15,385 research outputs found

    New Damped-Jerk trajectory for vibration reduction

    Get PDF
    This paper derives a jerk-shaped profile to address the vibration reduction of underdamped flexible dynamics of motion system. The jerk-limited profile is a widespread smooth command pattern used by modern motion systems. The ability of the jerk-limited profile to cancel the residual vibration of an undamped flexible mode is clearly explained using an equivalent continuous filter representation and the input shaping formalism. This motivates the design of a new jerk-shaped profile, named Damped-Jerk profile, to extend the previous result to the more common case of underdamped systems. Both simulations and experimental results demonstrate the effectiveness of the proposed Damped-Jerk profile to reduce damped vibration

    Robust control of flexible space vehicles with minimum structural excitation: On-off pulse control of flexible space vehicles

    Get PDF
    Both feedback and feedforward control approaches for uncertain dynamical systems (in particular, with uncertainty in structural mode frequency) are investigated. The control objective is to achieve a fast settling time (high performance) and robustness (insensitivity) to plant uncertainty. Preshaping of an ideal, time optimal control input using a tapped-delay filter is shown to provide a fast settling time with robust performance. A robust, non-minimum-phase feedback controller is synthesized with particular emphasis on its proper implementation for a non-zero set-point control problem. It is shown that a properly designed, feedback controller performs well, as compared with a time optimal open loop controller with special preshaping for performance robustness. Also included are two separate papers by the same authors on this subject

    Deformation Control in Rest-to-Rest Motion of Mechanisms with Flexible Links

    Get PDF
    This paper develops and validates experimentally a feedback strategy for the reduction of the link deformations in rest-to-rest motion of mechanisms with flexible links, named Delayed Reference Control (DRC). The technique takes advantage of the inertial coupling between rigid-bodymotion and elasticmotion to control the undesired link deformations by shifting in time the position reference through an action reference parameter. The action reference parameter is computed on the fly based on the sensed strains by solving analytically an optimization problem. An outer control loop is closed to compute the references for the position controllers of each actuator, which can be thought of as the inner control loop. The resulting multiloop architecture of the DRC is a relevant advantage over several traditional feedback controllers: DRC can be implemented by just adding an outer control loop to standard position controllers. A validation of the proposed control strategy is provided by applying the DRC to the real-time control of a four-bar linkage

    Control of free-flying space robot manipulator systems

    Get PDF
    New control techniques for self contained, autonomous free flying space robots were developed and tested experimentally. Free flying robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require human extravehicular activity (EVA). A set of research projects were developed and carried out using lab models of satellite robots and a flexible manipulator. The second generation space robot models use air cushion vehicle (ACV) technology to simulate in 2-D the drag free, zero g conditions of space. The current work is divided into 5 major projects: Global Navigation and Control of a Free Floating Robot, Cooperative Manipulation from a Free Flying Robot, Multiple Robot Cooperation, Thrusterless Robotic Locomotion, and Dynamic Payload Manipulation. These projects are examined in detail

    A passivity based control methodology for flexible joint robots with application to a simplified shuttle RMS arm

    Get PDF
    The main goal is to develop a general theory for the control of flexible robots, including flexible joint robots, flexible link robots, rigid bodies with flexible appendages, etc. As part of the validation, the theory is applied to the control law development for a test example which consists of a three-link arm modeled after the shoulder yaw joint of the space shuttle remote manipulator system (RMS). The performance of the closed loop control system is then compared with the performance of the existing RMS controller to demonstrate the effectiveness of the proposed approach. The theoretical foundation of this new approach to the control of flexible robots is presented and its efficacy is demonstrated through simulation results on the three-link test arm

    A model-based residual approach for human-robot collaboration during manual polishing operations

    Get PDF
    A fully robotized polishing of metallic surfaces may be insufficient in case of parts with complex geometric shapes, where a manual intervention is still preferable. Within the EU SYMPLEXITY project, we are considering tasks where manual polishing operations are performed in strict physical Human-Robot Collaboration (HRC) between a robot holding the part and a human operator equipped with an abrasive tool. During the polishing task, the robot should firmly keep the workpiece in a prescribed sequence of poses, by monitoring and resisting to the external forces applied by the operator. However, the user may also wish to change the orientation of the part mounted on the robot, simply by pushing or pulling the robot body and changing thus its configuration. We propose a control algorithm that is able to distinguish the external torques acting at the robot joints in two components, one due to the polishing forces being applied at the end-effector level, the other due to the intentional physical interaction engaged by the human. The latter component is used to reconfigure the manipulator arm and, accordingly, its end-effector orientation. The workpiece position is kept instead fixed, by exploiting the intrinsic redundancy of this subtask. The controller uses a F/T sensor mounted at the robot wrist, together with our recently developed model-based technique (the residual method) that is able to estimate online the joint torques due to contact forces/torques applied at any place along the robot structure. In order to obtain a reliable residual, which is necessary to implement the control algorithm, an accurate robot dynamic model (including also friction effects at the joints and drive gains) needs to be identified first. The complete dynamic identification and the proposed control method for the human-robot collaborative polishing task are illustrated on a 6R UR10 lightweight manipulator mounting an ATI 6D sensor

    A family of asymptotically stable control laws for flexible robots based on a passivity approach

    Get PDF
    A general family of asymptotically stabilizing control laws is introduced for a class of nonlinear Hamiltonian systems. The inherent passivity property of this class of systems and the Passivity Theorem are used to show the closed-loop input/output stability which is then related to the internal state space stability through the stabilizability and detectability condition. Applications of these results include fully actuated robots, flexible joint robots, and robots with link flexibility

    Method and apparatus for creating time-optimal commands for linear systems

    Get PDF
    A system for and method of determining an input command profile for substantially any dynamic system that can be modeled as a linear system, the input command profile for transitioning an output of the dynamic system from one state to another state. The present invention involves identifying characteristics of the dynamic system, selecting a command profile which defines an input to the dynamic system based on the identified characteristics, wherein the command profile comprises one or more pulses which rise and fall at switch times, imposing a plurality of constraints on the dynamic system, at least one of the constraints being defined in terms of the switch times, and determining the switch times for the input to the dynamic system based on the command profile and the plurality of constraints. The characteristics may be related to poles and zeros of the dynamic system, and the plurality of constraints may include a dynamics cancellation constraint which specifies that the input moves the dynamic system from a first state to a second state such that the dynamic system remains substantially at the second state
    corecore