2,223 research outputs found

    A simple implementation of PML for second-order elastic wave equations

    Get PDF
    Abstract(#br)When modeling time-domain elastic wave propagation in an unbound space, the standard perfectly matched layer (PML) is straightforward for the first-order partial differential equations (PDEs); by contrast, the PML requires tremendous re-constructions of the governing equations in the second-order PDE form, which is however preferable, because of much less memory and time consumption. Therefore, it is imperative to explore a simple implementation of PML for the second-order system. In this work, we first systematically extend the first-order Nearly PML (NPML) technique into second-order systems, implemented by the spectral element and finite difference time-domain algorithms. It merits the following advantages: the simplicity in implementation, by keeping the second-order PDE-based governing equations exactly the same; the efficiency in computation, by introducing a set of auxiliary ordinary differential equations (ODEs). Mathematically, this PML technique effectively hybridizes the second-order PDEs and first-order ODEs, and locally attenuates outgoing waves, thus efficiently avoid either spatial or temporal global convolutions. Numerical experiments demonstrate that the NPML for the second-order PDE has an excellent absorbing performance for elastic, anelastic and anisotropic media in terms of the absorption accuracy, implementation complexity, and computation efficiency

    Elastic Wave Eigenmode Solver for Acoustic Waveguides

    Get PDF
    A numerical solver for the elastic wave eigenmodes in acoustic waveguides of inhomogeneous cross-section is presented. Operating under the assumptions of linear, isotropic materials, it utilizes a finite-difference method on a staggered grid to solve for the acoustic eigenmodes of the vector-field elastic wave equation. Free, fixed, symmetry, and anti-symmetry boundary conditions are implemented, enabling efficient simulation of acoustic structures with geometrical symmetries and terminations. Perfectly matched layers are also implemented, allowing for the simulation of radiative (leaky) modes. The method is analogous to eigenmode solvers ubiquitously employed in electromagnetics to find waveguide modes, and enables design of acoustic waveguides as well as seamless integration with electromagnetic solvers for optomechanical device design. The accuracy of the solver is demonstrated by calculating eigenfrequencies and mode shapes for common acoustic modes in several simple geometries and comparing the results to analytical solutions where available or to numerical solvers based on more computationally expensive methods

    Elastodynamic cloaking and field enhancement for soft spheres

    Full text link
    In this paper, we bring to the awareness of the scientific community and civil engineers, an important fact: the possible lack of wave protection of transformational elastic cloaks. To do so, we propose spherical cloaks described by a non-singular asymmetric elasticity tensor depending upon a small parameter η,\eta, that defines the softness of a region one would like to conceal from elastodynamic waves. By varying η\eta, we generate a class of soft spheres dressed by elastodynamic cloaks, which are shown to considerably reduce the soft spheres' scattering. Importantly, such cloaks also provide some wave protection except for a countable set of frequencies, for which some large elastic field enhancement (resonance peaks) can be observed within the cloaked soft spheres, hence entailing a possible lack of wave protection. We further present an investigation of trapped modes in elasticity via which we supply a good approximation of such Mie-type resonances by some transcendental equation. Next, after a detailed presentation of spherical elastodynamic PML of Cosserat type, we introduce a novel generation of cloaks, the mixed cloaks, as a solution to the lack of wave protection in elastodynamic cloaking. Indeed, mixed cloaks achieve both invisibility cloaking and protection throughout a large range of frequencies. We think, mixed cloaks will soon be generalized to other areas of physics and engineering and will in particular foster studies in experiments.Comment: V2: major changes. More details on the study of trapped modes in elasticity. Mixed cloaks introduced. Latex files, 27 pages, 14 figures. The last version will appear at Journal of Physics D: Applied Physics. Pacs:41.20.Jb,42.25.Bs,42.70.Qs,43.20.Bi,43.25.Gf. arXiv admin note: text overlap with arXiv:1403.184

    A Simple Multi-Directional Absorbing Layer Method to Simulate Elastic Wave Propagation in Unbounded Domains

    Full text link
    The numerical analysis of elastic wave propagation in unbounded media may be difficult due to spurious waves reflected at the model artificial boundaries. This point is critical for the analysis of wave propagation in heterogeneous or layered solids. Various techniques such as Absorbing Boundary Conditions, infinite elements or Absorbing Boundary Layers (e.g. Perfectly Matched Layers) lead to an important reduction of such spurious reflections. In this paper, a simple absorbing layer method is proposed: it is based on a Rayleigh/Caughey damping formulation which is often already available in existing Finite Element softwares. The principle of the Caughey Absorbing Layer Method is first presented (including a rheological interpretation). The efficiency of the method is then shown through 1D Finite Element simulations considering homogeneous and heterogeneous damping in the absorbing layer. 2D models are considered afterwards to assess the efficiency of the absorbing layer method for various wave types and incidences. A comparison with the PML method is first performed for pure P-waves and the method is shown to be reliable in a more complex 2D case involving various wave types and incidences. It may thus be used for various types of problems involving elastic waves (e.g. machine vibrations, seismic waves, etc)

    Efficient PML for the wave equation

    Full text link
    In the last decade, the perfectly matched layer (PML) approach has proved a flexible and accurate method for the simulation of waves in unbounded media. Most PML formulations, however, usually require wave equations stated in their standard second-order form to be reformulated as first-order systems, thereby introducing many additional unknowns. To circumvent this cumbersome and somewhat expensive step, we instead propose a simple PML formulation directly for the wave equation in its second-order form. Inside the absorbing layer, our formulation requires only two auxiliary variables in two space dimensions and four auxiliary variables in three space dimensions; hence it is cheap to implement. Since our formulation requires no higher derivatives, it is also easily coupled with standard finite difference or finite element methods. Strong stability is proved while numerical examples in two and three space dimensions illustrate the accuracy and long time stability of our PML formulation.Comment: 16 pages, 6 figure

    Scattering problems in elastodynamics

    Full text link
    In electromagnetism, acoustics, and quantum mechanics, scattering problems can routinely be solved numerically by virtue of perfectly matched layers (PMLs) at simulation domain boundaries. Unfortunately, the same has not been possible for general elastodynamic wave problems in continuum mechanics. In this paper, we introduce a corresponding scattered-field formulation for the Navier equation. We derive PMLs based on complex-valued coordinate transformations leading to Cosserat elasticity-tensor distributions not obeying the minor symmetries. These layers are shown to work in two dimensions, for all polarizations, and all directions. By adaptative choice of the decay length, the deep subwavelength PMLs can be used all the way to the quasi-static regime. As demanding examples, we study the effectiveness of cylindrical elastodynamic cloaks of the Cosserat type and approximations thereof
    • …
    corecore