17 research outputs found

    A simple combinatorial algorithm for submodular function minimization

    Get PDF
    This paper presents a new simple algorithm for minimizing submodular functions. For integer valued submodular functions, the algorithm runs in O(n6EO log nM) [O (n superscript 6 E O log nM)] time, where n is the cardinality of the ground set, M is the maximum absolute value of the function value, and EO is the time for function evaluation. The algorithm can be improved to run in O ((n4EO+n5)log nM) [O ((n superscript 4 EO + n superscript 5) log nM)] time. The strongly polynomial version of this faster algorithm runs in O((n5EO + n6) log n) [O ((n superscript 5 EO + n superscript 6) log n)] time for real valued general submodular functions. These are comparable to the best known running time bounds for submodular function minimization. The algorithm can also be implemented in strongly polynomial time using only additions, subtractions, comparisons, and the oracle calls for function evaluation. This is the first fully combinatorial submodular function minimization algorithm that does not rely on the scaling method.United States. Office of Naval Research ( ONR grant N00014-08-1-0029

    Provable Submodular Minimization using Wolfe's Algorithm

    Full text link
    Owing to several applications in large scale learning and vision problems, fast submodular function minimization (SFM) has become a critical problem. Theoretically, unconstrained SFM can be performed in polynomial time [IFF 2001, IO 2009]. However, these algorithms are typically not practical. In 1976, Wolfe proposed an algorithm to find the minimum Euclidean norm point in a polytope, and in 1980, Fujishige showed how Wolfe's algorithm can be used for SFM. For general submodular functions, this Fujishige-Wolfe minimum norm algorithm seems to have the best empirical performance. Despite its good practical performance, very little is known about Wolfe's minimum norm algorithm theoretically. To our knowledge, the only result is an exponential time analysis due to Wolfe himself. In this paper we give a maiden convergence analysis of Wolfe's algorithm. We prove that in tt iterations, Wolfe's algorithm returns an O(1/t)O(1/t)-approximate solution to the min-norm point on {\em any} polytope. We also prove a robust version of Fujishige's theorem which shows that an O(1/n2)O(1/n^2)-approximate solution to the min-norm point on the base polytope implies {\em exact} submodular minimization. As a corollary, we get the first pseudo-polynomial time guarantee for the Fujishige-Wolfe minimum norm algorithm for unconstrained submodular function minimization

    Curvature and Optimal Algorithms for Learning and Minimizing Submodular Functions

    Full text link
    We investigate three related and important problems connected to machine learning: approximating a submodular function everywhere, learning a submodular function (in a PAC-like setting [53]), and constrained minimization of submodular functions. We show that the complexity of all three problems depends on the 'curvature' of the submodular function, and provide lower and upper bounds that refine and improve previous results [3, 16, 18, 52]. Our proof techniques are fairly generic. We either use a black-box transformation of the function (for approximation and learning), or a transformation of algorithms to use an appropriate surrogate function (for minimization). Curiously, curvature has been known to influence approximations for submodular maximization [7, 55], but its effect on minimization, approximation and learning has hitherto been open. We complete this picture, and also support our theoretical claims by empirical results.Comment: 21 pages. A shorter version appeared in Advances of NIPS-201

    Constrained Monotone Function Maximization and the Supermodular Degree

    Get PDF
    The problem of maximizing a constrained monotone set function has many practical applications and generalizes many combinatorial problems. Unfortunately, it is generally not possible to maximize a monotone set function up to an acceptable approximation ratio, even subject to simple constraints. One highly studied approach to cope with this hardness is to restrict the set function. An outstanding disadvantage of imposing such a restriction on the set function is that no result is implied for set functions deviating from the restriction, even slightly. A more flexible approach, studied by Feige and Izsak, is to design an approximation algorithm whose approximation ratio depends on the complexity of the instance, as measured by some complexity measure. Specifically, they introduced a complexity measure called supermodular degree, measuring deviation from submodularity, and designed an algorithm for the welfare maximization problem with an approximation ratio that depends on this measure. In this work, we give the first (to the best of our knowledge) algorithm for maximizing an arbitrary monotone set function, subject to a k-extendible system. This class of constraints captures, for example, the intersection of k-matroids (note that a single matroid constraint is sufficient to capture the welfare maximization problem). Our approximation ratio deteriorates gracefully with the complexity of the set function and k. Our work can be seen as generalizing both the classic result of Fisher, Nemhauser and Wolsey, for maximizing a submodular set function subject to a k-extendible system, and the result of Feige and Izsak for the welfare maximization problem. Moreover, when our algorithm is applied to each one of these simpler cases, it obtains the same approximation ratio as of the respective original work.Comment: 23 page

    Discrete Newton’s Algorithm for Parametric Submodular Function Minimization

    Get PDF
    We consider the line search problem in a submodular polyhedron P (f) ⊆ ℝ n : Given an arbitrary a ∈ ℝ n and x 0 ∈ P (f), compute max{δ: x 0 + δa ∈ P (f)}. The use of the discrete Newton’s algorithm for this line search problem is very natural, but no strongly polynomial bound on its number of iterations was known (Iwata 2008). We solve this open problem by providing a quadratic bound of n 2 + O(n log 2 n) on its number of iterations. Our result considerably improves upon the only other known strongly polynomial time algorithm, which is based on Megiddo’s parametric search framework and which requires Õ(n 8 ) submodular function minimizations (Nagano 2007). As a by-product of our study, we prove (tight) bounds on the length of chains of ring families and geometrically increasing sequences of sets, which might be of independent interest. Keywords: Discrete Newton’s algorithm; Submodular functions; Line search; Ring families; Geometrically increasing sequence of sets; Fractional combinatorial optimizatio

    Submodular Minimization Under Congruency Constraints

    Full text link
    Submodular function minimization (SFM) is a fundamental and efficiently solvable problem class in combinatorial optimization with a multitude of applications in various fields. Surprisingly, there is only very little known about constraint types under which SFM remains efficiently solvable. The arguably most relevant non-trivial constraint class for which polynomial SFM algorithms are known are parity constraints, i.e., optimizing only over sets of odd (or even) cardinality. Parity constraints capture classical combinatorial optimization problems like the odd-cut problem, and they are a key tool in a recent technique to efficiently solve integer programs with a constraint matrix whose subdeterminants are bounded by two in absolute value. We show that efficient SFM is possible even for a significantly larger class than parity constraints, by introducing a new approach that combines techniques from Combinatorial Optimization, Combinatorics, and Number Theory. In particular, we can show that efficient SFM is possible over all sets (of any given lattice) of cardinality r mod m, as long as m is a constant prime power. This covers generalizations of the odd-cut problem with open complexity status, and with relevance in the context of integer programming with higher subdeterminants. To obtain our results, we establish a connection between the correctness of a natural algorithm, and the inexistence of set systems with specific combinatorial properties. We introduce a general technique to disprove the existence of such set systems, which allows for obtaining extensions of our results beyond the above-mentioned setting. These extensions settle two open questions raised by Geelen and Kapadia [Combinatorica, 2017] in the context of computing the girth and cogirth of certain types of binary matroids
    corecore