper we have described an
ongoing effort to model and evaluate the
performance of, three different network
protocol access methods suitable for
networking of simulation training devices: a
contention access method based on the
CSMNCD (ETHERNET) protocol. and two
contention-free methods based on Virtual
Token Bus Access such as GBRAM and
Token-Ring Access protocols. The system
models pertaining to the above three access
methods were addressed and a high-level
description of a detailed simulation software
system implemented for evaluating the
performance of these protocols was given.

.

I
Suppose now that all 100 users in the

network are active. Each one of them has
exactly one packet to transmit at the
beginning of a GBRAM scheduling period.
This corresponds to a case of high input
traffic load. Now GBRAM induces an
average and a maximum packet delay of
approximately (1 000x1 00)/2 + 1000 =
51,000 bits and (1000x100) + 1000 =
101,000 bits, respectively. The length of the
packet was once again taken to be equal to
1000 bits. The aforementioned input traffic
load is approximately equal to 100% of
ETHERNET capacity. Contention protocols
attain a throughput smaller than 100% even
under ideal conditions (i.e. small end-to-end
propagation delay/packet length ratio). As a
result, contention protocols are unstable
(experience unbounded packet delays) for
the above high input traffic scenario.

I
The models developed for the three

access methods will enable us to perform a
comparison study and evaluate different
design decisions. Some of the numerical
performance measures that are being
gathered by the models are:

.

The impact of traffic loading on network

throughput

. The utilization of the transmission
medium

The distribution of delay times of
transmitted packets.

The models developed under this effort
offer a very flexible tool for the evaluation
and analysis of important classes of
networking schemes that can be used to

The above discussion. although
simplified. verifies our point that there will be

interconnect large numbers of real-time
simulation training devices. Further
research is being conducted which is
focusing on implementing these two
alternate protocols in a hardware and
software test bed with the ultimate goal of
enhancing the capability of simulation
networks.

communicationW, IBM System Journal, Vol.
22, 1983, pp.62-74.

I [6] Gehani, N. and Roome, W. .Concurrent
C. Technical Report, AT&T Bell Laboratories,
1986.

I
(7] Marrin, K. -Emerging standards,
hardware and software light the way to
FOOl-, Computer Design, Vol 28, No.7, April
1989, pp. 51-57.I ACKNOWLEDGEMENTS

This work is supported by the U.S. Army
Program Manager Training Devices (PM
TRADE) and the Defense Advanced
Research Projects Agency (DARPA) under
Broad Agency Announcement # 88-01. The
authors would like to thank J. Cadiz and E.
Stadler for their help in obtaining and
analyzing network traffic data and preparing
this report.

I ABOUT THE AUTHORS

M. A. Basslounl received his Ph.D.
degree in Computer Science from
Pennsylvania State University in 1982. He
is currently an Associate Professor of
Computer Science at the University of
Central Florida, Orlando. His current
research interests include computer
networks, distributed systems, databases,
and performance evaluations. He has
authored several papers and has been
actively involved in research on local area
networks, concurrency control, data
encoding, I/O measurements and modeling,
schemes of file allocation and user
interfaces to relational database systems.
Dr. Bassiouni is a member of the IEEE
Computer Society, tne Association for
Computing Machinery, and the American
Society for Information Science.

I

I

I REFERENCES

[1] ANSI/IEEE -International Standard
8802/3 wCarrier Sense Multiple Access with
Collision Detection (CSMA/CD) Access
Method and Physical Layer Specification",
IEEE Computer Society Press, 1985.I
[2] Metcalfe, R. M. and Boggs, D. R.,
WEthernet Distributed Packet Switching for
Local Computer Networksw, Communication
Ass. Comput. Mach., Vol. 19, no. 7, pp. 395-
403, 1976.

I

I M. Georgiopoulos received his Ph.D
degree in Electrical Engineering from the
University of Connecticut in 1986. He is
currently an Assistant Professor in the
Department of Electrical Engineering and
Communication Sciences at the University of
Central Florida, Orlando. His current
research interests include multi-user
communication theory, communication
networks, computer networks, and spread
spectrum communications. Dr.
Georgiopoulos is a member of IEEE and the
Technical Chamber of Greece.

(3] Liu, T. T., Li, L. and Franta, W. R. "A
Decentralized Conflict-Free Protocol,
GBRAM for Large Scale Local Networks",
Computer Network Symposium
Proceedings, pp. 39-54. Dec. 1981.

I

I
[4] ANSI/IEEE -International Standard
8802/5 ~oken Ring Access", IEEE Computer
Society Press, 1985.I
[5] Dixon, R., Strole, N. and Markov, J. "A
token ring network for local data

I

J. Thompson received his BS degree in
Electrical Engineering from the University of
Central Florida in 1978. He is currently a
Research Associate for the Institute for
Simulation and Training (1ST) at the
University of Central Florida, Orlando. Mr.
Thompson has technical responsibility for all
1ST research activities involving computer
and simulator networking.

I

I

I

I

I

I

I

I

I

I

I
I
I
I
I

I

I

I

[

	Simulation Networks Modeling And Monitoring: Final Project Report
	Recommended Citation

	tmp.1440086406.pdf.DGWvo

