9,350 research outputs found

    Shape from periodic texture using the eigenvectors of local affine distortion

    Get PDF
    This paper shows how the local slant and tilt angles of regularly textured curved surfaces can be estimated directly, without the need for iterative numerical optimization, We work in the frequency domain and measure texture distortion using the affine distortion of the pattern of spectral peaks. The key theoretical contribution is to show that the directions of the eigenvectors of the affine distortion matrices can be used to estimate local slant and tilt angles of tangent planes to curved surfaces. In particular, the leading eigenvector points in the tilt direction. Although not as geometrically transparent, the direction of the second eigenvector can be used to estimate the slant direction. The required affine distortion matrices are computed using the correspondences between spectral peaks, established on the basis of their energy ordering. We apply the method to a variety of real-world and synthetic imagery

    Consistent joint photometric and geometric image registration

    Get PDF
    In this paper, we derive a novel robust image alignment technique that performs joint geometric and photometric registration in the total least square sense. The main idea is to use the total least square metrics instead of the ordinary least square metrics, which is commonly used in the literature. While the OLS model indicates that the target image may contain noise and the reference image should be noise-free, this puts a severe limitation on practical registration problems. By introducing the TLS model, which allows perturbations in both images, we can obtain mutually consistent parameters. Experimental results show that our method is indeed much more consistent and accurate in presence of noise compared to existing registration algorithms

    Distributed Kernel Regression: An Algorithm for Training Collaboratively

    Full text link
    This paper addresses the problem of distributed learning under communication constraints, motivated by distributed signal processing in wireless sensor networks and data mining with distributed databases. After formalizing a general model for distributed learning, an algorithm for collaboratively training regularized kernel least-squares regression estimators is derived. Noting that the algorithm can be viewed as an application of successive orthogonal projection algorithms, its convergence properties are investigated and the statistical behavior of the estimator is discussed in a simplified theoretical setting.Comment: To be presented at the 2006 IEEE Information Theory Workshop, Punta del Este, Uruguay, March 13-17, 200
    • …
    corecore