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Abstract

We introduce a new inference task - Visual Entailment (VE) - which differs from
traditional Textual Entailment (TE) tasks whereby a premise is defined by an
image, rather than a natural language sentence as in TE tasks. A novel dataset
SNLI-VE (publicly available at https://github.com/necla-ml/SNLI-VE) is
proposed for VE tasks based on the Stanford Natural Language Inference corpus
and Flickr30k. We introduce a differentiable architecture called the Explainable
Visual Entailment model (EVE) to tackle the VE problem. EVE and several other
state-of-the-art visual question answering (VQA) based models are evaluated on
the SNLI-VE dataset, facilitating grounded language understanding and providing
insights on how modern VQA based models perform.

1 Introduction

Multimodal inference, reasoning, and fact entailment across image data and text have the potential
to solve problems where the veracity of a text statement is drawn from visual facts. Representative
applications involve the fake news detection and court cross-examination. The former aims to detect
contradictions between the text news and visual facts such as an image or video clip in order to
reduce the influence of misleading news. The latter intends to validate the testimony in case of any
contradictions to visual evidence for a fair judgment.

Recent progress in visual reasoning using datasets such as the Visual Question Answering (VQA)
dataset [Antol et al., 2015] and CLEVR [Johnson et al., 2017a] has been encouraging. However, the
high accuracy in these datasets is often because of the bias in these datasets. For the VQA dataset,
there is a question-conditioned bias [Goyal et al., 2017] where questions may hint at the answers
such that the correct answer may be inferred without even considering the visual information. The
following version of the VQA dataset [Goyal et al., 2017] reduces the bias by pairing questions
with similar images that lead to different answers. Even so, the sentence structures in the VQA
dataset remain simple and the yes/no questions are insufficient for training entailment tasks that
include the neutral case. CLEVR on the other hand is designed for fine-grained reasoning but its
synthetic nature introduces the uniformity in image and text structures, resulting in very high accuracy
models [Hudson and Manning, 2018] that may not generalize well to real world settings. Hence,
we need a more challenging inference task that requires learning grounded representations from
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cross-modal (image, text) pairs, where the same image is used for multiple natural language sentences,
each of which may correspond to different answers. Derived from this motivation, we propose a new
Visual Entailment (VE) task in this paper.

Prior to VE, the Textual Entailment (TE) task has been extensively studied in the natural language
processing (NLP) community as part of natural language inference (NLI). In the TE task, given a text
premise P and a text hypothesis H , the goal is to determine if P implies H . A TE model outputs a
label out of the three classes: entailment, neutral or contradiction based on the relation conveyed by
the (P,H) text pair. Entailment holds if there is enough evidence in P to conclude that H is true.
Contradiction is concluded wherever H contradicts P . Otherwise, the relation is neutral, indicating
the evidence in P is insufficient to draw a conclusion from H . We extend TE to the visual domain by
replacing each text premise with a corresponding real world image. Figure 1 illustrates a VE example
where given an image premise, the three text hypotheses lead to three different class labels.

Premise

+

● Two woman are holding 
packages.

● The sisters are hugging 
goodbye while holding to 
go packages after just 
eating lunch.

● The men are fighting 
outside a deli.

=

● Entailment

● Neutral

● Contradiction

Hypothesis Answer

Figure 1: A VE example showing an image pairing with different hypotheses leads to different labels.

In contrast to existing yes/no VQA problems, our VE task is more challenging for requiring the model
to deduce the neutral case due to insufficient information. To the best of our knowledge, there is no
well-annotated dataset for VE. We then build a new dataset, SNLI-VE, by replacing the premises in
the Stanford Natural Language Inference corpus (SNLI) [Bowman et al., 2015], a TE dataset, with the
corresponding images in Flickr30k [Young et al., 2014], an image captioning dataset. This adaption
is possible since the premises in SNLI are from the Flickr30k image captions which are entailed by
the corresponding images automatically. By transitivity of entailment, those hypotheses entailed by
the text premises are also entailed by the original caption images. There is a chance that neutral and
contradiction relations may change because the images may include other entities that unexpectedly
rewrite neutral and contradiction conclusions. Recently work [Vu et al., 2018] combining both images
and captions as premises validates that the effects of conclusion changes happen to be tolerable.

Related work. The most relevant task to VE is VQA [Antol et al., 2015, Goyal et al., 2017, Zhu
et al., 2016, Ren et al., 2015, Johnson et al., 2017b, Hudson and Manning, 2018, Anderson et al.,
2018, Fukui et al., 2016], which is a representative multimodal task in machine learning that involves
both images and text. State-of-the-art VQA models commonly apply the attention mechanism [Kim
et al., 2018, Anderson et al., 2018, Hudson and Manning, 2018] to relate image regions with specific
text features. Our developed model tackles the VE task by further employing self-attention [Vaswani
et al., 2017] to find the inner relationships in both image and text feature spaces as well as text-image
attention to ground relevant image regions.

2 The EVE Architecture

We develop a new Explainable Visual Entailment architecture (EVE) shown in Figure 2. EVE
uses the Attention Top-Down/Bottom-Up [Anderson et al., 2018] model as a starting point. The
architecture consists of two branches. The text branch applies self-attention [Vaswani et al., 2017] to
the word embeddings of a given text hypothesis, then passes the weighted word embedding sequence
through gated recurrent units to extract the text features. Depending on the image feature extraction
in the image branch, there are two EVE variants: EVE-Image and EVE-ROI. The image features
captured by EVE-Image come from a pre-trained convolutional neural network (CNN) with k feature
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Two woman are holding packages.

CNN / Mask RCNN

Word Embedding 
(GloVe) GRU

MLP on
each
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MLP on
each word

Text Self Attention 
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Text-Image Attention 
(Scaled Dot-Product) Pooling

Merge 
(*) 

Text
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Image
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Merge 
(+) N

Softmax

E

C

dim=300

dim=300

dim=3

dim=3

EVE-Image EVE-ROI

Mask RCNN

ROI-1 feature vector

ROI-2 feature vector

...

Figure 2: EVE architecture. EVE determines if a hypothesis (text input) is entailed by an image
premise (image input). The bottom half shows two methods on image feature extraction, either from
the CNN feature maps or object detection ROIs.

maps of dimension d × d. The feature vector at each pixel position across the k feature maps
represents an image region. In contrast, EVE-ROI considers regions of interest (ROI) proposals from
MASK-RCNN [He et al., 2017] to locate prominent objects in images. The image regions either
from EVE-ROI or EVE-Image are also self-attended and further weighted by the text-image attention.
Both the text and image features are finally fused for later prediction.

We apply self-attention to capture the hidden relations between elements in the text and the image
feature spaces respectively. The intuition of using self-attention is, under a long and complex
hypothesis, it is increasingly necessary for the model to be able to attend to only the most relevant
words. The effect of self-attention on the image is similar: image regions that jointly benefit the
current prediction receive more attention. On the other hand, the text-image attention allows the
model to select relevant image regions conditioned on the given text hypothesis.

3 Evaluation on SNLI-VE

Val Acc Per Class (%) Test
Acc (%)

Test Acc Per Class (%)Model Name Val
Acc (%) C N E C N E

Hypothesis Only 67.04 65.45 63.36 72.31 67.01 65.85 63.78 71.40
Image Captioning 68.14 67.3 63.12 73.99 67.47 66.75 63.56 72.07

Relational Network 67.81 68.01 63.94 71.49 68.39 69.13 65.58 70.45
Attention Top-Down 70.59 72.94 66.88 71.96 70.3 72.94 66.63 71.34

Attention Bottom-Up 69.79 71.56 64.25 73.57 69.34 70.56 64.49 72.96
EVE-Image* 71.40 70.48 66.88 76.83 71.36 70.61 67.17 76.31

EVE-ROI* 71.11 66.41 68.2 78.69 70.21 65.63 68.83 76.16

Table 1: Model Performance on SNLI-VE dataset

We evaluate the performance of EVE against several other baselines over SNLI-VE including the
existing state-of-the-art VQA based models. Details about the dataset and our experiments are
discussed in the supplemental materials. The performance results, as listed in Table 1, involve
comparisons between the following models:

Hypothesis Only: This model uses hypotheses only without image premises. Based on no premises,
the model was expected to make random guesses but the resulting accuracy is up to 67%, as
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reproduced by others [Gururangan et al., 2018, Vu et al., 2018]. This indicates the performance of
our model must exceed the 67% lower bound to make sense.

Image Captioning: Before VE, there are many captioning models [Karpathy and Fei-Fei, 2015,
Vinyals et al., 2017, Chen et al., 2017] which can serve as a useful baseline by generating an image
caption as the premise and then apply existing TE models for classification. For this baseline,
we use a PyTorch implementation [Choi] which extracts the image features with a pre-trained
ResNet152 backbone and generates the captions using an LSTM. The generated text premise is
encoded with the input text hypothesis. Both text features are concatenated for classification. The
model performance achieves a marginally higher accuracy of 68.14% and 67.47% on the validation
and test sets respectively, implying that the generated image caption premise does not help much.
After reviewing the generated captions, it is possible that the quality of the generated captions are
too poor or missing the necessary information for the TE classifier. To address this problem, the
captioning may be improved by using sophisticated models such as the dense captioning [Johnson
et al., 2016] but there is no guarantee that every detail in the image potentially described by the
hypothesis would be covered. Nevertheless, the TE classifier could still perform poorly due to the
increase in the length of the caption premises.

Relational Network: The Relational Network (RN), proposed to tackle the CLEVR dataset considers
pairwise feature fusions between different image regions in the CNN feature maps and the question
embedding [Santoro et al., 2017]. Although RN provides high accuracy on CLEVR, only a marginal
improvement is achieved at the accuracy of 67.81% and 68.39% on the validation and test splits of
SNLI-VE.

Attention Top-Down: We also adopt the model from the winner [Anderson et al., 2018] of VQA
challenge 2017, which applies text-image attention to the image regions in the CNN feature maps
based on the question embedding. The weighted image features are then projected and fused with the
question embedding using dot-product for classification. This attention based VQA model achieves
the best accuracy so far, with 70.59% and 70.3% on the validation and test splits, respectively,
implying attention can effectively use image premise features.

Attention Bottom-Up: The model design for Attention Bottom-Up is quite similar to Attention
Top-Down, except the image features used are the ROIs extracted by a Mask-RCNN [He et al., 2017]
implementation [Matterport]. The best performance achieved is 69.79% and 69.34% accuracy on the
validation and testing splits respectively. Though we also evaluate the model with more than 10 ROIs,
we observe no significant improvement.

EVE-Image and EVE-ROI: We finally evaluate our model, EVE, as described in Section 2. EVE-
Image achieves the best performance of 71.4% and 71.36% accuracy on the validation and test
partitions. EVE-ROI achieves a slightly lower accuracy of 71.11% and 70.21% but still better than
the counterpart Attention Bottom-Up. The improvement, even just marginal, is likely attributed to the
introduction of self-attention that captures the hidden relations in the same feature space.

4 Conclusion

This work introduces visual entailment, a novel multimodal task to determine if a text hypothesis
is entailed based on the visual information in the image premise. We build the SNLI-VE dataset
providing real-world images from Flickr30k as premises, and the corresponding text hypotheses
from SNLI. To address VE, we develop EVE and demonstrate its performance over several baselines,
including the existing state-of-the-art VQA based models. The inherent language-bias induced by
SNLI [Gururangan et al., 2018] serves as a strong baseline. The SNLI-VE dataset is publicly available
at https://github.com/necla-ml/SNLI-VE.
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Supplementary Materials

Dataset statistics. The original SNLI dataset split does not consider the arrangement of the original
caption images. Therefore, the same image may appear in both training and test sets if directly
adapted to VE. To address the issue, we disjointedly partition SNLI-VE by images following the
splits in [Gong et al., 2014] and make sure that each class instances are balanced across the training,
validation, and test sets as shown in Table 2.

Training Validation Testing
#Images 29,783 1,000 1,000

#Entailment 176,932 5,959 5,973
#Neutral 176,045 5,960 5,964

#Contradiction 176,550 5,939 5,964
Vocabulary Size 29,550 6,576 6,592

Table 2: SNLI-VE statistics: number of images, per class examples and vocabulary size by split.

Implementation details. The proposed EVE model is implemented in PyTorch. We use the pre-
trained GloVe.6B.300D [Pennington et al., 2014] for word embedding, where 6B is the corpus size
and 300D is the embedding dimension. The image features used for EVE-Image are generated from
a pre-trained ResNet101. The ROI features used for EVE-ROI are extracted using the Mask-RCNN
implementation [Matterport]. The Adam optimizer is used for training with a batch size of 64.
Adaptive learning rate is applied with both initial value and weight decay set to be 0.0001.
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