150 research outputs found

    Randomness extraction and asymptotic Hamming distance

    Full text link
    We obtain a non-implication result in the Medvedev degrees by studying sequences that are close to Martin-L\"of random in asymptotic Hamming distance. Our result is that the class of stochastically bi-immune sets is not Medvedev reducible to the class of sets having complex packing dimension 1

    Simulation Theorems via Pseudorandom Properties

    Full text link
    We generalize the deterministic simulation theorem of Raz and McKenzie [RM99], to any gadget which satisfies certain hitting property. We prove that inner-product and gap-Hamming satisfy this property, and as a corollary we obtain deterministic simulation theorem for these gadgets, where the gadget's input-size is logarithmic in the input-size of the outer function. This answers an open question posed by G\"{o}\"{o}s, Pitassi and Watson [GPW15]. Our result also implies the previous results for the Indexing gadget, with better parameters than was previously known. A preliminary version of the results obtained in this work appeared in [CKL+17]

    Indexability, concentration, and VC theory

    Get PDF
    Degrading performance of indexing schemes for exact similarity search in high dimensions has long since been linked to histograms of distributions of distances and other 1-Lipschitz functions getting concentrated. We discuss this observation in the framework of the phenomenon of concentration of measure on the structures of high dimension and the Vapnik-Chervonenkis theory of statistical learning.Comment: 17 pages, final submission to J. Discrete Algorithms (an expanded, improved and corrected version of the SISAP'2010 invited paper, this e-print, v3

    Efficient sphere-covering and converse measure concentration via generalized coding theorems

    Full text link
    Suppose A is a finite set equipped with a probability measure P and let M be a ``mass'' function on A. We give a probabilistic characterization of the most efficient way in which A^n can be almost-covered using spheres of a fixed radius. An almost-covering is a subset C_n of A^n, such that the union of the spheres centered at the points of C_n has probability close to one with respect to the product measure P^n. An efficient covering is one with small mass M^n(C_n); n is typically large. With different choices for M and the geometry on A our results give various corollaries as special cases, including Shannon's data compression theorem, a version of Stein's lemma (in hypothesis testing), and a new converse to some measure concentration inequalities on discrete spaces. Under mild conditions, we generalize our results to abstract spaces and non-product measures.Comment: 29 pages. See also http://www.stat.purdue.edu/~yiannis

    A Note on the Probability of Rectangles for Correlated Binary Strings

    Full text link
    Consider two sequences of nn independent and identically distributed fair coin tosses, X=(X1,…,Xn)X=(X_1,\ldots,X_n) and Y=(Y1,…,Yn)Y=(Y_1,\ldots,Y_n), which are ρ\rho-correlated for each jj, i.e. P[Xj=Yj]=1+ρ2\mathbb{P}[X_j=Y_j] = {1+\rho\over 2}. We study the question of how large (small) the probability P[X∈A,Y∈B]\mathbb{P}[X \in A, Y\in B] can be among all sets A,BβŠ‚{0,1}nA,B\subset\{0,1\}^n of a given cardinality. For sets ∣A∣,∣B∣=Θ(2n)|A|,|B| = \Theta(2^n) it is well known that the largest (smallest) probability is approximately attained by concentric (anti-concentric) Hamming balls, and this can be proved via the hypercontractive inequality (reverse hypercontractivity). Here we consider the case of ∣A∣,∣B∣=2Θ(n)|A|,|B| = 2^{\Theta(n)}. By applying a recent extension of the hypercontractive inequality of Polyanskiy-Samorodnitsky (J. Functional Analysis, 2019), we show that Hamming balls of the same size approximately maximize P[X∈A,Y∈B]\mathbb{P}[X \in A, Y\in B] in the regime of ρ→1\rho \to 1. We also prove a similar tight lower bound, i.e. show that for ρ→0\rho\to 0 the pair of opposite Hamming balls approximately minimizes the probability P[X∈A,Y∈B]\mathbb{P}[X \in A, Y\in B]
    • …
    corecore