51,093 research outputs found

    Analysis of Disengagements in Semi-Autonomous Vehicles: Drivers’ Takeover Performance and Operational Implications

    Get PDF
    This report analyzes the reactions of human drivers placed in simulated Autonomous Technology disengagement scenarios. The study was executed in a human-in-the-loop setting, within a high-fidelity integrated car simulator capable of handling both manual and autonomous driving. A population of 40 individuals was tested, with metrics for control takeover quantification given by: i) response times (considering inputs of steering, throttle, and braking); ii) vehicle drift from the lane centerline after takeover as well as overall (integral) drift over an S-turn curve compared to a baseline obtained in manual driving; and iii) accuracy metrics to quantify human factors associated with the simulation experiment. Independent variables considered for the study were the age of the driver, the speed at the time of disengagement, and the time at which the disengagement occurred (i.e., how long automation was engaged for). The study shows that changes in the vehicle speed significantly affect all the variables investigated, pointing to the importance of setting up thresholds for maximum operational speed of vehicles driven in autonomous mode when the human driver serves as back-up. The results shows that the establishment of an operational threshold could reduce the maximum drift and lead to better control during takeover, perhaps warranting a lower speed limit than conventional vehicles. With regards to the age variable, neither the response times analysis nor the drift analysis provide support for any claim to limit the age of drivers of semi-autonomous vehicles

    Replanning of multiple autonomous vehicles in material handling

    Full text link
    The fully automated docks in Australia present opportunities for applications of autonomous vehicles and engineering innovation. When planning tasks to be done by multi-autonomous vehicles in an enclosed area with a known dynamic map (i.e. bi-directional path network), there are many issues that have not yet been comprehensively solved. The real world presents more complexity than the initial algorithms addressed. There are problems that occur due to interaction with the real-world. This means autonomous vehicles can stop, are affected, or face problems, and hence tasks and vehicles' paths and motion need to be replanned. In order to replan, a greater understanding of the state of vehicles, the state of the map, and importantly the importance of tasks and vehicles is definitely needed. This paper explores the improvements made to replanning by gaining a thorough understanding of the map and then utilising map information to make the best, most efficient replanning decision. Five replanning Methods are investigated and four Options which combine the Methods in different ways, are tested in this research. A map analysis Method is also presented. Simulation studies show that map information based replanning is the most efficient Method out of those tested. © 2006 IEEE

    Ontology based Scene Creation for the Development of Automated Vehicles

    Full text link
    The introduction of automated vehicles without permanent human supervision demands a functional system description, including functional system boundaries and a comprehensive safety analysis. These inputs to the technical development can be identified and analyzed by a scenario-based approach. Furthermore, to establish an economical test and release process, a large number of scenarios must be identified to obtain meaningful test results. Experts are doing well to identify scenarios that are difficult to handle or unlikely to happen. However, experts are unlikely to identify all scenarios possible based on the knowledge they have on hand. Expert knowledge modeled for computer aided processing may help for the purpose of providing a wide range of scenarios. This contribution reviews ontologies as knowledge-based systems in the field of automated vehicles, and proposes a generation of traffic scenes in natural language as a basis for a scenario creation.Comment: Accepted at the 2018 IEEE Intelligent Vehicles Symposium, 8 pages, 10 figure

    Designing an Adaptive Interface: Using Eye Tracking to Classify How Information Usage Changes Over Time in Partially Automated Vehicles

    Get PDF
    While partially automated vehicles can provide a range of benefits, they also bring about new Human Machine Interface (HMI) challenges around ensuring the driver remains alert and is able to take control of the vehicle when required. While humans are poor monitors of automated processes, specifically during ‘steady state’ operation, presenting the appropriate information to the driver can help. But to date, interfaces of partially automated vehicles have shown evidence of causing cognitive overload. Adaptive HMIs that automatically change the information presented (for example, based on workload, time or physiologically), have been previously proposed as a solution, but little is known about how information should adapt during steady-state driving. This study aimed to classify information usage based on driver experience to inform the design of a future adaptive HMI in partially automated vehicles. The unique feature of this study over existing literature is that each participant attended for five consecutive days; enabling a first look at how information usage changes with increasing familiarity and providing a methodological contribution to future HMI user trial study design. Seventeen participants experienced a steady-state automated driving simulation for twenty-six minutes per day in a driving simulator, replicating a regularly driven route, such as a work commute. Nine information icons, representative of future partially automated vehicle HMIs, were displayed on a tablet and eye tracking was used to record the information that the participants fixated on. The results found that information usage did change with increased exposure, with significant differences in what information participants looked at between the first and last trial days. With increasing experience, participants tended to view information as confirming technical competence rather than the future state of the vehicle. On this basis, interface design recommendations are made, particularly around the design of adaptive interfaces for future partially automated vehicles
    • …
    corecore