16,319 research outputs found

    New Exact Solutions of a Generalized Shallow Water Wave Equation

    Full text link
    In this work an extended elliptic function method is proposed and applied to the generalized shallow water wave equation. We systematically investigate to classify new exact travelling wave solutions expressible in terms of quasi-periodic elliptic integral function and doubly-periodic Jacobian elliptic functions. The derived new solutions include rational, periodic, singular and solitary wave solutions. An interesting comparison with the canonical procedure is provided. In some cases the obtained elliptic solution has singularity at certain region in the whole space. For such solutions we have computed the effective region where the obtained solution is free from such a singularity.Comment: A discussion about singularity and some references are added. To appear in Physica Script

    An exactly solvable travelling wave equation in the Fisher-KPP class

    Full text link
    For a simple one dimensional lattice version of a travelling wave equation, we obtain an exact relation between the initial condition and the position of the front at any later time. This exact relation takes the form of an inverse problem: given the times tnt_n at which the travelling wave reaches the positions nn, one can deduce the initial profile. We show, by means of complex analysis, that a number of known properties of travelling wave equations in the Fisher-KPP class can be recovered, in particular Bramson's shifts of the positions. We also recover and generalize Ebert-van Saarloos' corrections depending on the initial condition.Comment: For version 2: some typos + clarification of (87

    Periodic Travelling Waves in Dimer Granular Chains

    Full text link
    We study bifurcations of periodic travelling waves in granular dimer chains from the anti-continuum limit, when the mass ratio between the light and heavy beads is zero. We show that every limiting periodic wave is uniquely continued with respect to the mass ratio parameter and the periodic waves with the wavelength larger than a certain critical value are spectrally stable. Numerical computations are developed to study how this solution family is continued to the limit of equal mass ratio between the beads, where periodic travelling waves of granular monomer chains exist

    A multiple exp-function method for nonlinear differential equations and its application

    Full text link
    A multiple exp-function method to exact multiple wave solutions of nonlinear partial differential equations is proposed. The method is oriented towards ease of use and capability of computer algebra systems, and provides a direct and systematical solution procedure which generalizes Hirota's perturbation scheme. With help of Maple, an application of the approach to the 3+13+1 dimensional potential-Yu-Toda-Sasa-Fukuyama equation yields exact explicit 1-wave and 2-wave and 3-wave solutions, which include 1-soliton, 2-soliton and 3-soliton type solutions. Two cases with specific values of the involved parameters are plotted for each of 2-wave and 3-wave solutions.Comment: 12 pages, 16 figure

    Solitary smooth hump solutions of the Camassa-Holm equation by means of the homotopy analysis method

    Get PDF
    The homotopy analysis method is used to find a family of solitary smooth hump solutions of the Camassa-Holm equation. This approximate solution, which is obtained as a series of exponentials, agrees well with the known exact solution. This paper complements the work of Wu & Liao [Wu W, Liao S. Solving solitary waves with discontinuity by means of the homotopy analysis method. Chaos, Solitons & Fractals 2005;26:177-85] who used the homotopy analysis method to find a different family of solitary wave solutions

    Seven common errors in finding exact solutions of nonlinear differential equations

    Full text link
    We analyze the common errors of the recent papers in which the solitary wave solutions of nonlinear differential equations are presented. Seven common errors are formulated and classified. These errors are illustrated by using multiple examples of the common errors from the recent publications. We show that many popular methods in finding of the exact solutions are equivalent each other. We demonstrate that some authors look for the solitary wave solutions of nonlinear ordinary differential equations and do not take into account the well - known general solutions of these equations. We illustrate several cases when authors present some functions for describing solutions but do not use arbitrary constants. As this fact takes place the redundant solutions of differential equations are found. A few examples of incorrect solutions by some authors are presented. Several other errors in finding the exact solutions of nonlinear differential equations are also discussed.Comment: 42 page

    Fractional Klein-Gordon equation for linear dispersive phenomena: analytical methods and applications

    Full text link
    In this paper we discuss some exact results related to the fractional Klein--Gordon equation involving fractional powers of the D'Alembert operator. By means of a space-time transformation, we reduce the fractional Klein--Gordon equation to a fractional hyper-Bessel-type equation. We find an exact analytic solution by using the McBride theory of fractional powers of hyper-Bessel operators. A discussion of these results within the framework of linear dispersive wave equations is provided. We also present exact solutions of the fractional Klein-Gordon equation in the higher dimensional cases. Finally, we suggest a method of finding travelling wave solutions of the nonlinear fractional Klein-Gordon equation with power law nonlinearities

    On the Integrability, B\"Acklund Transformation and Symmetry Aspects of a Generalized Fisher Type Nonlinear Reaction-Diffusion Equation

    Get PDF
    The dynamics of nonlinear reaction-diffusion systems is dominated by the onset of patterns and Fisher equation is considered to be a prototype of such diffusive equations. Here we investigate the integrability properties of a generalized Fisher equation in both (1+1) and (2+1) dimensions. A Painlev\'e singularity structure analysis singles out a special case (m=2m=2) as integrable. More interestingly, a B\"acklund transformation is shown to give rise to a linearizing transformation for the integrable case. A Lie symmetry analysis again separates out the same m=2m=2 case as the integrable one and hence we report several physically interesting solutions via similarity reductions. Thus we give a group theoretical interpretation for the system under study. Explicit and numerical solutions for specific cases of nonintegrable systems are also given. In particular, the system is found to exhibit different types of travelling wave solutions and patterns, static structures and localized structures. Besides the Lie symmetry analysis, nonclassical and generalized conditional symmetry analysis are also carried out.Comment: 30 pages, 10 figures, to appear in Int. J. Bifur. Chaos (2004
    • …
    corecore