
A Simple Combinatorial Algorithm for Submodular Function Minimization

Satoru Iwata ∗ James B. Orlin †

Abstract

This paper presents a new simple algorithm for minimiz-
ing submodular functions. For integer valued submod-
ular functions, the algorithm runs in O(n6EO log nM)
time, where n is the cardinality of the ground set, M is
the maximum absolute value of the function value, and
EO is the time for function evaluation. The algorithm
can be improved to run in O((n4EO+n5) log nM) time.
The strongly polynomial version of this faster algorithm
runs in O((n5EO + n6) log n) time for real valued gen-
eral submodular functions. These are comparable to
the best known running time bounds for submodular
function minimization. The algorithm can also be im-
plemented in strongly polynomial time using only addi-
tions, subtractions, comparisons, and the oracle calls for
function evaluation. This is the first fully combinatorial
submodular function minimization algorithm that does
not rely on the scaling method.

1 Introduction

Let V be a finite nonempty set of cardinality n. A
function f defined on the subsets of V is submodular if
it satisfies

f(X) + f(Y) ≥ f(X ∩ Y) + f(X ∪ Y), ∀X, Y ⊆ V.

Submodular functions are discrete analogues of concave
functions, but they have algorithmic properties that
behave similarly to convex functions [13]. Examples
include cut capacity functions, matroid rank functions,
and entropy functions.

The first polynomial-time algorithm for submodular
function minimization is due to Grötschel, Lovász, and
Schrijver [7]. A strongly polynomial algorithm has also
been described in [8]. These algorithms employ the
ellipsoid method.

Recently, combinatorial strongly polynomial algo-
rithms have been developed by [4, 10, 12, 16, 17]. These
algorithms build on the works of Cunningham [1, 2].
The current best strongly polynomial bound due to [16]

∗Research Institute for Mathematical Sciences, Kyoto Univer-
sity, Kyoto 606-8502, Japan (iwata@kurims.kyoto-u.ac.jp).

†Sloan School of Management, MIT, Cambridge, MA 02139,
USA (jorlin@mit.edu).

is O(n5EO + n6), where EO is the time for function
evaluation.

In this paper, we present a simple combinatorial
algorithm for submodular function minimization. The
initial variant of the algorithm minimizes integer-valued
submodular functions in O(n6EO log nM) time, where
M is the maximum absolute value of the function values.
The algorithm achieves this complexity without relying
on the scaling technique nor on Gaussian elimination.
It does not rely on augmenting paths or flow techniques
either. Instead, it works with distance labels used in
[16] and new potential functions.

With the aid of the Gaussian elimination procedure,
the algorithm can be improved to run in O((n4EO +
n5) log nM) time, which matches the best weakly poly-
nomial bound of [10] for instances in which log n =
O(log M). An advantage of the present algorithm
over the previous scaling algorithms is that it obtains
the unique maximal minimizer, which is often required
in applications of submodular function minimization
[4, 6, 15]. The strongly polynomial version of this algo-
rithm runs in O((n5EO+n6) log n) time, which is quite
close to the best known strongly polynomial bound of
[16].

These combinatorial algorithms perform multiplica-
tions and divisions, although the definition of submod-
ular functions does not involve those arithmetic opera-
tions. Schrijver [17] asks if one can minimize submodu-
lar functions in strongly polynomial time using only ad-
ditions, subtractions, comparisons, and oracle calls for
the function value. Such an algorithm is called “fully
combinatorial.” This problem was settled in [9] by de-
veloping a fully combinatorial variant of the strongly
polynomial algorithm of [12]. A faster version, which
runs in O(n8 log2 nEO) time, is presented in [10].

The new algorithm as well as its strongly poly-
nomial version can be turned into fully combinatorial
algorithms. The running time bounds of the result-
ing algorithms are O(n6(EO + log nM) log nM) and
O((n7EO + n8) log n). These are the first fully com-
binatorial algorithms that do not rely on the scaling
method. Moreover, the latter algorithm improves the
best previous bound by a factor of n.

The outline of this paper is as follows. Section 2
provides preliminaries on submodular functions and

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

https://core.ac.uk/display/4429182?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

base polyhedra. In Section 3, we present our prototype
algorithm that runs in weakly polynomial time. In
Section 4, we present the faster version of our weakly
polynomial algorithm. Section 5 presents an extension
to submodular function minimization on ring families,
which is then used in the strongly polynomial algorithm
presented in Section 6. Finally, in Section 7, we
discuss fully combinatorial implementations of these
algorithms.

2 Base polyhedra

This section provides preliminaries on submodular func-
tions. See [5, 11, 13, 14] for more details and general
background.

For a vector x ∈ RV and a subset Y ⊆ V , we
denote x(Y) =

∑
u∈Y x(u). We also denote by x+ and

x− the vectors in RV with x+(u) = max{x(u), 0} and
x−(u) = min{x(u), 0}, respectively. For each u ∈ V ,
let χu denote the vector in RV with χu(u) = 1 and
χu(v) = 0 for v ∈ V \ {u}. Throughout this paper, we
adopt the convention that the maximum over the empty
set is −∞ and the minimum over the empty set is ∞.

For a submodular function f : 2V → R with
f(∅) = 0, we consider the submodular polyhedron

P(f) = {x | x ∈ RV , ∀Y ⊆ V : x(Y) ≤ f(Y)}
and the base polyhedron

B(f) = {x | x ∈ P(f), x(V) = f(V)}.
A vector in B(f) is called a base. In particular, an
extreme point of B(f) is called an extreme base. An
extreme base can be computed by the greedy algorithm
of Edmonds [3] and Shapley [18] as follows.

Let L = (v1, · · · , vn) be a linear ordering of V . For
any vj ∈ V , we denote L(vj) = {v1, · · · , vj}. The greedy
algorithm with respect to L generates an extreme base
yL ∈ B(f) by

yL(u) = f(L(u))− f(L(u)\{u}).(2.1)

Conversely, any extreme base can be obtained in this
way with an appropriate linear ordering.

For any base x ∈ B(f) and any subset Y ⊆ V ,
we have x−(V) ≤ x(Y) ≤ f(Y). The following
theorem shows that these inequalities are in fact tight
for appropriately chosen x and Y .

Theorem 2.1. For a submodular function f : 2V → R,
we have

max{x−(V) | x ∈ B(f)} = min{f(Y) | Y ⊆ V }.
Moreover, if f is integer-valued, then the maximizer x
can be chosen from among integral bases.

This theorem is immediate from the vector reduc-
tion theorem on polymatroids due to Edmonds [3]. It
has motivated combinatorial algorithms for minimizing
submodular functions. If X and Y are minimizers of a
submodular function f , then both X ∩ Y and X ∪ Y
minimize f as well. Therefore, a submodular function
has a unique maximal/minimal minimizer.

3 A new weakly polynomial algorithm

This section presents a combinatorial algorithm for
minimizing a submodular function f : 2V → Z. In order
to measure the running time, we use M = max{|f(X)| |
X ⊆ V }.

The algorithm keeps a set Λ of linear orderings of
the elements in V . We denote v ¹L u if v precedes u
in a linear ordering L or v = u. Each linear ordering
L generates an extreme base yL ∈ B(f) by the greedy
algorithm. The algorithm also keeps a base x ∈ B(f) as
a convex combination x =

∑
L∈Λ λLyL of the extreme

bases. Initially, Λ = {L} with an arbitrary linear
ordering L and λL = 1.

The algorithm keeps a label dL : V → Z for each
L ∈ Λ. The set of labels is valid if the following
properties are satisfied.

• If x(u) ≤ 0, then dL(u) = 0 for any L ∈ Λ.

• If u ¹L v, then dL(u) ≤ dL(v).

• For any L,K ∈ Λ and u ∈ V , |dL(u)− dK(u)| ≤ 1.

For each u ∈ V , we denote dmin(u) = min{dL(u) | L ∈
Λ}.

The set of labels is said to have a gap at level k > 0
if there is an element v ∈ V with dmin(v) = k and no
element u ∈ V with dmin(u) = k − 1. The following
lemma is comparable to [16, Lemma 2].

Lemma 3.1. Suppose that the set of labels is valid. If
there is a gap at level k, then an arbitrary minimizer of
f does not contain any element v ∈ V with dmin(v) ≥ k.

Proof. Consider the set Y = {v | u ∈ V, dmin(u) < k}.
For any triple of u ∈ Y , v ∈ V \ Y and L ∈ Λ, we have
dL(u) ≤ dmin(u) + 1 < k ≤ dmin(v) ≤ dL(v), which
implies u ¹L v. Then Y satisfies yL(Y) = f(Y) for
each L ∈ Λ, and hence x(Y) = f(Y). Let X ⊆ V be an
arbitrary subset with X 6⊆ Y . Since x(v) > 0 for any
v ∈ V \Y , we have x(Y) < x(X ∪Y) ≤ f(X ∪Y). Thus
we obtain f(Y) < f(X ∪ Y). By the submodularity
of f , this implies f(X) > f(X ∩ Y). Therefore, any
minimizer of f must be a subset of Y .

The algorithm keeps a subset W ⊆ V , starting with
W = V . Whenever there is a gap at some level k, the

algorithm identifies the set T = {v | v ∈ W,dmin(v) ≥
k} and puts dL(v) = n for all v ∈ T and L ∈ Λ. The
set of labels remains valid. Then the algorithm deletes
T from W . Lemma 3.1 guarantees that the resulting W
includes all the minimizers of f .

In each iteration, the algorithm computes η =
max{x(v) | v ∈ W}. If η < 1/n, then the algorithm
returns W as the unique maximal minimizer of f .
Otherwise, it computes δ = η/4n, and finds a value
µ with δ ≤ µ < η such that there is no element v ∈ W
that satisfies µ−δ < x(v) < µ+δ. The interval [0, η] can
be partitioned into 2n segments of length 2δ. Obviously,
some of these segments do not contain the value of x(v)
for any v ∈ V . The midpoint of one of such segments is a
desired value of µ. The algorithm then finds an element
u that attains the minimum value of dmin among those
satisfying x(u) > µ. Let ` be this minimum value and
let L ∈ Λ be a linear ordering with dL(u) = `. The
algorithm applies New Permutation(L, µ, `) to obtain a
linear ordering L′, and then it applies Push(L,L′).

The procedure New Permutation(L, µ, `) yields a
linear ordering L′ from L by the following rule. The
set S = {v | v ∈ V, dL(v) = `} are consecutive elements
in L. The set S can be partitioned into R = {v | v ∈
S, x(v) > µ} and Q = {v | v ∈ S, x(v) < µ}. The
procedure moves the elements in R to the place after
the elements in Q without changing the relative orders
in Q and in R. The labeling dL′ for L′ is given by
dL′(v) = dL(v) for v ∈ V \ R and dL′(v) = dL(v) + 1
for v ∈ R. Obviously, dL′(u) ≤ dL′(v) holds if u ¹L′ v.
For any v ∈ R and K ∈ Λ, we have ` ≤ dK(v) ≤ ` + 1,
which implies dL′(v) − 1 ≤ dK(v) ≤ dL′(v). Thus the
set of labels remains valid.

The procedure Push(L,L′) increases λL′ and de-
creases λL by the same amount α, which is chosen to
be the largest value that is at most λL and so that after
the modification x(v) ≤ µ for v ∈ Q and x(v) ≥ µ for
v ∈ R. This means α = min{λL, β}, where

β = min{ x(v)− µ

yL(v)− yL′(v)
| v ∈ Q ∪R, yL(v) 6= yL′(v)}.

If α is chosen to be λL, then we call this push operation
a saturating push. Otherwise, it is a nonsaturating push.

We are now ready to describe the new algorithm.

Algorithm SFM

Step 0: Let L be an arbitrary linear ordering. Com-
pute an extreme base yL by the greedy algorithm.
Put x := yL, λL := 1, Λ := {L}, dL(u) := 0 for
u ∈ V , and W := V .

Step 1: Compute η := max{x(v) | v ∈ W}. If
η < 1/n, then return W as the unique maximal

minimizer of f . Find µ with δ ≤ µ < η such that
there is no u ∈ W with µ−δ < x(u) < µ+δ, where
δ := η/4n.

Step 2: Find u := arg min{dmin(v) | v ∈ W,x(v) > µ},
and put ` := dmin(u). Let L ∈ Λ be a linear
ordering with dL(u) = dmin(u).

Step 3: Obtain a linear ordering L′ by
New Permutation(L, µ, `) and apply Push(L,L′).

Step 4: If there is a gap at some level k, then put
T := {v | v ∈ W,dmin(v) ≥ k}, W := W \ T ,
and dL(v) := n for all v ∈ T and L ∈ Λ. Go to
Step 1.

Whenever the algorithm updates W , the new W
satisfies yL(W) = f(W) for each L ∈ Λ, and hence
x(W) = f(W). Once an element v ∈ V is deleted from
W , then the algorithm will never change x(v). Thus,
x(W) = f(W) holds throughout the algorithm.

When the algorithm terminates with η < 1/n, we
have x(v) < 1/n for v ∈ W and x(v) > 0 for v ∈ V \W .
Hence, x−(V) > x(W)−|W |/n ≥ x(W)−1 = f(W)−1
holds. For any Y ⊆ V , we have f(Y) ≥ x−(V) >
f(W)− 1, which implies by the integrality of f that W
minimizes f . Furthermore, since W is shown to include
all the minimizers, W itself must be the unique maximal
minimizer of f .

We now analyze the running time of this algorithm.
The number of linear orderings the algorithm keeps
in Λ increases only when the algorithm performs a
nonsaturating push. In order to bound the number of
nonsaturating pushes, we introduce a potential

Φ(x) =
∑

v∈W

x+(v)2

and show its geometric convergence.

Lemma 3.2. Suppose that a nonsaturating push moves
a base x to x′. Then we have Φ(x)−Φ(x′) ≥ Φ(x)/16n3.

Proof. Note that x(v) ≤ x′(v) for v ∈ Q and x(v) ≥
x′(v) for v ∈ R. Let Q+ denote the set Q+ = {v | v ∈
Q, x′(v) > 0}. Then we have

Φ(x)− Φ(x′) =
∑

v∈R∪Q+

[x+(v)2 − x′(v)2]

=
∑

v∈R∪Q+

(x+(v)− x′(v))(x+(v) + x′(v))

≥
∑

v∈Q+

(x+(v)− x′(v))(2µ− δ)

+
∑

v∈R

(x(v)− x′(v))(2µ + δ)

≥
∑

v∈Q+

(x′(v)− x+(v))δ

+
∑

v∈R

(x(v)− x′(v))δ,

where the last inequality follows from x(Q+ ∪ R) ≥
x′(Q+ ∪ R). Since |x+(v) − x′(v)| ≥ δ for some v ∈
R ∪ Q+, we obtain Φ(x) − Φ(x′) ≥ δ2. On the other
hand, Φ(x) ≤ nη2 = 16n3δ2 holds. Thus we have
Φ(x)− Φ(x′) ≥ Φ(x)/16n3.

At the start of this algorithm, Φ(x) ≤ 4nM2

holds. Therefore, by Lemma 3.2, after O(n3 log nM)
nonsaturating pushes, Φ(x) becomes smaller than 1/n2.
Then η must be smaller than 1/n and the algorithm
terminates. This implies that the number of linear
orderings in Λ is also O(n3 log nM).

We now consider another potential

Γ(Λ) =
∑

L∈Λ

∑

v∈V

[n− dL(v)].

Each saturating push decreases Γ(Λ) by at least one.
Each nonsaturating push leads to an increase in the size
of Λ, and increases Γ(Λ) by at most n2. Thus the to-
tal increase in Γ(Λ) over all iterations is O(n5 log nM),
and the number of saturating pushes is O(n5 log nM).
Since each execution of Push requires O(n) oracle
calls for function evaluation, the algorithm runs in
O(n6EO log nM) time.

Theorem 3.1. Algorithm SFM finds the unique maxi-
mal minimizer in O(n6EO log nM) time.

4 A faster weakly polynomial algorithm

This section presents a faster version of the algorithm
SFM for minimizing a submodular function f : 2V → Z.

The algorithm differs from the algorithm SFM in
two points. The first one is the use of Reduce(Λ) that
computes an expression of x as a convex combination
of affinely independent extreme bases chosen from the
currently used ones. This procedure is used in common
with other combinatorial algorithms for submodular
function minimization [1, 2, 4, 10, 12, 16, 17].

The other difference is in the way of selecting µ
in Step 1 of SFM. The new algorithm employs the
procedure Update(µ) that replaces µ by the smallest
value of µ′ with µ′ ≥ µ such that there is no u ∈ W
with µ′ − δ < x(u) < µ′ + δ, where δ = η/4n.

The entire algorithm is described as follows.

Algorithm SFMwave

Step 0: Let L be an arbitrary linear ordering. Com-
pute an extreme base yL by the greedy algorithm.

Put x := yL, λL := 1, Λ := {L}, dL(u) := 0 for
u ∈ V , and W := V .

Step 1: Compute η := max{x(v) | v ∈ W}. If
η < 1/n, then return W as the unique maximal
minimizer of f . Put µ := δ, where δ := η/4n.

Step 2: Repeat the following (2-1) to (2-3) until µ > η
or dmin(v) increases for some element v ∈ W .

(2-1) If x(v) = µ for some v ∈ W , then apply
Update(µ).

(2-2) Find an element u := arg min{dmin(v) | v ∈
W,x(v) > µ}, and put ` := dmin(u). Let L ∈
Λ be a linear ordering with dL(u) = dmin(u).

(2-3) Obtain a linear ordering L′ by
New Permutation(L, µ, `) and apply
Push(L,L′).

Step 3: If there is a gap at some level k, then put
T := {v | v ∈ W,dmin(v) ≥ k}, W := W \ T ,
and dL(v) := n for all v ∈ T and L ∈ Λ. Apply
Reduce(Λ). Go to Step 1.

Each outer iteration is called a wave. A wave starts
with µ = δ, and the value of µ never decreases in a
wave. As a result of Update(µ), the value of µ increases
exactly by δ unless there is some v ∈ W such that
µ < x(v) < µ + 2δ. Therefore, Update(µ) is applied
at most 4n times in a wave. In addition, if dmin(v) does
not change at any v ∈ W in the wave, the Update(µ) is
applied at least n times.

Suppose that x is the base at the time when current
µ is selected, and that x′ is the base at the time when
the sequence of pushes ends with x′(v) = µ for some
v ∈ W . It follows from the same argument as in
the proof of Lemma 3.2 that the potential function Φ
has decreased by at least a factor of 1/16n3, namely
Φ(x) − Φ(x′) ≥ Φ(x)/16n3. Therefore, if x is the base
at the beginning of a wave and x′′ is the base at the end
with µ > η, then we have

Φ(x′′) ≤
(

1− 1
16n3

)n

Φ(x).

Therefore, the number of waves that do not change dmin

is O(n2 log nM). The changes in dmin occur O(n2) times
throughout the algorithm. Thus the total number of
waves in the entire algorithm is O(n2 log nM).

Since Update(µ) is applied at most 4n times in a
wave, the number of nonsaturating pushes during a
wave is O(n). After at most |Λ| = O(n) consecutive
saturating pushes, the algorithm performs a nonsatu-
rating push or dmin(u) increases for the element u ∈ W

selected in Step 2-2. Thus the number of saturating
pushes during a wave is O(n2).

During a wave, we may create as many as O(n2)
different permutations that get added to Λ. Potentially,
each permutation can take O(nEO) steps to create,
and thus the bound from this is O(n3EO) per wave.
However, we will show that the time to create all
permutations is O(n2EO) per wave.

The time to create permutations that lead to non-
saturating pushes is O(n2EO) per wave. We now fo-
cus on saturating pushes. The algorithm creates a
new permutation L′ from L by modifying the posi-
tion of elements in S. We refer to L′ as a child of L,
and further children of L′ are called descendents of L.
The time to perform Push(L,L′) is O(|S|EO). Since
dL′(v) = dL(v) + 1 for all v ∈ S with x(v) > µ, these
elements will not change positions in any descendents
of L′ during the wave as long as dmin(v) does not in-
crease for any v ∈ W . Moreover, the elements in S
with x(v) < µ will not change positions in any descen-
dent of L′ in the wave. Since the algorithm keeps O(n)
permutations, the time to perform saturating pushes is
O(n2EO) per wave.

At the end of each wave, the algorithm applies
Reduce(Λ), which takes O(n3) time. Thus each wave
takes O(n2EO + n3) time, and the total running time
of the entire algorithm is O((n4EO + n5) log nM).

5 SFM on ring families

This section is devoted to minimization of submodular
functions defined on ring families. A similar method has
been presented in [16, §8].

A family D ⊆ 2V is called a ring family if X∩Y ∈ D
and X ∪ Y ∈ D for any pair of X, Y ∈ D. A compact
representation of D is given as follows. Let D = (V, F)
be a directed graph with the arc set F . A subset
Y ⊆ V is called an ideal of D if no arc leaves Y in
D. Then the set of ideals of D forms a ring family.
Conversely, any ring family D ⊆ 2V with ∅, V ∈ D
can be represented in this way. Moreover, contracting
strongly connected components of D to single vertices,
we may assume without loss of generality that D is
acyclic. Furthermore, if (u, v) ∈ F and (v, w) ∈ F ,
adding an arc (u,w) to F does not change the set of
ideals in D. Thus, we may assume that D is transitive.
A linear ordering L of V is said to be consistent if v ¹L u
holds for any (u, v) ∈ F .

Let D be a ring family represented by a transitive
directed acyclic graph D = (V, F). For each vertex
v ∈ V , let R(v) denote the set of vertices reachable
from v in D. For minimizing a submodular function
f on D, we introduce another submodular function f̂
defined on all the subsets of V . Consider first a vector

z given by

z(v) = f(R(v))− f(R(v) \ {v})

for each v ∈ V . For any subset X ⊆ V , let X denote
the largest member of D contained in X. Let f̂ be the
function on 2V defined by

f̂(X) = f(X) + z+(X \X).

Then it can be shown that

f̂(X) = min{f(Y) + z+(X \ Y) | Y ⊆ X, Y ∈ D}.

Therefore, f̂ is a submodular function. Note that
f̂(X) ≥ f(X) holds for any X ⊆ V . In particular,
the inequality is tight for X ∈ D. Thus, minimizing f
in D is equivalent to minimizing f̂ among all the subsets
of V .

When applying SFM or SFMwave to f̂ , one needs
to compute the function values of f̂ . The function
value is required in the process of finding the extreme
base. For example, in the initialization step, we need
to compute an extreme base yL for an arbitrary linear
ordering L. To accomplish this efficiently, we compute
yL(v) in the reverse order of L. Apparently, we have
V = V . If L(v) is already known, then it is easy to
find L(v) \ {v}. In fact, all we have to do is to delete
the vertex v and vertices u with (u, v) ∈ F from L(v).
This requires only O(n) time. As a result, finding an
extreme base yL can be done in O(nEO + n2) time,
where EO is the time for evaluating the function value
of f . Function evaluation of f̂ in New Permutation can
be implemented in a similar way, so that the amortized
complexity for computing the function value of f̂ is
O(EO + n). Thus, algorithms SFM and SFMwave
are extended to submodular function minimization on
ring families. The resulting running time bounds are
O((n6EO + n7) log nM) and O((n4EO + n5) log nM).

6 A new strongly polynomial algorithm

This section presents a new strongly polynomial algo-
rithm for minimizing a submodular function based on
the following proximity lemma.

Lemma 6.1. Suppose x ∈ B(f) and η = max{x(u) |
u ∈ V } > 0. If x(v) < −nη for some v ∈ V , then v is
contained in all the minimizers of f .

Proof. Starting with y = x and P = {u | x(u) > 0},
repeat the following procedure until P becomes empty.
Select an element u ∈ P , compute the exchange capacity

c̃(y, v, u) = min{f(X)− y(X) | v ∈ X ⊆ V \ {u}}

to determine the step length σ = min{y(u), c̃(y, v, u)},
update y := y +σ(χv−χu), and delete u from P . Since
σ ≤ η in each iteration, the resulting y satisfies y(v) < 0.

At the end of each iteration, we obtain y(u) = 0
or a set X such that v ∈ X ⊆ V \ {u} and y(X) =
f(X). This tight set X remains tight in the rest of
the procedure. Therefore, at the end of the procedure,
the set S obtained as the intersection of these tight sets
satisfies y(S) = f(S), v ∈ S, and y(u) ≤ 0 for every
u ∈ S. If there is no iteration that yields a tight set,
then y(u) ≤ 0 holds for every u ∈ V , and thus the entire
set V serves as the set S.

For any subset Y ⊆ V with v /∈ Y , we have
f(S) = y(S) < y(S ∩ Y) ≤ f(S ∩ Y), which implies
by the submodularity of f that f(S ∪Y) < f(Y). Thus
v is contained in all the minimizers of f .

We now present the algorithm SPM(D, f) for min-
imizing a submodular function f : D → R on a ring
family D ⊆ 2V that consists of the set of ideals of a di-
rected acyclic graph D = (V, F). The algorithm keeps a
base x ∈ B(f̂) as a convex combination of extreme bases
yL for L ∈ Λ and a subset W ⊆ V that is guaranteed
to include all the minimizers of f . The algorithm adds
an arc (u, v) to F whenever it detects an implication
that a minimizer of f including element u must include
element v as well.

At the beginning of each iteration, the algorithm
computes η = max{x(u) | u ∈ W}. If η ≤ 0, then W
is the unique maximal minimizer of f . If x(v) < −nη,
for some v ∈ V , then it follows from Lemma 6.1 that v
is included in the unique maximal minimizer of f . We
then apply the algorithm recursively to the contraction
fv defined by

fv(Y) = f(Y ∪R(v))− f(R(v))

for all ideals Y that include R(v). If f(R(u)) > n2η
for some u ∈ W , the algorithm finds an element v
that is contained in all the minimizers of fu. Then
the algorithm adds a new arc (u, v) to F . The rest of
each iteration is the same as the wave in the algorithm
SFMwave.

The algorithm SPM(D, f) is now described as fol-
lows.

Algorithm SPM(D, f)

Step 0: Let L be an arbitrary consistent linear order-
ing. Compute an extreme base yL by the greedy
algorithm. Put x := yL, λL := 1, Λ := {L},
dL(u) := 0 for u ∈ V , and W := V .

Step 1: Compute η := max{x(v) | v ∈ W}. Do the
following (1-1) to (1-3).

(1-1) If η ≤ 0, then return W as the unique
maximal minimizer of f .

(1-2) If x(v) < −nη for some v ∈ W , then delete
all the vertices in R(v) as well as incident
arcs from D, apply SPM(D, fv) to obtain the
unique maximal minimizer Y of fv, and return
Y ∪R(v).

(1-3) If f(R(u)) > n2η for some u ∈ W , then con-
struct a base x′ ∈ B(f̂u) by x′ :=

∑
L∈Λ λLyL′ ,

where each L′ is a linear ordering obtained
from L by removing the elements in R(u). For
each element v ∈ W \R(u) with x′(v) < −nη,
add an arc (u, v) to F . If this yields a directed
cycle C in D, then contract C to a single ver-
tex vC , and apply SPM(D, f) to obtain the
unique maximal minimizer Y of f . Then re-
turn Y after expanding vC to C.

Step 2: Put µ := δ, where δ := η/4n. Repeat the
following (2-1) to (2-3) until µ > η or dmin(v)
increases at some element v ∈ W .

(2-1) If x(v) = µ for some v ∈ W , then apply
Update(µ).

(2-2) Find u := arg min{dmin(v) | v ∈ W,x(v) >
µ}, and put ` := dmin(u). Let L ∈ Λ be a
linear ordering with dL(u) = dmin(u).

(2-3) Obtain a linear ordering L′ by
New Permutation(L, µ, `) and apply
Push(L,L′).

Step 3: If there is a gap at some level k, then put
T := {v | v ∈ W,dmin(v) ≥ k}, W := W \ T ,
and dL(v) := n for all v ∈ T and L ∈ Λ. Apply
Reduce(Λ). Go to Step 1.

In Step (1-2), if f(R(u)) > n2η, then x′(V \R(u)) =
f(V)−f(R(u)) < −(n2−n)η, and so there is an element
v ∈ V \ R(u) with x′(v) < −nη. Then it follows from
Lemma 6.1 that v is contained in all the minimizers of
fu. As this operation increases the size of F , it can
happen at most n2 times over all iterations.

For the sake of analysis, we partition the iterations
of this algorithm into phases. Each phase is a block
of consecutive iterations that reduces the value of the
potential function Φ(x) by half. After 3 log n phases,
the potential function Φ(x) is decreased by a factor of
n3. As a consequence, the value of η is decreased by at
least a factor of n.

We say that an element v is big at an iteration if
x(v) > δ = η/4n. A big element v satisfies x(v) ≤
f̂({v}) = f(R(v)) − f(R(v) \ {v}), and hence either
f(R(v)) ≥ δ/2 or f(R(v) \ {v}) < −δ/2 holds. In

the former case, after O(log n) phases, we will get
f(R(v)) > n2η, which leads to an increase of R(v).
On the other hand, in the latter case, after O(log n)
phases, there will be an element u ∈ R(v)\{v} such that
x(u) < −nη, which leads to the contraction of R(u).

We now analyze the number of waves in a phase.
Let b be the number of elements that are big at some
iteration during this phase. At the beginning of each
wave, we have Φ(x) ≤ (n − b)δ2 + 16n2bδ2 ≤ 17n2bδ2.
Recall that each iteration improves the potential by at
least δ2. If x′′ is the base at the end of the wave with
µ > η, we have

Φ(x′′) ≤
(

1− 1
17n2b

)n

Φ(x).

Therefore, the number of waves in a phase is O(nb). Let
bj be the number of elements that are big at some wave
during the j-th phase. The total number of waves in
the entire algorithm is O(n

∑
j bj).

For each element v ∈ V , once v becomes big, then
after O(log n) phases R(v) will get enlarged or D will get
reduced. Therefore, each element can be a big element
in O(n log n) phases, which implies

∑
j bj = O(n2 log n).

Thus the algorithm performs O(n3 log n) waves in total.
Since each wave requires O(n2EO+n3) time, the overall
running time of SPM is O((n5EO + n6) log n), which is
within a factor of log n of the best strongly polynomial
bound.

The strongly polynomial scaling algorithms [10,
12] require O(n2 log n) scaling phases instead of the
O(log M) phases in their weakly polynomial versions. In
contrast, the present result converts the O(n2 log nM)
bound on the number of waves to O(n3 log n). Thus, we
improve over the strongly polynomial scaling algorithms
by a factor of n.

7 Fully combinatorial algorithms

A fully combinatorial algorithm consists of oracle calls
for function evaluation and fundamental operations in-
cluding additions, subtractions, and comparisons. Such
an algorithm is strongly polynomial if the total number
of oracle calls and fundamental operations is bounded
by a polynomial in the dimension n of the problem. In
the design of a fully combinatorial, strongly polynomial
algorithm, we are allowed to multiply an integer which
is bounded by a polynomial in n. We are also allowed to
compute an integer rounding of a ratio of two numbers,
provided that the answer is bounded by a polynomial
in n.

In this section, we present fully combinatorial im-
plementations of the algorithms SFM and SPM. The
key idea is to choose the step length α so that all the
coefficients λL should be integer multiples of 1/κ for

some specified integer κ.
At the start of SFM, compute τ = max{f({v}) +

f(V \ {v}) − f(V) | v ∈ V }. In Push(L,L′), we have
|yL(v)− yL′(v)| ≤ τ holds for any v ∈ V . Since η ≥ 1/n
during the algorithm, we have δ ≥ 1/4n2. Therefore,
β ≥ 1/4n2τ holds unless yL = yL′ .

We now set κ = 4n2τ , and redefine the step length
α to be the largest integer multiple of 1/κ that is at
most β and λL. Then the resulting coefficients are also
integer multiples of 1/κ. Thus we can implement SFM
in a fully combinatorial manner.

The computation of α in a nonsaturating push
requires O(n log nM) fundamental operations. In a
saturating push, however, keeping the convex com-
bination also requires O(n log nM) fundamental op-
erations. Therefore, the overall time complexity of
this fully combinatorial version of SFM is O(n6(EO +
log nM) log nM).

We now turn to the strongly polynomial algorithm
obtained from SPM by replacing Step 2 by that of
SFM. Since f(R(u)) ≤ n2η and f(R(u) \ {u}) ≥
x(R(u) \ {u}) ≥ −n2η, we have yL(u) ≤ 2n2η for any
element u ∈ V and any consistent linear ordering L.
Since f(V) ≥ −n2η, this implies yL(u) ≥ −2n3η. Thus
|yL(u) − yL′(u)| ≤ 2(n3 + n2)η ≤ 4n3η holds, and we
have β ≥ δ/4n3η = 1/16n4 unless yL = yL′ .

We now set κ = 16n4, and redefine the step length α
to be the largest integer multiple of 1/κ that is at most
β and λL. The computation of α in a nonsaturating
push requires O(n log n) fundamental operations. Keep-
ing the convex combination in a saturating push also
requires O(n log n) fundamental operations. Therefore,
the total running time of this fully combinatorial version
of SPM is O((n7EO + n8) log n).

Acknowledgements

The authors are grateful to Tom McCormick for helpful
comments on the manuscript. The first author thanks
the Asahi Glass Foundation for supporting this work.
The second author gratefully acknowledges support
through ONR grant N00014-08-1-0029.

References

[1] W. H. Cunningham: Testing membership in matroid
polyhedra, J. Combin. Theory, B36 (1984), 161–188.

[2] W. H. Cunningham: On submodular function mini-
mization, Combinatorica, 5 (1985), 185–192.

[3] J. Edmonds: Submodular functions, matroids, and
certain polyhedra, Combinatorial Structures and Their
Applications, R. Guy, H. Hanani, N. Sauer, and J.
Schönheim, eds., Gordon and Breach, 69–87, 1970.

[4] L. Fleischer and S. Iwata: A push-relabel framework
for submodular function minimization and applications

to parametric optimization, Discrete Appl. Math., 131
(2003), 311–322.

[5] S. Fujishige: Submodular Functions and Optimization,
Elsevier, 2005.

[6] M. X. Goemans and V. S. Ramakrishnan: Minimizing
submodular functions over families of sets, Combina-
torica, 15 (1995), 499–513.

[7] M. Grötschel, L. Lovász, and A. Schrijver: The ellip-
soid method and its consequences in combinatorial op-
timization, Combinatorica, 1 (1981), 169–197.

[8] M. Grötschel, L. Lovász, and A. Schrijver: Geometric
Algorithms and Combinatorial Optimization, Springer-
Verlag, 1988.

[9] S. Iwata: A fully combinatorial algorithm for submod-
ular function minimization, J. Combin. Theory, B84
(2002), 203–212.

[10] S. Iwata: A faster scaling algorithm for minimizing
submodular functions, SIAM J. Comput., 32 (2003),
833–840.

[11] S. Iwata: Submodular function minimization, Math.
Programming, 112 (2008), 45–64.

[12] S. Iwata, L. Fleischer, and S. Fujishige: A combinato-
rial strongly polynomial algorithm for minimizing sub-
modular functions, J. ACM, 48 (2001), 761–777.

[13] L. Lovász: Submodular functions and convexity.
Mathematical Programming — The State of the Art,
A. Bachem, M. Grötschel and B. Korte, eds., Springer-
Verlag, 1983, 235–257.

[14] S. T. McCormick: Submodular function minimization,
Discrete Optimization (K. Aardal, G. Nemhauser, R.
Weismantel, eds., Handbooks in Operations Research,
12, Elsevier, 2005), 321–391.

[15] K. Nagano: A strongly polynomial algorithm for line
search in submodular polyhedra, Discrete Optim., 4
(2007), 349–359.

[16] J. B. Orlin: A faster strongly polynomial time algo-
rithm for submodular function minimization, Math.
Programming, to appear.

[17] A. Schrijver: A combinatorial algorithm minimizing
submodular functions in strongly polynomial time, J.
Combin. Theory, B80 (2000), 346–355.

[18] L. S. Shapley: Cores of convex games, Int. J. Game
Theory, 1 (1971), 11–26.

