550 research outputs found

    Adaptive hybrid function projective synchronization of chaotic systems with fully unknown periodical time-varying parameters

    Get PDF
    In this paper, an adaptive learning control approach is presented for the hybrid functional projective synchronization (HFPS) of different chaotic systems with fully unknown periodical time-varying parameters. Differential-difference hybrid parametric learning laws and an adaptive learning control law are constructed via the Lyapunov–Krasovskii functional stability theory, which make the states of two different chaotic systems asymptotically synchronized in the sense of mean square norm. Moreover, the boundedness of the parameter estimates are also obtained. The Lorenz system and Chen system are illustrated to show the effectiveness of the hybrid functional projective synchronization scheme

    Synchronization of N-Non-Linear Slave Systems with Master System Using Non-Adaptive and Adaptive Coupled Observers

    Get PDF
    Synchronization of N-slave chaotic systems with a master system is a challenging task, particularly in recent times. In this paper, a novel methodology is proposed for synchronizing the N number of slave systems with a master system. The proposed methodology is based on coupled adaptive synchronous observers. The difference between the corresponding states of master and slave systems is converged to the origin by means of a novel feedback control scheme to achieve synchronization between the master and slave systems. The efficacy of the proposed methodology is verified through a simulation of FitzHugh–Nagumo non-linear systems in MATLAB. The simulation results validate and prove claims, and these systems are successfully synchronized by CCS and CCAS observer-based control

    Control and synchronization of the generalized Lorenz system with mismatched uncertainties using backstepping technique and time‐delay estimation

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140007/1/cta2353.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/140007/2/cta2353_am.pd

    Probabilistic synchronisation of pinning control

    Get PDF
    This paper is concerned with synchronization of complex stochastic dynamical networks in the presence of noise and functional uncertainty. A probabilistic control method for adaptive synchronization is presented. All required probabilistic models of the network are assumed to be unknown therefore estimated to be dependent on the connectivity strength, the state and control values. Robustness of the probabilistic controller is proved via the Liapunov method. Furthermore, based on the residual error of the network states we introduce the definition of stochastic pinning controllability. A coupled map lattice with spatiotemporal chaos is taken as an example to illustrate all theoretical developments. The theoretical derivation is complemented by its validation on two representative examples

    Chaos Synchronization Using Active Control and Backstepping Control: A Comparative Analysis

    Get PDF
    This paper examines the synchronization performance of two widely used chaos synchronization techniques: active control and backstepping control. It is shown that the two methods have excellent performance, with the active control marginally outperforming the backstepping control in terms of transient analysis. However, the complexity of active controllers suggests that the backstepping control would be more attainable in engineering applications
    corecore