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Abstract. In this paper, an adaptive learning control approach is presented for the hybrid functional
projective synchronization (HFPS) of different chaotic systems with fully unknown periodical
time-varying parameters. Differential-difference hybrid parametric learning laws and an adaptive
learning control law are constructed via the Lyapunov–Krasovskii functional stability theory, which
make the states of two different chaotic systems asymptotically synchronized in the sense of mean
square norm. Moreover, the boundedness of the parameter estimates are also obtained. The Lorenz
system and Chen system are illustrated to show the effectiveness of the hybrid functional projective
synchronization scheme.
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1 Introduction

Many chaotic systems have been proposed to be analyzed over the past decades [1].
A basic characteristic of a chaotic system is its extreme sensitivity to initial conditions,
small differences in the initial conditions can cause unexpected different system states.
Recently, chaos synchronization has received increasing attention, especially in secure
communication, physics, chemical reactor, bio-engineering, medical science and artificial
neural networks. Up to now, different types of synchronization phenomena have been
presented such as complete synchronization [2], generalized synchronization [3], phase
synchronization [4], projective synchronization [5], etc. Besides, many control schemes
such as the OGY method [6], learning control method [7], feedback method [8], backstep-
ping method [9] and adaptive control method [10] have been employed to synchronize
identical or non-identical chaotic systems with different conditions. Among all kinds of
chaos synchronization schemes, projective synchronization, first introduced by Mainieri
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and Rehack [11], characterized by a scaling factor by which two systems synchronize
proportionally, has been extensively investigated. In [12], a hybrid projective synchroniza-
tion (HPS), in which the different state variables can synchronize up to different scaling
factors, was numerically observed in coupled partially linear chaotic complex nonlinear
systems without adding any control term.

However, most of the projective synchronization are studied with constant scaling
factor. Du et al. [13], presented a new synchronization scheme, called function projective
synchronization. Compared to projective synchronization, function projective synchro-
nization means that two systems can synchronize proportionally by a functional scal-
ing factor. In [14], a modified function projective synchronization between hyperchaotic
Lorenz system and hyperchaotic Lu system was investigated by using adaptive method.
By Lyapunov stability theory, the adaptive control law and the parameter update law
were derived to make the state of two hyperchaotic systems modified function projective
synchronized. However, in [14], the parameters update law was related to the unknown
parameters, which will lead to infeasibility in engineering applications. The character-
istics, unpredictability of the functional scaling factor varying with time, is such that
function projective synchronization can improve the security when applied in secure
communication, so the research on hybrid function projective synchronization has become
a new branch in chaos synchronization fields.

On the other hand, chaotic systems are unavoidably exposed to environments which
may cause their parameters to vary within certain ranges, such as environment tem-
perature, voltage fluctuation, mutual interference among components, and so on. But
parameters of some systems in practical circumstances cannot be exactly known in ad-
vance, and may drift around their nominal values. The effect of these uncertainties will
destroy the synchronization and even break it. Therefore, there is important theoreti-
cal significance and practical application to study synchronization in such systems with
unknown parameters [15–17]. In these research results, the common method used to
solve the parametric uncertainties is the adaptive control scheme in which the unknown
system parameters are updated adaptively according to certain rules. For example, in [15]
and [16] it was assumed that the parameters of the driving system were totally uncertain
or unknown to the response system, and the parameters of the response system can be
different from those of the driving system. Some studies supposed that the parameters of
the driving and the response systems were identical but there were also some parametric
uncertainties or perturbations [17]. In [18], based on the Lyapunov stability theory and
adaptive bounding technique, a robust adaptive control law and the parameters update
law were derived to make the states of two different chaotic systems asymptotically
synchronized. In the control strategy, the parameters did not need to know thoroughly
if the time-varying parameters are bounded by the product of a known function of t and
an unknown constant. Another key issue in the adaptive synchronization technique for
chaotic system is the problem of parameter identification [19, 20]. In [19], authors have
given a great important condition on the consistency of the estimated parameters, that is
functions with unknown parameters should be linearly independent on the synchronized
orbit. In [20], an adaptive modified function projective synchronization (AMFPS) was
proposed for uncertain hyperchaotic systems with identical or non-identical dimension
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structures, a sufficient condition on the properties of AMFPS and the identification of the
parameters were derived. However, in [19, 20], just the unknown constant parameters in
the driving and response systems were concerned. The learning control methods [21, 22]
have been applied to chaotic systems in the presence of time-varying uncertainties with
the uniform periodicity and the pseudo-periodic problem. In [23], it was supposed that the
parameters of the driving system are unknown time-varying periodic with a determined
period, and the parameters of the response system are known, adaptive learning control
scheme has been employed to realize generalized projective synchronization between two
different chaotic systems. However, when there are unknown time-varying parameters
in both the driving system and the response system, the problem of hybrid function
projective synchronization is not solved, yet.

Motivated by the foregoing discussion, we will formulate the hybrid function pro-
jective synchronization problem of different chaotic systems both with unknown pe-
riodical time-varying parameters. According to Lyapunov–Krasovskii stability theory,
differential-difference mixed-type parametric learning laws and an adaptive learning con-
trol law are constructed to make the states of two different chaotic systems asymptotically
HFP synchronized, and also the boundedness of the parameter estimates are proven. At
last, numerical simulation results are presented to verify the effectiveness of the proposed
approach.

The rest of this paper is organized as follows. Section 2 gives the problem formulation.
The learning control scheme is presented in Section 3. In Section 4, a simulation example
is employed to conform the effectiveness of the proposed scheme. The conclusions are
given in Section 5.

2 Problem description

Consider a class of chaotic systems with unknown time-varying parameters, described as
follow:

ẋ = f(x) + F (x)θ(t), (1)

where x ∈ Rn is the state vector, f(x) : Rn → Rn and F (x) : Rn → Rn×p are contin-
uous nonlinear vector function and nonlinear matrix function of system (1), respectively.
f(x) and F (x) are local Lipschitz continuous functions with respect to x. θ(t) =
(Θ + Φ(t)) ∈ Rp is the uncertain parameters vector. Here Θ is the nominal value of
θ(t) and Φ(t) is the time-varying uncertainty or disturbance. Equation (1) is considered
as the drive system.

The response system with a controller u(x, y, t) ∈ Rn is introduced as follows:

ẏ = g(y) +G(y)η(t) + u(x, y, t), (2)

where y ∈ Rn is the state vector, g(y) : Rn → Rn and G(y) : Rn → Rn×p are contin-
uous nonlinear vector function and nonlinear matrix function of system (2), respectively.
g(y) andG(y) are Lipschitz continuous functions with respect to y. η(t) = (Ξ+Ψ(t)) ∈
Rp is the uncertain parameters vector. Here Ξ is the nominal value of η(t) and Ψ(t) is
the time-varying uncertainty or disturbance, u(x, y, t) ∈ Rn is the control vector.
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Remark 1. The systems (1) and (2) studied in this paper depend linearly on the unknown
parameters. The class of nonlinear dynamical systems include an extensive variety of
chaotic systems such as Lorenz system, Rösler system, Duffing system, Chua’s circuit,
generalized Lorenz system, etc.

Remark 2. It should be emphasized that in [23], generalized projective synchronization
of chaotic systems has been obtained via adaptive learning control approach, where the re-
sponse system has no parameter uncertainty, and the problem of hybrid function projective
synchronization has not concerned in [23], and the property of parameter identification
has also not considered. Up to now, there is no effective approach for synchronization of
systems (1) and (2) with fully unknown time-varying parameters. In this paper, we shall
present an adaptive hybrid function projective synchronization scheme for systems (1)
and (2), the characteristics of synchronization and the boundedness of estimated parame-
ters will be obtained.

Next, we assume that θ(t) ∈ Rp, η(t) ∈ Rp for all t ∈ R+ are the unknown
continuous periodic time-varying function vector with a known period T , that is to say,
θ(t) = θ(t− T ), η(t) = η(t− T ).

Remark 3. Since θ(t) = Θ + Φ(t), η(t) = Ξ + Ψ(t), obviously Φ(t) and Ψ(t) are
unknown continuous periodic time-varying functions vector with a known period T .

We define a synchronizing error as

e(t) = x−H(t)y, (3)

where H(t) = diag{h1(t), h2(t), . . . , hn(t)} is a scaling function matrix, hi(t) is a con-
tinuous differentiable bounded function and hi(t) 6= 0 for all t ∈ R.

Therefore, the goal of control is to design and implement an appropriate controller
u(x, y, t) such that the response system (2) could be asymptotically synchronized with
the drive system (1) in the L2

T norm sense as follows:

lim
t→∞

√∫ t

t−T

∥∥e(τ)
∥∥2 dτ = 0. (4)

Remark 4. As well known, if equality (4) is achieved withH(t) = α(t)I , α(t) is a scalar
continuous differentiable bounded function of t, then a function projective synchroniza-
tion occurs between system (1) and (2).

3 Design of the learning controller

The dynamic equation of synchronization error (3) can be easily obtained from Eqs. (1)
and (2), which is described as follows:

ė = ẋ− Ḣ(t)y −H(t)ẏ

= f(x) + F (x)Θ + F (x)Φ(t)− Ḣ(t)y −H(t)g(y)−H(t)G(y)Ξ

−H(t)G(y)Ψ(t)−H(t)u(x, y, t). (5)
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According to Eq. (5), we design the controller in the following form:

u(x, y, t) = H−1(t)
[
Ke+ f(x) + F (x)Θ̂(t) + F (x)Φ̂(t)− Ḣ(t)y

−H(t)g(y)−H(t)G(y)Ξ̂(t)−H(t)G(y)Ψ̂(t)
]
, (6)

where K ∈ Rn×n is a designed positive-definite matrix, Θ̂(t), Φ̂(t), Ξ̂(t) and Ψ̂(t) are
estimations to Θ, Φ(t), Ξ and Ψ(t), respectively.

For the constant parameter vector Θ and Ξ , the differential type adaptive learning law
are designed as

˙̂
Θ(t) = Γ1F

T(x)e, (7)
˙̂
Ξ(t) = −Γ4G

T(y)H(t)e, (8)

where Γ1 ∈ Rp×p, Γ4 ∈ Rp×p are positive diagonal learning gain matrices.
For the period time-varying parameter vectors Φ(t) and Ψ(t), the difference type

adaptive learning law are employed

Φ̂(t) =


Φ̂(t− T ) + Γ2F

T(x)e, t ∈ [T,∞),

Γ0(t)FT(x)e, t ∈ [0, T ),

0, t ∈ [−T, 0),

(9)

and

Ψ̂(t) =


Ψ̂(t− T )− Γ5G

T(y)H(t)e, t ∈ [T,∞),

−Γ3(t)GT(y)H(t)e, t ∈ [0, T ),

0, t ∈ [−T, 0),

(10)

where Γ2, Γ5 ∈ Rp×p are positive diagonal learning gain matrices, and Γ0(t), Γ3(t) ∈
Rp×p are continuous, positive, diagonal gain matrices for the first period [0, T ) satisfying
Γ0(0) = Γ3(0) = 0, Γ0(T ) = Γ2, Γ3(T ) = Γ5, and each element of Γ0(t) and Γ3(t)
is chosen to be strictly increasing. The purpose of choosing Γ0(t) and Γ3(t) is to ensure
the continuity of time-varying parameter updating Φ̂(t) and Ψ̂(t) for t ∈ [0,∞), then,
it is ensured that the boundedness of Lyapunov–Krasovskii functional in the first period
[0, T ). To verify this, it only needs to prove the continuity of Φ̂(t) and Ψ̂(t) at the instants
t = iT , i = 1, 2, . . . . Continuous property of Φ̂(t) and Ψ̂(t) for the first period [0, T ) is
obvious. Hence, we only need to focus on t ∈ [iT, (i+ 1)T ], i = 1, 2, . . . .

Lemma 1. Φ̂(t) and Ψ̂(t) ∀t ∈ [0,∞) are of continuity.

Proof. Similar to [23], we can easily prove the continuous property of Φ̂(t) and Ψ̂(t) for
all t ∈ [0,∞).

Substituting Eq. (6) into (5), thereby, we can get

ė = −Ke+ F (x)Θ̃(t) + F (x)Φ̃(t)−H(t)G(y)Ξ̃(t)−H(t)G(y)Ψ̃(t), (11)

where Θ̃(t) = Θ−Θ̂(t), Φ̃(t) = Φ(t)−Φ̂(t), Ξ̃(t) = Ξ−Ξ̂(t), Ψ̃(t) = Ψ(t)−Ψ̂(t).
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4 Convergence analysis

The convergence property of the proposed adaptive learning control method is summa-
rized in the following theorem.

Theorem 1. For a given scaling function matrixH(t) and any initial conditions x(0) and
y(0), there are the adaptive learning control law (6) and parameter learning laws (7)–(10)
that ensure the asymptotical convergence of the synchronizing error e(t) in the L2

T norm
sense, that is to say, limt→∞

√∫ t

t−T ‖e(τ)‖2 dτ = 0.Meanwhile, the constant parameter
estimates Θ̂(t), Ξ̂(t) are bounded and the time-varying parameter estimates errors are
bounded in the sense of L2

T norm, that is

t∫
t−T

Φ̃T(τ)Φ̃(τ) dτ 6 m1,

t∫
t−T

Ψ̃T(τ)Ψ̃(τ) dτ 6 m2,

where m1, m2 are some positive constants.

Proof. To facilitate the convergence analysis, we denote V (t, e(t), Θ̃(t), Φ̃(t), Ξ̃(t),
Ψ̃(t)) = V (t).

Choose a Lyapunov–Krasovskii functional as follows:

V (t) =



1
2e

Te+ 1
2 Θ̃

T(t)Γ−11 Θ̃(t)+ 1
2 Ξ̃

T(t)Γ−14 Ξ̃(t)

+1
2

∫ t

0
Φ̃T(τ)Γ−12 Φ̃(τ) dτ+ 1

2

∫ t

0
Ψ̃T(t)Γ−15 Ψ̃(t) dτ, t ∈ [0, T ),

1
2e

Te+ 1
2 Θ̃

T(t)Γ−11 Θ̃(t)+ 1
2 Ξ̃

T(t)Γ−14 Ξ̃(t)

+1
2

∫ t

t−T Φ̃
T(τ)Γ−12 Φ̃(τ) dτ+ 1

2

∫ t

t−T Ψ̃
T(τ)Γ−15 Ψ̃(τ) dτ, t ∈ [T,∞).

(12)

Firstly, we prove that the finiteness of V (t) for the first period [0, T ). According to the
system dynamics (1) and (2) and the proposed control laws (6)–(10), it can be seen that
the right-hand side of Eq. (5) is continuous with respect to all arguments. In light of the
existence theorem of differential equation, synchronizing error equation (5) has a solution
in an interval [0, T1) ⊂ [0, T ), with 0 < T1 6 T . Therefore, the boundedness of V (t)
over [0, T1) can be guaranteed and we only need to focus on the boundedness of V (t) on
the interval [T1, T ).

For any t ∈ [T1, T ), the time derivative of V (t) for t ∈ [T1, T ), is given by

V̇ (t) = eTė+ Θ̃T(t)Γ−11
˙̃Θ(t) + Ξ̃T(t)Γ−14

˙̃Ξ(t)

+
1

2
Φ̃T(t)Γ−12 Φ̃(t) +

1

2
Ψ̃T(t)Γ−15 Ψ̃(t), t ∈ [T1, T ). (13)

Taking Eq. (11) into the first term on the right-hand side of V̇ (t) in Eq. (13), we obtain

eTė = −eTKe+ eTF (x)Θ̃(t) + eTF (x)Φ̃(t)

− eTH(t)G(y)Ξ̃(t)− eTH(t)G(y)Ψ̃(t). (14)
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Using the constant parameter updating laws (7) and (8), we have

Θ̃T(t)Γ−11
˙̃Θ(t) = −Θ̃T(t)Γ−11

˙̂
Θ(t) = −Θ̃T(t)FT(x)e, (15)

Ξ̃T(t)Γ−14
˙̃Ξ(t) = −Ξ̃T(t)Γ−14

˙̂
Ξ(t) = Ξ̃T(t)GT(y)H(t)e. (16)

Then, let us focus on the forth and fifth terms on the right-hand side of (13). Since Γ0(t)
and Γ3(t) are positive-definite diagonal matrices, and each diagonal element is strictly
increasing in [0, T ), therefore, Γ−12 6 Γ−10 (t) < ∞, Γ−15 6 Γ−13 (t) < ∞ are ensured
on the interval [T1, T ), then,

1

2
Φ̃T(t)Γ−12 Φ̃(t)

6
1

2
Φ̃T(t)Γ−10 (t)Φ̃(t)

=
1

2

[
ΦT(t)Γ−10 (t)

(
Φ(t)− Φ̂(t)

)
− 2Φ̂T(t)Γ−10 (t)Φ̃(t) + Φ̂T(t)Γ−10 (t)Φ̃(t)

]
6

1

2

[
ΦT(t)Γ−10 (t)Φ(t)− 2eTF (x)Φ̃(t)

]
, (17)

1

2
Ψ̃T(t)Γ−15 Ψ̃(t)

6
1

2
Ψ̃T(t)Γ−13 (t)Ψ̃(t)

=
1

2

[
ΨT(t)Γ−13 (t)

(
Ψ(t)− Ψ̂(t)

)
− 2Ψ̂T(t)Γ−13 (t)Ψ̃(t) + Ψ̂T(t)Γ−13 (t)Ψ̃(t)

]
6

1

2

[
ΨT(t)Γ−13 (t)Ψ(t) + 2eTH(t)G(y)Ψ̃(t)

]
. (18)

Substituting Eqs. (14)–(18) into Eq. (13), yields

V̇ (t) 6 −eTKe+
1

2
ΦT(t)Γ−10 (t)Φ(t) +

1

2
ΨT(t)Γ−13 (t)Ψ(t)

6
1

2
ΦT(t)Γ−10 (t)Φ(t) +

1

2
ΨT(t)Γ−13 (t)Ψ(t). (19)

Note that Φ(t) and Ψ(t) are continuous periodic functions, thus they are bounded. The
boundedness of Φ(t) and Ψ(t) lead to the boundedness of V̇ (t). As V (T1) is bounded,
the finiteness of V (t) ∀t ∈ [T1, T ) is easily obtained.

On wards, we will prove the asymptotical convergence of e(t) in L2
T norm sense.

Firstly, let us compute the difference of V (t) over one period for t ∈ [T,∞), that is

∆V (t) = V (t)− V (t− T ) =

t∫
t−T

V̇ (τ) dτ
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=

t∫
t−T

{
eTė+ Θ̃T(τ)Γ−11

˙̃Θ(τ) + Ξ̃T(τ)Γ−14
˙̃Ξ(τ)

+
1

2

[
Φ̃T(τ)Γ−12 Φ̃(τ)− Φ̃T(τ − T )Γ−12 Φ̃(τ − T )

]
+

1

2

[
Ψ̃T(τ)Γ−15 Ψ̃(τ)− Ψ̃T(τ − T )Γ−15 Ψ̃(τ − T )

]}
dτ. (20)

Using the difference type adaptive learning laws (9) and (10), the periodic propertyΦ(t) =
Φ(t− T ), Ψ(t) = Ψ(t− T ) and the relationship

(A−B)TΓ (A−B)− (A− C)TΓ (A− C) = (C −B)TΓ
[
2(A−B) + (B − C)

]
,

where A,B,C ∈ Rp, Γ ∈ Rp×p, the following equations can be obtained:

1

2

[
Φ̃T(t)Γ−12 Φ̃(t)− Φ̃T(t− T )Γ−12 Φ̃(t− T )

]
=

1

2

(
Φ̂(t− T )− Φ̂(t)

)T
Γ−12

[
2
(
Φ(t)− Φ̂(t)

)
+
(
Φ̂(t)− Φ̂(t− T )

)]
= −eTF (x)Φ̃(t)− 1

2
eTF (x)Γ2F

T(x)e (21)

and

1

2

[
Ψ̃T(t)Γ−15 Ψ̃(t)− Ψ̃T(t− T )Γ−15 Ψ̃(t− T )

]
=

1

2

[
Ψ̂(t− T )− Ψ̂(t)

]T
Γ−15

[
2
(
Ψ(t)− Ψ̂(t)

)
+
(
Ψ̂(t)− Ψ̂(t− T )

)]
= eTH(t)G(y)Ψ̃(t)− 1

2
eTH(t)G(y)Γ5G

T(y)H(t)e. (22)

Substituting Eqs. (14)–(16), (21) and (22) into Eq. (20), we can obtain

∆V (t) =

t∫
t−T

[
−eTKe− 1

2
eTF (x)Γ2F

T(x)e− 1

2
eTHG(y)Γ5G

T(y)He

]
dτ

6

t∫
t−T

−eTKedτ 6 −λminK

t∫
t−T

eTe dτ, (23)

where λmin(K) is the minimum eigenvalue of the matrix K.
For any t ∈ [iT, (i+ 1)T ), denoting t0(t) = t− iT , i = 1, 2, . . . , it is easily obtained

that t0(t) ∈ [0, T ). Applying Eq. (20) repeatedly, we have

V (t) = V
(
t0(t)

)
+

i−1∑
j=0

∆V (t− jT ). (24)

Nonlinear Anal. Model. Control, 2013, Vol. 18, No. 1, 112–128



120 J. Xing

Since t0(t) ∈ [0, T ), according to Eqs. (23) and (24), we have

V (t) 6 V
(
t0(t)

)
− λmin(K)

i−1∑
j=0

t−jT∫
t−(j+1)T

eTe dτ. (25)

Noting the positiveness of V (t), and bounded V (t0(t)) for all t0(t) ∈ [0, T ), by the
convergence theorem of the sum of positive terms series, it can be obtained that the sum
of series

∞∑
j=0

t−jT∫
t−(j+1)T

eTedτ = m0

is bounded, and also we can get the synchronizing error e(t) converges to zero asymptot-
ically in L2

T norm sense, that is to say, we have

lim
t→∞

√∫ t

t−T

∥∥e(τ)
∥∥2 dτ = 0.

Moreover, from (25), the following inequality can be gotten

V (t) 6 V
(
t0(t)

)
6 m3 ∀t ∈ [0,∞),

where m3 is a positive constant.
Noting the definition of V (t) in (12), one can get that Θ̂(t), Ξ̂(t) are bounded and

Φ̃, Ψ̃ are bounded in the sense of L2
T norm sense. This completes the proof.

5 Numerical simulations

In this section, we employ an example to illustrate the effectiveness of the proposed novel
adaptive synchronization method.

Consider the problem of the hybrid function projective synchronization between Lorenz
system

ẋ1 = θ1(t)(x2 − x1),

ẋ2 = −x1x3 − x2 + θ2(t)x1,

ẋ3 = x1x2 − θ3(t)x3

(26)

and Chen system

ẏ1 = η1(t)(y2 − y1) + u1,

ẏ2 =
(
η2(t)− η1(t)

)
y1 − y1y3 + η2(t)y2 + u2,

ẏ3 = y1y2 − η3(t)y3 + u3,

(27)
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Fig. 1. Chaotic behavior of Lorenz system
with θ(t).

Fig. 2. Chaotic behavior of Chen system
with η(t).

where the unknown time-varying parameters θ(t) = [10 + 0.2 sin t, 28 + 0.2 cos t, 8/3−
0.2 sin t]T and η(t) = [35+0.1 sin t, 28+0.1 cos t, 3−0.1 sin t]T are continuous periodic
function vectors with known periods T = 2π.

Comparing systems (26) and (27) with Eqs. (1) and (2), we obtain

f(x) =

 0
−x2 − x1x3

x1x2

 , F (x) =

x2 − x1 0 0
0 x1 0
0 0 −x3

 ,
g(y) =

 0
−y1y3
y1y2

 , G(y) =

y2 − y1 0 0
−y1 y1 + y2 0

0 0 −y3

 .
The chaotic behavior of the Lorenz system with θ(t) = [10 + 0.2 sin t, 28 + 0.2 cos t,

8/3−0.2 sin t]T is shown in Fig. 1. The chaotic behavior of the Chen system with η(t) =
[35+0.1 sin t, 28+0.1 cos t, 3−0.1 sin t]T is shown in Fig. 2. The nominal values of the
parameter vectors θ(t) and η(t) are Θ = [10, 28, 8/3] and Ξ = [35, 28, 3], respectively.
During the simulation, the initially estimated values of the unknown parameters Θ and
Ξ are chosen as Θ̂(0) = [−5,−3, 0]T and Ξ̂(0) = [−2, 0, 3]T, respectively. The initial
states of the drive system and response system are chosen as x(0) = [0, 0.1, 1]T, y(0) =
[0.1, 0.1, 0.2]T, respectively. Taking the scaling function matrix to be

H(t) = diag{4 + 0.6 sin(2πt/99), 5 + cos(2πt/99), 5 + sin(2πt/99)},

and we choose gain matrices as

K =

10 0 0
0 10 0
0 0 10

 , Γ0(t) =
t

T
Γ2,
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Γ1 =

25 0 0
0 10 0
0 0 0.11

 , Γ2 =

0.55 0 0
0 1.1 0
0 0 0.09

 , Γ3(t) =
t

T
Γ5,

Γ4 =

10 0 0
0 1 0
0 0 0.001

 , Γ5 =

0.05 0 0
0 0.001 0
0 0 0.00002

 .

According to Theorem 1 and the designed controller (6) and parameter updating laws
given by (7)–(10), it is concluded that hybrid function projective synchronization can be
achieved between Lorenz system and Chen system. This is verified by the simulation
results shown in Fig. 3. Furthermore, Fig. 4 depicts the time evolution of the controller,
and Fig. 5 and Fig. 7 show the boundedness of the estimates of unknown time-varying
parameters Φ(t) and Ψ(t), respectively, and Fig. 6 and Fig. 8 display the boundedness
of the estimates of unknown constant parameters Θ and Ξ , respectively. Moreover, the
Fig. 9 and Fig. 10 draw the errors of estimates and the real values for constant parameters
Θ and Ξ , respectively. These show that the parameter identification characteristic can
be obtained for the unknown constant parameters, however, the similar property of the
unknown time-varying parameters cannot be guaranteed yet. The problem will be studied
in the near future.

Fig. 3. The evolution of the tracking errors in L2
T norm.
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Fig. 4. Time evolution of the controller.
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Fig. 5. Time evolution of the estimated time-varying parameter Φ(t).
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Fig. 6. Time evolution of the estimated constant parameter Θ.
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Fig. 7. Time evolution of the estimated time-varying parameter Ψ(t).
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Fig. 8. Time evolution of the estimated constant parameter Ξ .
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Fig. 9. Errors of estimates and the real values of parameters Θ.
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Fig. 10. Errors of estimates and the real values of constant parameters Ξ .

6 Conclusions

In this paper, we have proposed an adaptive learning control method for HFPS of two
different chaotic systems both with unknown periodic time-varying parameters. Based
on the Lyapunov–Krasovskii stability theory, the adaptive learning controller and the
differential-difference mixed parameter learning laws are constructed for global stability
of the closed loop system. The asymptotic synchronization of the error dynamics between
the driving and the response systems and the boundedness of the all parameter estimates
are also obtained. The proposed approach has been successfully applied to HFPS between
the Lorenz system and Chen system. The feasibility and effectiveness of the proposed
approach are confirmed through theoretical analysis and numerical simulations. The con-
sistency of estimated parameters will be further studied in the future.
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