421 research outputs found

    Feed-Forward Neural Networks Need Inductive Bias to Learn Equality Relations

    Get PDF
    Basic binary relations such as equality and inequality are fundamental to relational data structures. Neural networks should learn such relations and generalise to new unseen data. We show in this study, however, that this generalisation fails with standard feed-forward networks on binary vectors. Even when trained with maximal training data, standard networks do not reliably detect equality. We introduce differential rectifier (DR) units that we add to the network in different configurations. The DR units create an inductive bias in the networks, so that they do learn to generalise, even from small numbers of examples and we have not found any negative effect of their inclusion in the network. Given the fundamental nature of these relations, we hypothesize that feed-forward neural network learning benefits from inductive bias in other relations as well. Consequently, the further development of suitable inductive biases will be beneficial to many tasks in relational learning with neural networks

    Improving Generalization for Abstract Reasoning Tasks Using Disentangled Feature Representations

    Full text link
    In this work we explore the generalization characteristics of unsupervised representation learning by leveraging disentangled VAE's to learn a useful latent space on a set of relational reasoning problems derived from Raven Progressive Matrices. We show that the latent representations, learned by unsupervised training using the right objective function, significantly outperform the same architectures trained with purely supervised learning, especially when it comes to generalization

    Visual Entailment Task for Visually-Grounded Language Learning

    Get PDF
    We introduce a new inference task - Visual Entailment (VE) - which differs from traditional Textual Entailment (TE) tasks whereby a premise is defined by an image, rather than a natural language sentence as in TE tasks. A novel dataset SNLI-VE (publicly available at https://github.com/necla-ml/SNLI-VE) is proposed for VE tasks based on the Stanford Natural Language Inference corpus and Flickr30k. We introduce a differentiable architecture called the Explainable Visual Entailment model (EVE) to tackle the VE problem. EVE and several other state-of-the-art visual question answering (VQA) based models are evaluated on the SNLI-VE dataset, facilitating grounded language understanding and providing insights on how modern VQA based models perform.Comment: 4 pages, accepted by Visually Grounded Interaction and Language (ViGIL) workshop in NeurIPS 201
    corecore