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Abstract

The homotopy analysis method is used to find a family of solitary smooth hump
solutions of the Camassa–Holm equation. This approximate solution, which is ob-
tained as a series of exponentials, agrees well with the known exact solution. This
paper complements the work of Wu & Liao [Wu W, Liao S. Solving solitary waves
with discontinuity by means of the homotopy analysis method. Chaos, Solitons &
Fractals 2005;26:177-85] who used the homotopy analysis method to find a different
family of solitary wave solutions.
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1 Introduction

The homotopy analysis method (HAM) is a means of finding approximate analytic
solutions to nonlinear equations. It was first introduced by Liao in 1992 [1]. The
method has been applied successfully to many nonlinear problems in engineering
and science, such as boundary-layer flows over an impermeable stretched plate [2],
unsteady boundary-layer flows over a stretching flat plate [3], exponentially decaying
boundary layers [4], a nonlinear model of combined convective and radiative cooling
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of a spherical body [5], travelling-wave solutions of the Fisher equation [6], solitary-
wave solutions of the Camassa–Holm (CH) equation [7], and many other problems
(see [8–17], for example).

A related method for finding an analytic approximation to the exact solution to
a nonlinear problem is the homotopy perturbation method (HPM) that was intro-
duced by He in 1998 (see [18] and references therein). The HAM and HPM are
based on Taylor series with respect to an embedding parameter, and both methods
can give a very good approximation by means of a few terms if the initial guess for
the solution and for an auxiliary linear operator are good enough [19]. However,
Liao [19] pointed out that the HAM has the advantage that it contains an auxiliary
parameter h̄ and an auxiliary function H(η) that provide a simple way to control
the convergence region and rate of convergence of the solution series. Formally, the
HPM is just the HAM with h̄ = −1 and H(η) = 1. In the HAM, a range of values
for h̄ that gives convergence can be identified from the so-called h̄-curves. Clearly,
if h̄ = −1 is outside this range, the HPM does not give a convergent series solu-
tion. This crucial difference between the HPM and the HAM was clearly illustrated
recently in [20] where the flow of a fourth-grade fluid down a vertical cylinder was
investigated by both methods. It was found that the HPM results are divergent for
strong nonlinearity, whereas h̄ can be adjusted in this case to obtain convergent
HAM results.

The CH equation is

ut + 2kux − uxxt + 3uux = 2uxuxx + uuxxx, (1.1)

where k is a constant parameter. When k 6= 0, the CH equation describes shallow
water waves, where u denotes the velocity, x and t denote the spatial and temporal
variables, respectively, and k is related to the critical shallow-water wave-speed [21].
When k = 0, the CH equation describes dispersive waves in a compressible hyper-
elastic rod [22]. The CH equation has been investigated at length in the literature
(see [23–34], for example).

Camassa et al [24] looked for solitary travelling-wave solutions of (1.1) with k 6= 0
by seeking solutions of the form u(x, t) = U(η), where η := x− ct− x0, and c(> 0)
and x0 are constants. Using the boundary conditions that U and its derivatives tend
to zero as |η| → ∞, they showed that there is a family of solitary smooth hump
waves when 0 < k < c/2 (so that k is the family-parameter) that have amplitude
c−2k. Here, ‘smooth’ means that U ′ is continuous for all η, where the prime denotes
the derivative with respect to η. If the crest of the wave is located at η = 0 then,
for this family, U(0) = c − 2k and U ′(0) = 0. When k = 0, so that (1.1) becomes

ut − utxx + 3uux = 2uxuxx + uuxxx, (1.2)

Camassa et al [24] showed that the solitary-wave solution is the solitary peakon

u(x, t) = ce−|η|. (1.3)
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In this case U(0) = c but U ′ is discontinuous at the crest so that U ′(0) is undefined.
The peakon is a so-called ‘corner wave’ [23]. The HAM was used in [7] to find
analytic approximations to the aforementioned solitary smooth hump solutions and
to the solitary peakon.

In [30] Parkes and Vakhnenko found periodic and solitary travelling-wave solutions
to the CH equation with k = 0, i.e. to Eq. (1.2). In particular they found a family
of solitary smooth hump solutions for which the boundary conditions are U → U∞

and the derivatives of U tend to zero as |η| → ∞, where U∞ is a constant such
that 0 < U∞ < c/3 (so that U∞ is the family-parameter). If the crest of the wave
is located at η = 0 then, for this family, U(0) = c − 2U∞, so that the amplitude of
the wave is c − 3U∞, and U ′(0) = 0. In the limit U∞ = 0, the solitary wave is the
peakon given by (1.3).

The aim of this paper is to use the HAM to find an analytic approximation to the
family of solitary smooth hump waves given in exact form by Parkes and Vakhnenko
[30]. In this respect, our work complements the work of Wu and Liao in [7]. In Section
2 we present the exact solution in an explicit and more convenient form than in [30].
In Section 3 we formulate the HAM for finding an approximate analytic solution
for the waves given in Section 2. In Section 4 we apply the HAM for particular
values of the family-parameter U∞ and show that the approximate solutions are in
excellent agreement with the exact solution. In Section 5 we give the formulation
and results for a ‘reduced’ HAM that is expressed in terms of the new dependent
variable z that was used in [30]. A brief conclusion is given in Section 6.

2 A family of solitary smooth hump waves

A family of solitary smooth hump travelling-wave solutions to Eq. (1.2) was obtained
in [30, Section 3.2] in terms of a new dependent variable Z(η) related to U(η) by

U(η) = c[1 + Z(η)], (2.1)

where c > 0. In parametric form, with ω as the parameter, Z is given as an implicit
function of η by

Z =
z3 − z4n tanh2 ω

1 − n tanh2 ω
, η =

ωz2

s
+ 2 tanh−1(

√
n tanh ω), (2.2)

where

n =
z3 − z2

z4 − z2

, s =
1

2

√

(z4 − z2)(z3 − z1) , (2.3)

z4 = 0, z1 = z2 < z3 < 0, z1 + z2 + z3 = −2. (2.4)

For each member of this family, z2 ≤ Z ≤ z3, Z = z3 at the crest where ω = 0 (so
that η = 0), and Z → z2 as |ω| → ∞ (so that |η| → ∞).
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For the purpose of this paper it is convenient to take z3 = −2Q so that, from (2.4),
z2 = Q − 1 and 0 < Q < 1/3. (Here Q ≡ −q/2, where q is as in [30].) Now, from
(2.1)–(2.3), we obtain

Z =
−2Q(1 − Q)

(1 − Q) − (1 − 3Q) tanh2 ω
, (2.5)

U = c

(

(1 − Q)(1 − 2Q) − (1 − 3Q) tanh2 ω

(1 − Q) − (1 − 3Q) tanh2 ω

)

, (2.6)

η = −2ω

√

1 − Q

1 − 3Q
+ 2 tanh−1

(
√

1 − 3Q

1 − Q
tanh ω

)

. (2.7)

The solitary wave given in parametric form by (2.5) and (2.7) has amplitude z3−z2 =
1−3Q, and Z∞ := z2 = Q−1. The solitary wave given in parametric form by (2.6)
and (2.7) has amplitude (z3 − z2)c = (1 − 3Q)c, and U∞ := (1 + z2)c = Qc.

For later use, we note that the transformation

U(η) = (1 − 3Q)cW (η) + Qc (2.8)

gives

W =
1

1 − 3Q

(

(1 − Q)(1 − 2Q) − (1 − 3Q) tanh2 ω

(1 − Q) − (1 − 3Q) tanh2 ω
− Q

)

. (2.9)

Clearly, W and its derivatives tend to zero as |η| → ∞, W (0) = 1 and W ′(0) = 0.

3 The formulation of the HAM in terms of w

In this section we formulate the HAM in order to find from Eq. (1.2) an analytic
approximation to the family of symmetric solitary smooth hump waves, with family-
parameter U∞, given exactly in Section 2.

It is convenient to introduce a new dependent variable w(η) defined by

u(x, t) = aw(η) + U∞, 0 < U∞ < c/3, (3.1)

where a is the amplitude, u → U∞ as |η| → ∞, and U∞ := Qc with 0 < Q < 1/3.
Clearly, w(0) = 1, w′(0) = 0, w → 0 as |η| → ∞, and w(η) = w(−η). Substitution
of u given by (3.1) into Eq. (1.2) gives

c(w′′′ − w′) + (aw + Qc)(3w′ − w′′′) − 2aw′w′′ = 0. (3.2)

Due to the assumed symmetry of the solitary waves, in the HAM we consider w(η)
only for η ≥ 0. Hence the appropriate boundary conditions on w for use in the
HAM are

w(0) = 1, w′(0) = 0, w(+∞) = 0. (3.3)
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Our aim is to use the HAM to find analytic approximations to a and w(η). In
Section 4 we will demonstrate that these approximations are in good agreement
with the exact expressions (1 − 3Q)c and W (η), respectively, as derived in Section
2. For simplicity, in the rest of this section and in the next section, we set c = 1.

Because of the boundary conditions (3.3), we assume that the solitary-wave solution
of Eq. (3.2) for η > 0 can be expressed in the form

w(η) =
+∞
∑

m=1

dme−mη, (3.4)

where the dm (m = 1, 2, . . .) are coefficients to be determined. The expression in
(3.4) is known as the rule of solution expression [1, Section 3.4]. According to (3.4)
and the boundary conditions (3.3), it is natural to choose

w0(η) = 2e−η − e−2η (3.5)

as the initial approximation to w(η). We define an auxiliary linear operator L by

L[φ(η; p)] :=
(

∂3

∂η3
− ∂

∂η

)

φ(η; p). (3.6)

This has the property that

L[C1e
−η + C2e

η + C3] = 0, (3.7)

where C1, C2 and C3 are constants. This choice of L is motivated by (3.4) and the
later requirement that (3.17) should contain only one non-zero constant, namely
C1.

From (3.2) we define a nonlinear operator

N [φ(η; p), A(p)] :=

(

∂3φ

∂η3
− ∂φ

∂η

)

+ (A(p)φ + Q)

(

3
∂φ

∂η
− ∂3φ

∂η3

)

− 2A(p)
∂φ

∂η

∂2φ

∂η2
,

(3.8)
and then construct the homotopy

H[φ(η; p), A(p)] = (1 − p)L[φ(η; p) − w0(η)] − h̄H(η)pN [φ(η; p), A(p)], (3.9)

where h̄ is a nonzero auxiliary parameter and H(η) 6= 0 is an auxiliary function.
Setting H[φ(η; p), A(p)] = 0, we have the zero-order deformation equation

(1 − p)L[φ(η; p)− w0(η)] = h̄H(η)pN [φ(η; p), A(p)], (3.10)

subject to the boundary conditions

φ(0; p) = 1,
∂φ(η; p)

∂η

∣

∣

∣

∣

η=0

= 0, φ(+∞; p) = 0, (3.11)
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where p ∈ [0, 1] is an embedding parameter. When the parameter p increases from
0 to 1, the solution φ(η; p) varies from w0(η) to w(η), and A(p) varies from a0 to
a, where a0 is the initial value of the wave amplitude. If this continuous variation
is smooth enough, the Maclaurin’s series with respect to p can be constructed for
φ(η; p) and A(p), and further, if these two series are convergent at p = 1, we have

w(η) = w0(η) +
+∞
∑

m=1

wm(η), a = a0 +
+∞
∑

m=1

am, (3.12)

where

wm(η) =
1

m!

∂mφ(η; p)

∂pm

∣

∣

∣

∣

p=0

, am =
1

m!

∂mA(p)

∂pm

∣

∣

∣

∣

p=0

. (3.13)

For brevity, we define the vectors

−→w k = {w0, w1, . . . , wk}, −→a k = {a0, a1, . . . , ak}.

Differentiating Eqs. (3.10) and (3.11) m times with respect to p then setting p = 0
and finally dividing by m! , we obtain the mth-order deformation equation

L[wm(η) − χmwm−1(η)] = h̄Rm(−→w m−1,
−→a m−1), (m = 1, 2, 3, . . .) (3.14)

subject to the boundary conditions

wm(0) = 0, w′
m(0) = 0, wm(∞) = 0, (3.15)

where

Rm =(1 − Q)w′′′
m−1 − (1 − 3Q)w′

m−1

+
m−1
∑

n=0

n
∑

i=0

ai

(

wn−i[3w
′
m−n−1 − w′′′

m−n−1] − 2w′
n−iw

′′
m−n−1

)

,

and

χm =











0, m ≤ 1,

1, m > 1.

In order to obey both the rule of solution expression and the rule of the coefficient

ergodicity [1, Section 3.4], the corresponding auxiliary function can be determined
uniquely as

H(η) = e−η. (3.16)

The general solution of Eq. (3.14) is

wm(η) = ŵm(η) + C1e
−η + C2e

η + C3, (3.17)

where C1, C2 and C3 are constants and ŵm(η) is the particular solution of Eq. (3.14)
that contains the unknown term am−1. Using (3.4), we have C2 = C3 = 0. According
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to the boundary conditions (3.15), the unknowns am−1 and C1 are governed by

ŵm(0) + C1 = 0, ŵ′
m(0) − C1 = 0. (3.18)

Thus, the unknown am−1 is obtained by solving the linear algebraic equation

ŵm(0) + ŵ′
m(0) = 0, (3.19)

and thereafter C1 is given by

C1 = −ŵm(0). (3.20)

In this way, we derive wm(η) and am−1 for m = 1, 2, 3, . . ., successively. At the
Mth-order approximation, we have the analytic solution of Eq. (3.2), namely

w(η) ≈ WM(η) =
M
∑

m=0

wm(η), a ≈ AM =
M
∑

m=0

am. (3.21)

The auxiliary parameter h̄ can be employed to adjust the convergence region of
the series (3.21) in the homotopy analysis solution. By means of the so-called h̄-
curve, it is straightforward to choose an appropriate range for h̄ which ensures the
convergence of the solution series. As pointed out by Liao [1], the appropriate region
for h̄ is a horizontal line segment.

4 Results

First, we investigate the influence of h̄ on the series solution for a, the wave am-
plitude. Fig. 1 shows the h̄-curve for the amplitude corresponding to Q = 1/10
from which we can clearly identify an appropriate region for h̄. Note that this gives
a ≈ 0.7 which agrees with the expected value, namely (1 − 3Q)c.

Generally, it is found that as long as the series solution for the amplitude a is
convergent to the expected value, the corresponding series solution for w(η) is also
convergent. Also, to investigate the influence of h̄ on the series solution (3.21), we
can consider the convergence of some related series such w′(0), w′′(0), w′′′(0), and so
on. But here, w′(0) = 0 holds for all results at any order of approximation and so it
cannot provide us with any useful information about the choice of h̄. However, w′′(0)
and w′′′(0) are dependent on h̄. The h̄-curves for w′′(0) and w′′′(0) with Q = 1/10
are shown in Fig. 2. It is clear that the series for w′′(0) and w′′′(0) are convergent
when −9 < h̄ < −2.

For example, for h̄ = −5 and Q = 1/10, our approximate analytic solution for w
converges rapidly to the exact solution given by (2.7) and (2.9). This is shown in
Fig. 3 and Fig. 4. Fig. 5 shows the residual error for different orders of approxima-
tion with Q = 1/10, and clearly indicates that the HAM gives rapid convergence.
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The initial approximation (3.5) is independent of Q. For Q = 1/10, the initial ap-
proximation is already quite a good approximation to the exact solution and so it is
not surprising that the convergence of the approximate solution is rapid. However,
as Q increases, the profile of the exact solution gets wider and so the HAM does
not converge quite so rapidly. This is illustrated in Fig. 6 where our approximate
solution with h̄ = −8 and Q = 2/10 is compared with the exact solution.

5 The formulation of the HAM in terms of z

In this section we formulate the HAM in terms of the dependent variable z defined
by

u(x, t) = c[1 + z(η)], (5.1)

where c > 0. The motivation for this is that z is the dependent variable used in
[30], and it is of interest to see how the formulation in terms of z leads to a different
choice of L, N and H than in the formulation in terms of w given in Section 3.

Substitution of u given by (5.1) into Eq. (1.2) gives

zz′′′ + 2z′z′′ − 3zz′ − 2z′ = 0. (5.2)

The appropriate boundary conditions on z for use in the HAM are

z(0) = b − 1 + Q, z′(0) = 0, z(+∞) = −1 + Q, (5.3)

where b is the amplitude of the wave profile in terms of z. From the exact solution
given in Section 2 we know that exact value of b is 1 − 3Q. However, if we treat
b as an unknown constant to be determined by the HAM, we observe that it is in
the boundary conditions (5.3) and not in the ODE (5.2). This is in contrast to the
formulation in Section 3 where the unknown constant a is in the ODE (3.2). In
order to move b from the boundary conditions into an ODE we could write

z = bw(η) + Z∞ (5.4)

and recover the HAM in terms of w as in Section 3. Here, however, we wish to
formulate a HAM in terms of z. Hence we present a ‘reduced’ HAM in which we
assume that b = 1 − 3Q so that the boundary conditions (5.3) become

z(0) = −2Q, z′(0) = 0, z(+∞) = −1 + Q, (5.5)

where 0 < Q < 1/3.

In this case the rule of solution expression is

z(η) =
+∞
∑

m=0

eme−mη, (5.6)
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where the em (m = 0, 1, 2, . . .) are coefficients to be determined. According to (5.6)
and (5.5), it is natural to choose

z0(η) = (−1 + Q) + 2(1 − 3Q)e−η − (1 − 3Q)e−2η (5.7)

as the initial approximation to z(η). We define an auxiliary linear operator L by

L[φ(η; p)] =

(

∂3

∂η3
+ 3

∂2

∂η2
+ 2

∂

∂η

)

φ(η; p). (5.8)

This has the property that

L[C1 + C2e
−η + C3e

−2η] = 0, (5.9)

where C1, C2 and C3 are constants. This choice of L is motivated by (5.6) and the
later requirement that (5.19) should contain only two non-zero constants, namely
C2 and C3.

From (5.2) we define a nonlinear operator

N [φ(η; p)] = φ
∂3φ

∂η3
+ 2

∂φ

∂η

∂2φ

∂η2
− 3φ

∂φ

∂η
− 2

∂φ

∂η
, (5.10)

and then construct the homotopy

H[φ(η; p)] = (1 − p)L[φ(η; p) − z0] − h̄H(η)pN [φ(η; p)], (5.11)

where h̄ is a nonzero auxiliary parameter and H(η) 6= 0 is an auxiliary function.
Setting H[φ(η; p)] = 0, we have the zero-order deformation equation

(1 − p)L[φ(η; p) − z0] = h̄H(η)pN [φ(η; p)], (5.12)

subject to the boundary conditions

φ(0; p) = −2Q,
∂φ(η; p)

∂η

∣

∣

∣

∣

η=0

= 0, φ(+∞; p) = −1 + Q, (5.13)

where p ∈ [0, 1] is an embedding parameter. When the parameter p increases from
0 to 1, the solution φ(η; p) varies from z0(η) to z(η). If this continuous variation
is smooth enough, the Maclaurin’s series with respect to p can be constructed for
φ(η; p) and if this series is convergent at p = 1, we have

z(η) = z0(η) +
+∞
∑

m=1

zm(η), (5.14)

where

zm(η) =
1

m!

∂mφ(η; p)

∂pm

∣

∣

∣

∣

p=0

. (5.15)
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For brevity, define the vector

−→z k = {z0, z1, . . . , zk}.

Differentiating Eqs. (5.12) and (5.13) m times with respect to p then setting p = 0
and finally dividing by m! , we obtain the mth-order deformation equation

L[zm(η) − χmzm−1(η)] = h̄Rm(−→z m−1), (m = 1, 2, 3, . . .) (5.16)

subject to the boundary conditions

zm(0) = 0, z′m(0) = 0, zm(∞) = 0, (5.17)

where

Rm =
m−1
∑

n=0

(

zn(z′′′m−n−1 − 3z′m−n−1) + 2z′nz′′m−n−1

)

− 2z′m−1.

In order to obey both the rule of solution expression and the rule of the coefficient

ergodicity [1, Section 3.4], the corresponding auxiliary function can be determined
uniquely as

H(η) = e−2η. (5.18)

The general solution of Eq. (5.16) is

zm(η) = ẑm(η) + C1 + C2e
−η + C3e

−2η, (5.19)

where C1, C2 and C3 are constants and ẑm(η) is a particular solution of Eq. (5.16).
Using (5.6), we have C1 = 0. The unknowns C2 and C3 are determined by using
the boundary conditions (5.17). As in Section 4, we can find an appropriate range
of h̄ for convergence. The h̄-curves for z′′(0) and z′′′(0) with Q = 1/10 are shown
in Fig. 7; it is clear that we require 1 < h̄ < 9 for convergence. Fig. 8 illustrates
the rapid convergence of our approximate analytic solution and Fig. 9 shows that
our approximate solution is in excellent agreement with the exact solution given by
(2.5) and (2.7). Fig. 10 shows the residual error for different orders of approximation
and clearly indicates that the HAM gives rapid convergence.

6 Conclusions

We have applied the homotopy analysis method (HAM) to the Camassa–Holm equa-
tion (1.1) with k = 0 to obtain an excellent analytic approximation to the family of
solitary smooth hump waves given in exact form in [30]. In the formulation of the
HAM in Section 3, the amplitude of the solitary waves was treated as an unknown to
be determined by the HAM; in Section 5 we formulated a ‘reduced’ HAM in which
the amplitude of the waves was assumed. The former formulation, and the corre-
sponding results, complement the work of Wu and Liao [7] who performed a similar
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investigation for the family of solitary smooth hump waves for which 0 < k < c/2
and which was given in exact implicit form in [24].

The HAM provides us with a convenient way to control the convergence of approx-
imation series; this is a fundamental qualitative difference in analysis between the
HAM and other methods. The example in this paper is further confirmation of the
flexibility and potential of the HAM for complicated nonlinear problems in science
and engineering.
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Fig. 1. The h̄-curve for the wave amplitude a at the 20th-order approximation
with Q = 1/10.

-12 -10 -8 -6 -4 -2 0 2
-10

-5

0

5

10

w
′′
(0

)
w

′′
′ (
0)

h̄

Fig. 2. The h̄-curves for w′′(0) and w′′′(0) at the 20th-order approximation with
Q = 1/10. Dashed curve: w′′(0); solid curve: w′′′(0).
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Fig. 3. The analytic approximation for w(η) when h̄ = −5 with Q = 1/10. Solid
curve: 5th-order approximation; symbols: 10th-order approximation.
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Fig. 4. The analytic approximation for w(η) when h̄ = −5 and the exact solution
given by (2.7) and (2.9) with Q = 1/10. Solid curve: exact solution; dashed curve:

10th-order approximation.
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Fig. 5. The residual error for Eq. (3.2) when h̄ = −4 with Q = 1/10. Solid curve:
10th-order approximation; dotted curve: 5th-order approximation; dashed curve:

initial guess.
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Fig. 6. The analytic approximation for w(η) when h̄ = −8 and the exact solution
given by (2.7) and (2.9) with Q = 2/10. Solid curve: exact solution; dashed curve:

initial guess; dotted curve: 20th-order approximation.
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Fig. 7. The h̄-curves for z′′(0) and z′′′(0) at the 20th-order approximation with
Q = 1/10. Dashed curve: z′′(0); solid curve: z′′′(0).
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Fig. 8. The analytic approximation for z(η) when h̄ = 1 with Q = 1/10. Solid
curve: 20th-order approximation; symbols: 15th-order approximation.
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Fig. 9. The analytic approximation of z(η) when h̄ = 1 and the exact solution
given by (2.5) and (2.7) with Q = 1/10. Solid curve: exact solution; dashed curve:

20th-order approximation.
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Fig. 10. The residual error for Eq. (5.2) when h̄ = 1 with Q = 1/10. Solid curve:
20th-order approximation; dotted curve: 15th-order approximation; dashed curve:

10th-order approximation.
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