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ABSTRACT

In this paper, we derive a novel robust image alignment technique
that performs joint geometric and photometric registration in theto-
tal least squaresense. The main idea is to use the total least square
metrics instead of the ordinary least square metrics, whichis com-
monly used in the literature. While theOLS model indicates that the
target image may contain noise and thereferenceimage should be
noise-free, this puts a severe limitation on practical registration prob-
lems. By introducing theTLS model, which allows perturbations in
both images, we can obtain mutually consistent parameters.Experi-
mental results show that our method is indeed much more consistent
and accurate in presence of noise compared to existing registration
algorithms.

Index Terms— Photometric and geometric image registration,
total least square, orthogonal distance regression

1. INTRODUCTION

General image registration techniques align two (or more) images
in the spatial domain. These methods are referred to asgeometric
registration. We refer the interested reader to [1, 2] for compre-
hensive surveys. In addition, we can also perform image registra-
tion/alignment in the range/intensity domain, which is also known
asphotometricregistration.

Some registration algorithms are based on the intensity con-
stancy assumption, however in practice, this assumption isnot
always correct. In an uncontrolled environment, lighting conditions
can vary over time (e.g. due to the weather) and intensity varia-
tions also arise due to the automatic gain control or automatic white
balancing inside the camera. On the other hand, inhigh dynamic
range (HDR) imaging, the aperture times and hence the apparent
illumination are even changed on purpose.

In the next sections, we briefly discuss the current photomet-
ric registration techniques and the total least square formulation, we
propose a new approach that jointly performs geometric and pho-
tometric registration, we show some experiment results andwe end
this paper with a conclusion.

2. RELATED WORK IN PHOTOMETRIC REGISTRATION

Photometric registration consists of determining the parameters of
the comparametric equations(or intensity mapping functions) that
describe the relationship between the intensity values of the cor-
responding pixels of two spatially aligned imagesf andg. Some
examples of well-known comparametric models are the lineartrans-
formation (also referred to as gain and bias model) and the gamma

correction (i.e. raising the pixel values to a power to lighten or
darken images). A more detailed overview of comparametric equa-
tions and their related camera response functions is given by Mann
in [3]. The estimation process of the parameters involves the compu-
tation of acomparagram(i.e. the joint histogram of the pixel values
between the spatially aligned images) and followed by finding a
smooth semi-monotonic function (i.e. comparametric equation) that
passes through most of the highest bins in the comparagram. In
a nutshell, photometric registration comes down to comparametric
regression or finding the optimal fit to the comparagram data.

Photometric registration requires the computation of a compara-
gram, which on its turn requires spatially aligned images. On the
other hand, geometric registration techniques are often based on the
intensity constancy assumption. This results in a chicken-and-egg
problem, which can be solved in three ways: by first using an in-
tensity invariant geometric registration (e.g. based on the gradient
constancy) or a spatially invariant photometric registration (e.g. his-
tograms or statistical moments) or by jointly estimating geometric
and photometric registration parameters, which is our focus in this
paper.

In [4], the authors estimated the linear photometric model using
a robustRANSAC algorithm that minimizes the Huber robust loss
function. Bartoli performed joint geometric and photometric regis-
tration within the inverse compositional gradient-based framework
using the ordinary least square metrics [5]. In [6], Aguiar employs
a simple two-step iterative algorithm to resolve the registration and
exposure parameters. In [7], Grossberg and Nayar determined the
camera response function from the intensity mapping functions be-
tween several images, which are not spatially aligned. Theycom-
puted the comparametric parameters directly from cumulative inten-
sity histograms. Candocia approximated the comparametricfunction
and the camera response function by a piecewise linear model[8, 9].
Gevrekci and Gunturk employed a geometric feature point matching
algorithm and comparametric regression to perform jointHDR and
super-resolution reconstruction [10].

3. THE TOTAL LEAST SQUARE FORMULATION

The standard parametric geometric and comparametric relationship
between imagesf andg is given by the following model:

f(x) = P(g(G(x;pG));pP) + nf , (1)

wherepG andpP are the geometric and photometric parameters re-
spectively,G andP represent the geometric and photometric mod-
els,x denotes the spatial coordinates andnf is additive noise. In the
motion-freecase combined with the linear comparametric model, the
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comparametric function is simplified to a straight line withgaina1

and biasa0 (pP = [ a1 a0 ]T):

f(x) = a1g(x) + a0 + nf . (2)

Note that this comparametric function introduces clippingef-
fects, i.e. saturation of pixel values below0 and above255, which
implies an important loss of information at very dark and light re-
gions and therefore, these regions should be excluded from further
computations. In the presence of additive zero-mean white Gaussian
noise, the parameters can be found viaordinary least squares(OLS)
formulation as employed in e.g. [6, 5, 8]:
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whereda is denoted as thealgebraic distance.
This OLS model has some serious shortcomings in practice: the

estimated parameters are mutual inconsistent, i.e. the inverse for-
ward transformation does not yield the backward transformation and
vice versa (both solutions should be symmetric around the bisector
of the comparagram). The problem is the incorrect employed model
in equation (1), which indicates that imagef may contain noise and
imageg should be noise-free, which is not true in practice.

An improved geometric and photometric registration model
specifies that imageg can also be subject to perturbations:

f(x) = P(g(G(x;pG)) + ng ;pP) + nf , (4)

whereng is additive noise, commonly from the same probability
density function that generatesnf . The solution of this model mini-
mizes thegeometric distancedg instead of the algebraic distanceda.
In case of linear comparametric regression (see equation (2)), equa-
tion (4) is transformed into atotal least square(TLS) problem. The
solution to theTLS problem is well documented, see e.g. [11, 12].

The linear solution of the problem stated in equation (4) canex-
plicitly be found via the basicTLS algorithm as described in e.g. [12],
where â1 can be computed via thesingular value decomposition
(SVD) of the following zero-mean shifted augmented matrix:

0

B

@

g(x1) − g f(x1) − f

g(x2) − g f(x2) − f
...

...

1

C

A
= UΣV

T (5)

whereg andf are the mean intensity values of the imagesg andf

respectively.Σ is a2 × 2 diagonal matrix with the singular values
on the main diagonal andV is a 2 × 2 containing the singular
vectors. The gain parametera1 in the TLS sense is computed by

â1 = −
V(1, 2)
V(2, 2)

on the condition thatV(2, 2) is non-zero (or non-

singular in general). The bias parametera0 can be computed directly
by substitutinĝa1 back into the following equation:̂a0 = f − â1g.

Unfortunately, the basicTLS algorithm can only be applied for
the linear registration model. Therefore, we use a more general ap-
proach in this paper to minimize the geometric distance, which is
also referred to asorthogonal distance regression[13, 14]:

p̂P = arg min
pP
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where the measurement dataY(x) (we can interpret this as a
point in the comparagram) is given by
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„
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«
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The minimum is found using the iterative Gauss-Newton
method. The JacobianJ in the solution (6) is computed via the
chain rule:
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The orthogonal projectionY′(x) of the measurement data on
the regression curve can be found by minimizing the distancebe-
tween the curve and the measurement data. In some cases, e.g.in
the linear photometric registration model,Y′(x) can be found in a
closed-form expression. An additional benefit of this approach is
that it also requires less memory compared to the basicTLS algo-
rithm because we do not have to explicitly construct the augmented
matrix in equation (5).

4. JOINT TLS IMAGE REGISTRATION

We now derive a novel algorithm that solves the joint photometric
linear and geometric affine registration problem in theTLS sense
based on orthogonal distance regression. The advantage over the
approach of [6, 5] is that our method uses theTLS metrics, which
results in more consistent and accurate registration parameters.

The parametric model (4) is transformed into the following (non-
linear) assumption:

f(x, y) = a1g(a00 + a10x + a01y, b00 + b10x + b01y) + a0, (9)

Like the gradient-based geometric registration algorithms in [15], we
iteratively estimate the registration parameters using the incremental
updatesδpG = [ δa00 δa10 δa01 δb00 δb10 δb01 ]T and
δpP = [ δa0 δa1 ]T:
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To find these incremental updates, we approximate the non-
linear model by the first order Taylor series expansion:

f̃(x) − g̃(x) ≈ a1∇xg(x)δa00 + a1x∇xg(x)δa10

+ a1y∇xg(x)δa01 + a1∇yg(x)δb00

+ a1x∇yg(x)δb10 + a1y∇yg(x)δb01

+ g(x)δa1 + δa0, (11)

where we iteratively perform the inverse geometric registration
and the forward photometric registration by transformingf̃(x) =
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respectively.

The estimation of the registration parameters in the linearized
model can be interpreted as a regression problem that fits thepa-
rameters to a hyperplane, given by the following implicit function
(where we have simplified some notations1):

h(Y, δ) =

6
X

i=0

Yiδi + δ7 − Y7 = 0. (12)

1δ0 = δa00 , δ1 = δa10 , δ2 = δa01 , δ3 = δb00 , δ4 = δb10 , δ5 =

δb01 , δ6 = δa1 andδ7 = δa0.



Similarly to the orthogonal distance regression formulation in equa-
tion (6), the measurement data of this hyperplane is given by
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The orthogonal projectionY′ on the hyperplane is denoted by
the following system of symmetric line equations:
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By solving this system, we obtain the closed-form expression for
Y′, which is given by
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where we employξ(x, δ) andυ(δ) as the shorthand notations for

ξ(x, δ) = δ7 − Y7(x) +
6
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In order to compute the JacobianJ in equation (8), we have to
obtain the partial derivatives ofY′ to δ. This is given for the case of
δ0 (the cases fromδ1 to δ6 are similar):
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The difference vectorY(x)−Y′(x, δ) and itsl2-norm become
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The Jacobian matrixJ can be simplified by substituting expres-
sions (17)- (20) into equation (8):
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The incremental updatesδpG andδpP are computed by substi-
tuting the expressions (13), (15) and (21) into the orthogonal dis-
tance regression solution given by equation (6). These updates itera-
tively improve the current registration parameters as given by equa-
tion (10). To avoid local minima and to reduce computation time, we
used a coarse-to-fine Gaussian pyramid multi-resolution framework
as in [16]. At each level, the computed transformations are served
as initial guesses to the next level. Note that derivations for other
transformation models can be deducted in a similar way.

5. EXPERIMENTAL RESULTS

In a controlled experiment, we perform a quantitative evaluation
of the joint geometric and photometric registration algorithms ac-
cording to the affine/linear model (9). We simulate10 degraded
512 × 512 image pairs (the so-called reference and target images)
from 10 random test images by successively applying (i) a Tukey
windowing function (to prevent the influence of non-overlapping re-
gions due to the spatial deformations [17]), (ii) random photometric
linear (with gain parameters within[0.8, 1.2] and bias parameters
within [−25, 25]) and geometric affine transformations (the maxi-
mum pixel displacement is32), (iii) decimation (via averaging of
2 × 2 blocks) and (iv) adding zero-mean white Gaussian noise to
both the reference and the target image (with standard deviation
σn). The images are then (v) clipped at[0, 255]. This procedure is
repeated26 times for each noise level (0 ≤ σn ≤ 25).

We compare the proposedTLS solution as described in Section 4
to its OLS counterpart (via the Gauss-Newton optimization, a similar
derivation for geometric registration is given in [15]) andthe joint
geometric linear and photometric affine registration algorithm of
Bartoli [5], which operates in an inverse compositional gradient-
based framework using the ordinary least square metrics.

Only ourTLS algorithm was able to produce mutually consistent
photometric registration parameters in presence of noise (i.e. the in-
verse forward photometric transformation is approximately the same
as the backward photometric transformation and vice versa,see also
Section 3). The averageRMSE accuracy of all registration parame-
ters is plotted in Figure 1 in function of the noise standard deviation.
The proposedTLS solution clearly produces more accurate param-
eters as the amount of noise is increasing (note that if clipping at
[0, 255] was not applied, theOLS and Bartoli (photometric) results
are even far more worse).
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Fig. 1. AverageRMSE accuracy of all registration parameters in
function of additive zero-mean white Gaussian noise standard de-
viationσn.

6. CONCLUSION

For the photometric and joint geometric/photometric registration
problem, we have introduced the use of the total least squareframe-
work in the proposed registration algorithms. Our registration
method produces more accurate and consistent registrationparam-
eters compared to the methods that use the ordinary least square
approach, which are commonly employed in the literature. This
common model puts severe limitations to practical applications be-
cause it assumes that the reference image is noise-free. Conversely,
our proposed model also allows perturbations to the reference image.
We have derived our registration algorithm within the orthogonal
distance regression approach, which has mainly two advantages
compared to the basicTLS algorithm (computed via theSVD of the
augmented matrix): it is not limited to linear registrationmodels and
it has a smaller memory footprint.
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