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Abstract. We consider the line search problem in a submodular polytope P (f) ⊆ Rn: Given an
arbitrary a ∈ Rn and x0 ∈ P (f), compute max{δ : x0 + δa ∈ P (f)}. The use of the discrete Newton’s
algorithm for this line search problem is very natural, but no strongly polynomial bound on its number
of iterations was known [Iwata, 2008]. We solve this open problem by providing a quadratic bound of
n2 + O(n log2 n) on its number of iterations. Our result considerably improves upon the only other
known strongly polynomial time algorithm, which is based on Megiddo’s parametric search framework
and which requires Õ(n8) submodular function minimizations [Nagano, 2007]. As a by-product of our
study, we prove (tight) bounds on the length of chains of ring families and geometrically increasing
sequences of sets, which might be of independent interest.
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1 Introduction

Let f be a submodular function on V , where |V | = n. We often assume that V = [n] := {1, 2, · · · , n}. Let
P (f) = {x ∈ Rn | x(S) ≤ f(S) for all S ⊆ V }. The only assumption we make on f is that f(∅) ≥ 0 (otherwise
P (f) is empty). Given x0 ∈ P (f) (this condition can be verified by performing a single submodular function
minimization) and a ∈ Rn, we would like to find the largest δ such that x0+δa ∈ P (f). For any vector b ∈ Rn
and any set S ⊆ V , it is convenient to use the notation b(S) :=

∑
e∈S be. By considering the submodular

function f ′ taking the value f ′(S) = f(S)− x0(S) for any set S, we can equivalently find the largest δ such
that δa ∈ P (f ′). Since x0 ∈ P (f) we know that 0 ∈ P (f ′) and thus f ′ is nonnegative. Thus, without loss of
generality, we consider the problem

δ∗ = max

{
δ : min

S⊆V
f(S)− δa(S) ≥ 0

}
, (1)

for a nonnegative submodular function f .
Since x0 = 0 ∈ P (f) we know that δ∗ ≥ 0 and that the minimum could be taken only over the sets S

with a(S) > 0, although we will not be using this fact. To make this problem nontrivial, we assume that
there exists some i with ai > 0. Geometrically, the problem of finding δ∗ is a line search problem. As we go
along the line segment `(δ) = x0 + δa (or just δa if we assume x0 = 0), when do we exit the submodular
polyhedron P (f)? This is a basic subproblem needed in many algorithmic applications. For example, for
the algorithmic version of Carathéodory’s theorem (over any polytope), one typically performs a line search
from a vertex of the face being considered in a direction within the same face. This is, for example, also the
case for variants of the Frank-Wolfe algorithm (see for instance [Freund et al., 2015]).

A natural way to solve this line search problem is to use a cutting plane approach. Start with any upper
bound δ1 ≥ δ∗ and define the point x(1) = δ1a. One can then generate a most violated inequality for x(1),
where most violated means the one minimizing f(S)− δ1a(S) over all sets S. The hyperplane corresponding
to a minimizing set S1 intersects the line in x(2) = δ2a. Proceeding analogously, we obtain a sequence of
points and eventually will reach the optimum δ.

This cutting-plane approach is equivalent to Dinkelbach’s algorithm or the discrete Newton’s algo-
rithm for solving (1). At the risk of repeating ourselves, we let δ1 ≥ δ∗. For example we could set δ1 =
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mini:ai>0 f({i})/ai. At iteration i ≥ 1 of Newton’s algorithm, we consider the submodular function ki(S) =
f(S)− δia(S), and compute

hi = min
S
ki(S),

and define Si to be any minimizer of ki(S). Now, let fi = f(Si) and gi = a(Si). As long as hi < 0, we proceed
and set

δi+1 =
fi
gi
.

As soon as hi = 0, Newton’s algorithm terminates and we have that δ∗ = δi. We give the full description of
the discrete Newton’s algorithm in Algorithm 1.

Algorithm 1: Discrete Newton’s algorithm

input : submodular f : 2V → R, f nonnegative, a ∈ Rn

output: δ∗ = max {δ : minS f(S)− δa(S) ≥ 0}
i = 0, δ1 = mini∈V,a({i})>0 f({i})/a({i});
repeat

i = i+ 1;
hi = minS⊆V f(S)− δia(S);
Si ∈ arg minS⊆V f(S)− δia(S);

δi+1 = f(Si)
a(Si)

;

until hi = 0;
Return δ∗ = δi.

When a ≥ 0, it is known that Newton’s algorithm terminates in at most n iterations (for e.g. [Topkis, 1978]).
Even more, the function g(δ) := minS f(S) − δa(S) is a concave, piecewise affine function with at most n
breakpoints (and n + 1 affine segments) since for any set {δi}i∈I of δ values, the submodular functions
f(S)− δia(S) for i ∈ I form a sequence of strong quotients (ordered by the δi’s), and therefore the minimiz-
ers form a chain of sets. See [Iwata et al., 1997] for definitions of strong quotients and details.

When a is arbitrary (not necessarily nonnegative), little is known about the number of iterations of the
discrete Newton’s algorithm. The number of iterations can easily be bounded by the number of possible
distinct positive values of a(S), but this is usually very weak (unless, for example, the support of a is small
as is the case in the calculation of exchange capacities). A weakly polynomial bound involving the sizes of the
submodular function values is easy to obtain, but no strongly polynomial bound was known, as mentioned
as an open question in [Nagano, 2007], [Iwata, 2008]. In this paper, we show that the number of iterations
is quadratic. This is the first strongly polynomial bound in the case of an arbitrary a.

Theorem 1. For any submodular function f : 2[n] → R+ and an arbitrary direction a, the discrete Newton’s
algorithm takes at most n2 +O(n log2(n)) iterations.

Previously, the only strongly polynomial algorithm to solve the line search problem in the case of an
arbitrary a ∈ Rn was an algorithm of Nagano et al. [Nagano, 2007] relying on Megiddo’s parametric search
framework. This requires Õ(n8) submodular function minimizations, where Õ(n8) corresponds to the current
best running time known for fully combinatorial submodular function minimization [Iwata and Orlin, 2009].
On the other hand, our main result in Theorem 1 shows that the discrete Newton’s algorithm takes O(n2)
iterations, i.e. O(n2) submodular function minimizations, and we can use any submodular function mini-
mization algorithm. Each submodular function minimization can be computed, for example, in Õ(n4 + γn3)
time using a result of [Lee et al., 2015], where γ is the time for an evaluation of the submodular function.

Radzik [Radzik, 1998] provides an analysis of the discrete Newton’s algorithm for the related problem of
max δ : minS∈S b(S)− δa(S) ≥ 0 where both a and b are modular functions and S is an arbitrary collection
of sets. He shows that the number of iterations of the discrete Newton’s algorithm is at most O(n2 log2(n)).
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Fig. 1. Illustration of Newton’s iterations and notation in Lemma 1.

Our analysis does not handle an arbitrary collection of sets, but generalizes his setting as it applies to the
more general case of submodular functions f . Note that considering submodular functions (as opposed to
modular functions) makes the problem considerably harder since the number of input parameters for modular
functions is only 2n, whereas in the case of submodular functions the input is exponential (we assume oracle
access for function evaluation).

Apart from the main result of bounding the number of iterations of the discrete Newton’s algorithm for
solving max δ : minS f(S) − δa(S) ≥ 0 in Section 3, we prove results on ring families (set families closed
under taking intersections and unions) and geometrically increasing sequences of sets, which may be of
independent interest. As part of the proof of Theorem 1, we first show a tight (quadratic) bound on the
length of a sequence T1, · · · , Tk of sets such that no set in the sequence belongs to the smallest ring family
generated by the previous sets (Section 2). Further, one of the key ideas in the proof of Theorem 1 is to
consider a sequence of sets (each set corresponds to an iteration in the discrete Newton’s algorithm) such
that the value of a submodular function on these sets increases geometrically. We show a quadratic bound
on the length of such sequences for any submodular function and construct two (related) examples to show
that this bound is tight, in Section 4. Interestingly, one of these examples is a construction of intervals and
the other example is a weighted directed graph where the cut function already gives such a sequence of sets.

2 Ring families

A ring family R ⊂ 2V is a family of sets closed under taking unions and intersections. From Birkhoff’s
representation theorem, we can associate to a ring family a directed graph D = (V,E) in the following way.
Let A =

⋂
R∈RR and B =

⋃
R∈RR. Let E = {(i, j) | R ∈ R, i ∈ R⇒ j ∈ R}. Then for any R ∈ R, we have

that (i) A ⊆ R, (ii) R ⊆ B and (iii) δ+(R) = {(i, j) ∈ E | i ∈ R, j /∈ R} = ∅. But, conversely, any set R
satisfying (i), (ii) and (iii) must be in R. Indeed, for any i 6= j with (i, j) /∈ E, there must be a set Uij ∈ R
with i ∈ Uij and j /∈ Uij . To show that a set R satisfying (i), (ii) and (iii) is in R, it suffices to observe that

R =
⋃
i∈R

⋂
j /∈R

Uij , (2)

and therefore R belongs to the ring family.
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Given a collection of sets T ⊆ 2V , we define R(T ) to be the smallest ring family containing T . The
directed graph representation of this ring family can be obtained by defining A, B and E directly from
T rather than from the larger R(T ), i.e. A =

⋂
R∈T R =

⋂
R∈R(T )R, B =

⋃
R∈T R =

⋃
R∈R(T )R, and

E = {(i, j) | R ∈ T , i ∈ R ⇒ j ∈ R}. Further, in the expression (2) of any set R ∈ R(T ), we can use sets
Uij ∈ T .

Given a sequence of subsets T1, · · · , Tk of V , define Li := R({T1, · · · , Ti}) for 1 ≤ i ≤ k. Assume that
for each i > 1, we have that Ti /∈ Li−1. We should emphasize that this condition depends on the ordering
of the sets, and not just on this collection of sets. For instance, {1}, {1, 2}, {2} is a valid ordering whereas
{1}, {2}, {1, 2} is not. We have thus a chain of ring families: L1 ⊂ L2 ⊂ · · · ⊂ Lk where all the containments
are proper. The question is how large can k be, and the next theorem shows that it can be at most quadratic
in n.

Theorem 2. Consider a chain of ring families, L0 = ∅ 6= L1 ( L2 ( · · · ( Lk within 2V with n = |V |.
Then

k ≤
(
n+ 1

2

)
+ 1.

Before proving this theorem, we show that the bound on the number of sets is tight.

Example 1. Let V = {1, · · · , n}. For each 1 ≤ i ≤ j ≤ n, consider intervals [i, j] = {k ∈ V | i ≤ k ≤ j}.
Add also the empty set ∅ as the trivial interval [0, 0] (as 0 /∈ V ). We have just defined k =

(
n+1
2

)
+ 1 sets.

Define a complete order on these intervals in the following way: (i, j) ≺ (s, t) if j < t or (j = t and i < s).
We claim that if we consider these intervals in the order given by ≺, we satisfy the main assumption of the
theorem that [s, t] /∈ R(Tst) where Tst = {[i, j] | (i, j) ≺ (s, t)}. Indeed, for s = 1 and any t, we have that
[1, t] /∈ R(T1t) since

⋃
I∈T1t I = [1, t − 1] 6⊃ [1, t]. On the other hand, for s > 1 and any t, we have that

[s, t] /∈ R(Tst) since for all I ∈ Tst we have (t ∈ I ⇒ s− 1 ∈ I) while this is not the case for [s, t].

Proof. For each 1 ≤ i ≤ k, let Ti ∈ Li \ Li−1. We can assume that Li = R({T1, · · ·Ti}) (otherwise a longer
chain of ring families can be constructed). If none of the Ti’s is the empty set, we can increase the length of
the chain by considering (the ring families generated by) the sequence ∅, T1, T2, · · · , Tk. Similarly if V is not
among the Ti’s, we can add V either in first or second position in the sequence. So we can assume that the
sequence has T1 = ∅ and T2 = V , i.e. L1 = {∅} and L2 = {∅, V }.

When considering L2, its digraph representation has A = ∅, B = V and the directed graph D = (V,E)
is the bidirected complete graph on V . To show a weaker bound of k ≤ 2 + n(n − 1) is easy: every Ti we
consider in the sequence will remove at least one arc of this digraph and no arc will get added.

To show the stronger bound in the statement of the theorem, consider the digraph D′ obtained from
D by contracting every strongly connected component of D and discarding all but one copy of (possibly)
multiple arcs between two vertices of D′. We keep track of two parameters of D′: s is its number of vertices
and a is its the number of arcs. Initially, when considering L2, we have s = 1 strongly connected component
and D′ has no arc: a = 0. Every Ti we consider will either keep the same strongly connected components in
D (i.e. same vertices in D′) and remove (at least) one arc from D′, or will break up at least one strongly
connected component in D (i.e. increases vertices in D′). In the latter case, we can assume that only one
strongly connected component is broken up into two strongly connected components and the number of
arcs added is at most s since this newly formed connected component may have a single arc to every other
strongly connected component. Thus, in the worst case, we move either from a digraph D′ with parameters
(s, a) to one with (s, a− 1) or from (s, a) to (s+ 1, a+ s). By induction, we claim that if the original one has
parameters (s, a) then the number of steps before reaching the digraph on V with no arcs with parameters
(n, 0) is at most

a+

(
n+ 1

2

)
−
(
s+ 1

2

)
.
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Indeed, this trivially holds by induction for any step (s, a) → (s, a − 1) and it also holds for any step
(s, a)→ (s+ 1, a+ s) since:

(a+ s) +

(
n+ 1

2

)
−
(
s+ 2

2

)
+ 1 = a+

(
n+ 1

2

)
−
(
s+ 1

2

)
.

As the digraph corresponding to L2 has parameters (1, 0), we obtain that k ≤ 2 +
(
n+1
2

)
− 1 =

(
n+1
2

)
+ 1. ut

3 Analysis of the discrete Newton’s algorithm

To prove Theorem 1, we start by recalling Radzik’s analysis of Newton’s algorithm for the case of modular
functions ([Radzik, 1998]). First of all, the discrete Newton’s algorithm, as stated in Algorithm 1 for solving
max δ : minS⊆V f(S)− δa(S) ≥ 0 terminates. Recall that hi = minS⊆V f(S)− δia(S), Si ∈ arg minS f(S)−
δia(S), gi = a(Si) and δi+1 = f(Si)

a(Si)
. Let fi = f(Si) and gi = a(Si). Figure 1 illustrates the discrete Newton’s

algorithm and the notation.

Lemma 1. Newton’s algorithm as described in Algorithm 1 terminates in a finite number of steps t and
generate sequences:

(i) h1 < h2 < · · · < ht−1 < ht = 0,
(ii) δ1 > δ2 > · · · > δt−1 > δt = δ∗ ≥ 0,

(iii) g1 > g2 > · · · > gt−1 > gt ≥ 0.

Furthermore, if gt > 0 then δ∗ = 0.

The first proof of the above lemma is often attributed to [McCormick and Ervolina, 1994] and is omitted
for conciseness. As in Radzik’s analysis, we use the following lemma, illustrated in Figure 2, and we reproduce
here its proof.

Fig. 2. Illustration for showing that hi+1 + hi
gi+1

gi
≤ hi, as in Lemma 2.

Lemma 2. For any i < t, we have hi+1

hi
+ gi+1

gi
≤ 1.

Proof. By definition of Si, we have that

hi = f(Si)− δia(Si) = fi − δigi ≤ f(Si+1)− δia(Si+1) = fi+1 − δigi+1

= hi+1 +
fi
gi
gi+1 −

fi − hi
gi

gi+1 = hi+1 + hi
gi+1

gi
.

Since hi < 0, dividing by hi gives the statement. ut
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Thus, in every iteration, either gi or hi decreases by a constant factor smaller than 1. We can thus
partition the iterations into two types, for example as

Jg =

{
i | gi+1

gi
≤ 2

3

}
and Jh = {i /∈ Jg}. Observe that i ∈ Jh implies hi+1

hi
< 1

3 . We first bound |Jg| as was done in [Radzik, 1998].

Lemma 3. |Jg| = O(n log n).

Proof sketch. Let Jg = {i1, i2, · · · , ik} and let Tj = Sij . From the monotonicity of g, these sets Tj are such
that a(Tj+1) ≤ 2

3a(Tj). These can be viewed as linear inequalities with small coefficients involving the ai’s,
and by normalizing and taking an extreme point of this polytope, Goemans (see [Radzik, 1998]) has shown
that the number k of such sets is O(n log n).

Although we do not need this for the analysis, the bound of O(n log n) on the number of geometrically
decreasing sets defined on n numbers is tight, as was shown by Mikael Goldmann in 1993 by an intricate
construction based on a Fourier-analytic approach of H̊astad [H̊astad, 1994]. As this was never published, we
include (a variant of) this construction here. The reader is welcome to skip directly to Section 3.1 without
break in continuity.

Theorem 3. Let n be a power of 2. Then there exists a ∈ Rn and a sequence of sets {Si}i∈[k] with a(S1) > 0

and a(Si) ≥ 2a(Si−1) for i > 1 where k = 1
2n log2 n−O(n log log n).

Proof. Let m be such that n = 2m. Consider all 2m subsets of [m] and order them as α1, α2, · · · , αn such
that |αi| ≤ |αj | for i < j. Thus, α1 = ∅ and αn = [m]. We say αi ≺ αj if i < j. Consider the n×n Hadamard
matrix Q in which the ith row and column are indexed by subset αi of [m] and

qij = (−1)|αi∩αj |.

Q is invertible and Q−1 = 1
nQ. Set b1 = 0 and bi = 2mi for i > 1. Now, let a ∈ Rn be the solution to Qa = b.

We claim that there is a sequence of sets of length 1
2nm + O(n log log n) = 1

2n log n + O(n log log n) whose
a(·) values increase geometrically by a factor of 2.

First, observe that q1j = 1 for all j and thus a([n]) = 0. This means that if we have a r ∈ {−1, 1}n such
that 〈r, a〉 = p then a(S) = p

2 where S = {i|ri = 1} ⊆ [n]. Thus we focus on constructing a sequence of
vectors r ∈ {−1, 1}n whose inner product with a increases geometrically. We already have n−1 such vectors,
namely the rows qi ∈ {−1, 1}n of Q for i > 1: 〈qi, a〉 = 2mi.

Now, for each i > 1, we show how to construct ±1 vectors v such that 2m(i−1) < 〈v, a〉 < 2mi and whose
a values increase geometrically. We will be able to construct one such set for almost all values between 1 and
|αi|. Fix i > 1 and let k = |αi|. For any ` with 1 ≤ ` ≤ k− 2, consider a set αh`

⊂ αi of cardinality `. Define
the vector

w(`) =
∑

u:αh`
⊆αu⊆αi

qu.

Its jth component is:

w
(`)
j =

∑
u:αh`

⊆αu⊆αi

quj =
∑

u:αh`
⊆αu⊆αi

(−1)|αu∩αj | = (−1)|αh`
∩αj |

∑
u:αh`

⊆αu⊆αi

(−1)|(αu\αh`
)∩αj |

=

{
0 if (αi \ αh`

) ∩ αj = ∅
2k−`(−1)|αh`

∩αj | otherwise

Now consider v(`) = 21−(k−`)w(`) − qh. We claim this is a ±1 vector. Its jth component is equal to −qhj ∈
{−1, 1} if (αi \ αh`

) ∩ αj = ∅ and, otherwise, is equal to

2(−1)|αh`
∩αj | − (−1)|αh`

∩αj | = (−1)|αh`
∩αj | ∈ {−1, 1}.
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Now for this vector v(`) (corresponding to a given pair αh`
⊂ αi), we have:

〈v(`), a〉 = 21−(k−`)〈w(`), a〉 − 〈qh`
, a〉 = 21−(k−`)

 ∑
u:αh`

⊆αu⊆αi

bu

− bh`
. (3)

Now the bj ’s increase geometrically with j. In the summation (with 2k−` terms), the dominant one will be
bi = 2mi, and as a first approximation, we have that 〈v(`), a〉 is roughly 2mi+1−k+`, and therefore they appear
to be between bi−1 and bi, and increase appropriately by a factor 2. Unfortunately, lower terms matter and,
therefore, we need to select carefully the indices h`’s.

A simple construction of these sets {αh`
} is as follows. Let f = dlog2 ke. For any f ≤ ` ≤ k−f , let αh`

be
such that (i) αh`

∩ [f ] has as characteristic vector the f -bit representation of k− f − ` and (ii) the elements
in αh`

∩ ([k] \ [f ]) are chosen arbitrarily so that |αh`
| = `. Observe that (i) is possible for all f ≤ ` ≤ k − f

since k − f − ` ≤ k − 2f ≤ 2f − 1 and therefore k − f − ` can be represented by f bits. And (ii) is feasible
as well by our choice of `. We have just constructed k − 2f + 1 ≥ k − 2 log2(k)− 1 sets.

One can show (proof omitted for space considerations) that, for such a choice of {αh`
}, we have for

f ≤ ` < k − f : 〈v(`+1), a〉 ≥ 2〈v(`), a〉.
The number of vectors/sets we have constructed this way is therefore at least:

m∑
k=0

(
m

k

)
(k − 2 log2(k)− 1) ≥ m+ 1

2
2m − 2 log2(m)2m − 2m =

1

2
n log2(n)−O(n log log(n)),

and this completes the proof. ut

3.1 Weaker upper bound

Before deriving the bound of O(n2) on |Jg| + |Jh| for Theorem 1, we show how to derive a weaker bound
of O(n3 log n). For showing the O(n3 log n) bound, first consider a block of consecutive iterations [u, v] :=
{u, u+ 1, · · · , v} within Jh.

Theorem 4. Let [u, v] ⊆ Jh. Then |[u, v]| ≤ n2 + n+ 1.

The strategy of the proof is to show (i) that, for the submodular function kv(S) = f(S) − δva(S), the
values of kv(Si) for i ∈ [u, v − 1] form a geometrically decreasing series (Lemma 4), (ii) that each Si cannot
be in the ring family generated by Si+1, . . . , Sv−1 (Lemma 5 and Theorem 5), and (iii) then conclude using
our Theorem 2 on the length of a chain of ring families.

Lemma 4. Let [u, v] ⊆ Jh. Then for kv(S) = f(S) − δva(S), we have (i) kv(Sv) = minS kv(S) = hv, (ii)
kv(Sv−1) = 0, (iii) kv(Sv−2) > 2|hv| and (iv) kv(Si−1) > 2kv(Si) for i ∈ [u+ 1, v − 1].

Proof. Since gi+1

gi
> 2

3 for all i ∈ [u, v], Lemma 2 implies that hi+1

hi
≤ 1

3 , and thus

|hi+1|
gi+1

≤ 1

2

|hi|
gi
.

Since δi+1 − δi = fi
gi
− fi−hi

gi
= hi

gi
. We deduce that

δi+1 − δi+2 = −hi+1

gi+1
≤ 1

2
(δi − δi+1), (4)

for all i ∈ [u, v]. Now, observe that for any i ∈ [u, v − 2], we have

δi+1 − δv =

v−1∑
k=i+1

δk − δk+1 ≤
1

2

v−1∑
k=i+1

(δk−1 − δk) =
1

2
(δi − δv−1) <

1

2
(δi − δv) .

7



Thus

δi+1 − δv <
1

2
(δi − δv) , (5)

and we can even extend the range of validity to i ∈ [u, v] since for i = v − 1 or i = v, this follows from
Lemma 1.

Consider the submodular function kv(S) = f(S)−δva(S). We have denoted its minimum value by hv < 0
and Sv is one of its minimizers. For each i ∈ [u, v − 1] we have

kv(Si) = fi − δvgi = gi(δi+1 − δv),

and therefore kv(Sv−1) = 0 while kv(Si) > 0 for i ∈ [u, v − 2]. Furthermore, (5) implies that

kv(Si) = gi(δi+1 − δv) <
1

2

gi
gi−1

gi−1(δi − δv) <
1

2
gi−1(δi − δv) =

1

2
kv(Si−1),

and this is valid for i ∈ [u, v− 1]. Thus the kv(Si)’s decrease geometrically with increasing i. In addition, we
have kv(Sv−2) = gv−2(δv−1 − δv) while (by (4) and Lemma 1)

−kv(Sv) = |hv| = −hv = gv(δv − δv+1) <
1

2
gv−2(δv−1 − δv) =

1

2
kv(Sv−2).

Summarizing, we have kv(Sv) = minS kv(S) = hv, kv(Sv−1) = 0, kv(Sv−2) > 2|hv| and kv(Si−1) >
2kv(Si) for i ∈ [u, v − 1]. ut

We now show that for any submodular function and any ring family on the same ground set, the values
attained by the submodular function cannot increase much when the ring family is increased to the smallest
ring family including a single additional set. This lemma follows from the submodularity of f and Birkhoff’s
representation theorem for subsets contained in a ring family.

Lemma 5. Let f : 2V → R be a submodular function with fmin = minS⊆V f(S) ≤ 0. Let L be any ring
family over V and T /∈ L. Define L′ := R(L ∪ {T}), m = maxS∈L f(S) and m′ = maxS∈L′ f(S). Then

m′ ≤ 2(m− fmin) + f(T ).

Proof. Consider S ∈ L′. Using (2), we can express S as S =
⋃
i∈S Si where Si can be either (i) T , or (ii) R

for some R ∈ L, or (iii) R∩ T for some R ∈ L. Taking the union of the sets R of type (ii), resp. (iii), into P ,
resp. Q, we can express S as S = P ∪ T or as S = P ∪ (Q ∩ T ) where P,Q ∈ L (since the existence of any
case (i) annihilates the need for case (iii)).

Now using submodularity, we obtain that

f(P ∪ T ) ≤ f(P ) + f(T )− f(P ∩ T ) ≤ m+ f(T )− fmin,

in the first case and

f(P ∪ (Q ∩ T )) ≤ f(P ) + f(Q ∩ T )− f(P ∩Q ∩ T )

≤ f(P ) + f(Q) + f(T )− f(Q ∪ T )− f(P ∩Q ∩ T )

≤ 2m+ f(T )− 2fmin.

In either case, we get the desired bound on f(S) for any S ∈ R′. ut

We will now use the bound in Lemma 5 to show that if a sequence of sets increases in their submodular
function value by a factor of 4, then any set in the sequence is not contained in the ring family generated by
the previous sets.

Theorem 5. Let f : 2V → R be a submodular function with fmin = minS⊆V f(S) ≤ 0. Consider a sequence
of distinct sets T1, T2, · · · , Tq such that f(T1) = fmin, f(T2) > −2fmin, and f(Ti) ≥ 4f(Ti−1) for 3 ≤ i ≤ q.
Then Ti /∈ R({T1, · · · , Ti−1}) for all 1 < i ≤ q.
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Proof. This is certainly true for i = 2. For any i ≥ 1, define Li = R({T1, · · · , Ti}) and mi = maxS∈Li f(S).
We know that m1 = fmin ≤ 0 and m2 = f(T2) since T1 ∩ T2 and T1 ∪ T2 cannot have larger f values than
T2 by submodularity of f and minimality of T1.

We claim by induction that mk ≤ 2f(Tk) + 2fmin for any k ≥ 2. This is true for k = 2 since m2 =
f(T2) ≤ 2f(T2) + 2fmin. Assume the induction claim to be true for k − 1.

We get that mk−1 ≤ 2f(Tk−1) + 2fmin < 4f(Tk−1). Since f(Tk) > mk−1, Tk /∈ Lk−1 = R(T1, · · · , Tk−1).
Using Lemma 5, we get that

mk ≤ 2(mk−1 − fmin) + f(Tk)

≤ 2(2f(Tk−1) + 2fmin − fmin) + f(Tk)

≤ 2f(Tk) + 2fmin.

Thus proving the induction step for k, and hence the statement of the theorem. ut

We are now ready to prove Theorem 4.

Proof. (of Theorem 4) Apply Theorem 5 to the submodular function kv given in Lemma 4. Let T1 = Sv
and skip every other set to define Ti = Sv−2(i−1) for v − 2(i − 1) ≥ u i.e. i ≤ q := 1 + (v − u)/2. Then
the conditions of Theorem 5 are satisfied (thanks to Lemma 4), and we obtain a sequence of sets T1, · · · , Tq
such that Ti /∈ R(T1, · · · , Ti−1). Therefore, Theorem 2 on the length of a chain of ring families implies that
q ≤

(
n+1
2

)
+ 1, or v − u ≤ (n+ 1)n. This means |[u, v]| ≤ n2 + n+ 1. ut

Since Lemma 3 shows that |Jg| = O(n log n) and we know from Theorem 4 that the intervals between
two indices of Jg have length O(n2), this implies that |Jg|+ |Jh| = O(n log n) ·O(n2) = O(n3 log n).

3.2 Main Result of Theorem 1

The analysis of Theorem 4 can be improved by showing that we can extract a chain of ring families not just
from one interval of Jh but from all of Jh. Instead of discarding every other set in Jh, we also need to discard
the first O(log n) sets in every interval of Jh. This helps prove the main result of the paper that bounds the
number of iterations in the discrete Newton’s algorithm by at most n2 +O(n log2 n).

Theorem 6. We have |Jh| = n2 +O(n log2 n).

Before proving this, we need a variant of Lemma 5. The proof of the lemma again follows from the
submodularity of f and Birkhoff’s representation theorem for subsets contained in a ring family.

Lemma 6. Let T ⊆ 2V and assume that f(S) ≤M for all S ∈ T . Then for all S ∈ R(T )

f(S) ≤ n2

4
(M − fmin).

Proof. Consider any S ∈ R(T ). We know that S =
⋃
i∈S
⋂
j /∈S Uij , for some Uij ∈ T . Define Si =

⋂
j /∈S Uij ;

thus S =
⋃
i∈S Si.

We first claim that, for any k sets T1, T2, · · · , Tk ∈ T , we have that

f(

k⋂
i=1

Ti) ≤ kM − (k − 1)fmin.

This is proved by induction on k, the base case of k = 1 being true by our assumption on f . Indeed, applying
submodularity to P =

⋂k−1
i=1 Ti and Tk (and the inductive hypothesis), we get

f(

k⋂
i=1

Ti) = f(P ∩Tk) ≤ f(P )+f(Tk)−f(P ∪Tk) ≤ (k−1)M − (k−2)fmin+M −fmin = kM − (k−1)fmin.
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Using this claim, we get that for any i ∈ S, we have

f(Si) = f(
⋂
j /∈S

Uij) ≤ |V \ S|M − (|V \ S| − 1)fmin ≤ |V \ S|(M − fmin).

By a similar argument on the union of the Si’s, we derive that

f(S) ≤ |S| (|V \ S|M − (|V \ S| − 1)fmin))− (|S| − 1)fmin

≤ |S||V \ S|M − (|S||V \ S| − 1)fmin

≤ n2

4
(M − fmin).

ut

We are now ready to prove Theorem 6.

Proof. (of Theorem 6.) Let Jh =
⋃`
i=1[ui, vi] where ui−1 > vi + 1 for 1 < i ≤ `. Notice that these intervals

are ordered in a reverse order (compared to the natural ordering). We construct a sequence of sets T1, · · ·
such that each set in the sequence is not in the ring closure of the previous ones. The first sets are just every
other set Si from [u1, v1] obtained as before by using Theorem 5 and Lemma 4 with the submodular function
kv1 . Let T1 denote this sequence of sets.

Suppose now we have already considered the intervals [uj , vj ] for j < i and have extracted a (long)
sequence of sets Ti−1 such that each set in the sequence is not in the ring closure of the previous ones.
Consider now the submodular function f := kvi , and let fmin ≤ 0 be its minimum value. Notice that from
the order of iterations in the discrete Newton’s algorithm we have that f(T ) < 0 for T ∈ Ti−1. Therefore by

Lemma 6 with M = 0 we have that f(S) ≤ −n
2

4 fmin for all S ∈ R(Ti−1). Using Lemma 4 with f = kvi ,
we have that only sets Sk with k > vi − log(n2/4) could possibly be in R(Ti−1), and therefore we can safely
add to Ti−1 every other set in [ui, vi−O(logn)] while maintaining the property that every set is not in the
ring closure of the previous ones. Over all i, we have thus constructed a chain of ring families of length
1
2 |Jh| −O(log n)` = 1

2 |Jh| −O(log n)|Jg|. The theorem now follows from Lemma 3 and Theorem 2. ut

Finally, combining Theorem 6 and Lemma 3 proves Theorem 1.

Proof. (of Theorem 1.) In every iteration of discrete Newton’s algorithm, either gi or hi decreases by a

constant factor smaller than 1. Thus, the iterations can be partitioned into two types Jg =
{
i | gi+1

gi
≤ 2

3

}
and Jh = {i /∈ Jg}. Lemma 3 shows that |Jg| = O(n log n) and Theorem 6 shows that |Jh| = n2+O(n log2 n).
Thus, the total number of iterations is n2 +O(n log2 n). ut

4 Geometrically Increasing Sequences

In the proof for Theorem 1, we considered a sequence of sets S1, · · · , Sk such that f(Si) ≥ 4f(Si−1) for all
i ≤ k for a submodular function f . In the special case when f is modular, we know that the maximum length
of such a sequence is at most O(n log n) (Lemma 3). When f is submodular, we show that the maximum
length is at most

(
n+1
2

)
+1 by applying Theorem 2 to Theorem 5. In this section, we show that the bound for

the submodular case is tight by constructing two related examples: one that uses interval sets of the ground
set {1, · · · , n}, and the other that assigns weights to arcs in a directed graph such that the cut function
already gives such a sequence of quadratic (in the number of vertices) number of sets.

4.1 Interval Submodular Functions

In this section, we show that the bound for the submodular case is tight by constructing a sequence of(
n+1
2

)
+ 1 sets ∅, S1, · · · , S(n+1

2 ) for a nonnegative submodular function f , such that f(Si) = 4f(Si−1) for all

i ≤
(
n+1
2

)
.
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For each 1 ≤ i ≤ j ≤ n, consider intervals [i, j] = {k | i ≤ k ≤ j} and let the set of all intervals be
I =

⋃
i,j{[i, j]}. Let [i, j] = ∅ whenever i > j. Consider a set function f : I → R+ such that f(∅) = 0. We

say f is submodular on intervals if for any S, T ∈ I such that S ∪ T ∈ I and S ∩ T ∈ I, we have

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ).

Lemma 7. Let τ and κ be monotonically increasing, nonnegative functions on the set [n], then f defined by
f([i, j]) = τ(i)κ(j) is submodular on intervals.

Proof. Consider two intervals S and T . The statement follows trivially if S ⊆ T , so consider this is not the
case. Let S = [si, sj ] and T = [ti, tj ] and assume w.l.o.g that sj ≥ tj .

i. Case S ∩T 6= ∅. This implies ti < si and si ≤ tj ≤ sj . In this case, f(S) + f(T )− f(S ∩T )− f(S ∪T ) =
τ(si)κ(sj) + τ(ti)κ(tj)− τ(si)κ(tj)− τ(ti)κ(sj) = (τ(si)− τ(ti))(κ(sj)− κ(tj)) ≥ 0.

ii. Case S∩T = ∅, S∪T = [ti, sj ]. In this case, f(S)+f(T )−f(S∪T ) = τ(si)κ(sj)+τ(ti)κ(tj)−τ(ti)κ(sj) ≥
κ(sj)(τ(si)− τ(ti)) ≥ 0. ut

We show that one can extend any function that is submodular on intervals to a submodular function
(defined over the ground set). This construction is general, and might be of independent interest. For any set
S ⊆ V , define I(S) to be the set of maximum intervals contained in S. For example, for S = {1, 2, 3, 6, 9, 10},
I(S) = {[1, 3], [6, 6], [9, 10]}.

Lemma 8. Consider a set function f defined over intervals such that (i) f(∅) = 0, (ii) f([i, j]) ≥ 0 for
interval [i, j], (iii) for any S, T ∈ I such that S ∩ T, S ∪ T ∈ I, f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ). Then,
g(S) =

∑
I∈I(S) f(I) is submodular over the ground set {1, . . . , n}.

Proof. We will show that g is submodular by proving that for any T ⊆ S and any k /∈ S, g(S∪{k})−g(S) ≤
g(T ∪ {k})− g(T ). Let the marginal gain obtained by adding k to S be gk(S) = g(S ∪ {k})− g(S).

Note that I(S ∪k)\I(S) can either contain (i) [s, k], for some s ≤ k, or (ii) [k, u], for some u > k, or (iii)
[s, u] for s ≤ k ≤ u. In case (i), gk(S) = f([s, k])− f([s, k − 1]); in case (ii), gk(S) = f([k, u])− f([k + 1, u]);
and in case (iii), gk(S) = f([s, u]) − f([s, k − 1]) − f([k + 1, u]). Thus, when comparing the values of gk(S)
and gk(T ), we are only concerned with intervals that are modified due to the addition of k.

Let S ∪ {k} contain the interval [s, k − 1] ∪ {k} ∪ [k + 1, u] and T ∪ {k} contain the interval [t, k − 1] ∪
{k} ∪ [k + 1, v] where s ≤ t, v ≤ u (as T ⊆ S) and s ≤ k ≤ u (s = k implies [s, k − 1] = ∅ and u = k implies
that [k + 1, u] = ∅) and t ≤ k ≤ v (t = k implies [t, k − 1] = ∅ and v = k implies that [k + 1, v] = ∅).

g(S ∪ {k})− g(S)− g(T ∪ {k}) + g(T )

= f([s, u])− f([s, k − 1])− f([k + 1, u])− (f([t, v])− f([t, k − 1])− f([k + 1, v]))

= f([s, u])− f([s, k − 1])− f([k + 1, u])− f([t, v]) + f([t, k − 1]) + f([k + 1, v])

≤ f([s, u])− f([s, k − 1])− f([k + 1, v])− f([t, u]) + f([t, k − 1]) + f([k + 1, v]) (6)

= f([s, u])− f([s, k − 1])− f([t, u]) + f([t, k − 1]) ≤ 0. (7)

where (6) follows from submodularity of f on intervals [k + 1, u] and [t, v], i.e., f([k + 1, u]) + f([t, v]) ≥
f([t, u]) + f([k + 1, v]), and (7) follows from submodularity of f on intervals [s, k − 1] and [t, u]. ut

Construction. Consider the function f([i, j]) = 4
j(j−1)

2 4i for [i, j] ∈ I, obtained by setting τ(i) = 4i

and κ(j) = 4
j(j−1)

2 . This is submodular on intervals from Lemma 7. This function defined on intervals can
be extended to a submodular function g by Lemma 8. Consider the total order ≺ defined on intervals [i, j]
specified in example 1 (Section 2). By our choice of τ and κ we have that S ≺ T implies 4g(S) ≤ g(T ). The
submodular function g thus contains a sequence of length

(
n+1
2

)
+ 1 of sets that increase geometrically in

their function values.
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4.2 Cut functions

The example from the previous section and Birkhoff’s representation theorem motivates a construction of a

complete directed graph G = (V,A) (|V | = n) and a weight vector w ∈ R|A|+ such that there exists a sequence
of m =

(
n
2

)
sets ∅, S1, · · · , Sm ⊆ V that has w(δ+(Sk)) ≥ 4w(δ+(Sk−1)) for all k ≥ 2.

Construction. The sets Si are all intervals of [n−1], and are ordered by the complete order ≺ as defined
previously. One can verify that the kth set Sk in the sequence is Sk = [i, j] where k = i+ j(j − 1)/2.

Note that, if i > 1, for each interval [i, j], arc ei,j := (j, i − 1) ∈ δ+([i, j]) and (j, i − 1) /∈ δ+([s, t]) for
any (s, t) ≺ (i, j). For any interval [1, j], arc e1,j := (j, j + 1) ∈ δ+([1, j]) and (j, j + 1) /∈ δ+([s, t]) for any
(s, t) ≺ (1, j). Define arc weights w by w(ei,j) = 5i+j(j−1)/2. Thus, the arcs ei,j corresponding to the intervals
[i, j] increase in weight by a factor of 5. We claim that w(δ+(Sk)) ≥ 4w(δ+(Sk−1)). This is true because
4
∑
es,t:(s,t)≺(i,j) w(es,t) ≤ w(ei,j).

5 Open Question

In this paper, we showed an O(n2) bound on the number of iterations of the discrete Newton’s algorithm
for the problem of finding max δ : minS f(S) − δa(S) ≥ 0 for an arbitrary direction a ∈ Rn. Even though
we showed that certain parts of our analysis were tight, we do not know whether this bound is tight.
More fundamentally, we know little about the number of breakpoints of the piecewise linear function g(δ) =
minS f(S)−δa(S) in the case of an arbitrary direction a. Our results do not imply anything on this number of
breakpoints, and this number could still be quadratic, exponential or even linear. In the simpler, nonnegative
setting a ∈ Rn+, it is not just that the discrete Newton’s algorithm takes at most n iterations, but it is also the
case that the number of breakpoints of the lower envelope is at most n (by the property of strong quotients).
On the other hand, there exist instances of parametric minimum s− t cut problems where the minimum cut
value has an exponential number of breakpoints [Mulmuley, 1999]. However, this corresponds to the more
general problem minS f(S)− δa(S) where f(·) is submodular but the function a(·) is not modular (and not
even supermodular or submodular as the slopes of the parametric capacities can be positive or negative).
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