7 research outputs found

    Holdout transshipment policy in two-location inventory systems

    Get PDF
    In two-location inventory systems, unidirectional transshipment policies are considered when an item is not routinely stocked at a location in the system. Unlike the past research in this area which has concentrated on the simple transshipment policies of complete pooling or no pooling, the research presented in this thesis endeavors to develop an understanding of a more general class of transshipment policy. The research considers two major approaches: a decomposition approach, in which the two-location system is decomposed into a system with independent locations, and Markov decision process approach. For the decomposition approach, the transshipment policy is restricted to the class of holdout transshipment policy. The first attempt to develop a decomposition approach assumes that transshipment between the locations occurs at a constant rate in order to decompose the system into two independent locations with constant demand rates. The second attempt modifies the assumption of constant rate of transshipment to take account of local inventory levels to decompose the system into two independent locations with non-constant demand rates. In the final attempt, the assumption of constant rate of transshipment is further modified to model more closely the location providing transshipments. Again the system is decomposed into two independent locations with non-constant demand rates. For each attempt, standard techniques are applied to derive explicit expressions for the average cost rate, and an iterative solution method is developed to find an optimal holdout transshipment policy. Computational results show that these approaches can provide some insights into the performance of the original system. A semi-Markov decision model of the system is developed under the assumption of exponential lead time rather than fixed lead time. This model is later extended to the case of phase-type distribution for lead time. The semi-Markov decision process allows more general transshipment policies, but is computationally more demanding. Implicit expressions for the average cost rate are derived from the optimality equation for dynamic programming models. Computational results illustrate insights into the management of the two-location system that can be gained from this approach

    A semi-Markov model with holdout transshipment policy and phase-type exponential lead time

    No full text
    In this paper, a semi-Markov decision model of a two-location inventory system with holdout transshipment policy is reviewed under the assumption of phase-type exponential replenishment lead time rather than exponential lead time. The phase-type exponential lead time more closely approximates fixed lead time as the number of phases increases. Unlike past research in this area which has concentrated on the simple transshipment policies of complete pooling or no pooling, the research presented in this paper endeavors to develop an understanding of a more general class of transshipment policy. In addition, we propose an effective method to approximate the dynamic holdout transshipment policy.Inventory management Lateral transshipment policy Stochastic modeling and dynamic programming

    Uncertain Multi-Criteria Optimization Problems

    Get PDF
    Most real-world search and optimization problems naturally involve multiple criteria as objectives. Generally, symmetry, asymmetry, and anti-symmetry are basic characteristics of binary relationships used when modeling optimization problems. Moreover, the notion of symmetry has appeared in many articles about uncertainty theories that are employed in multi-criteria problems. Different solutions may produce trade-offs (conflicting scenarios) among different objectives. A better solution with respect to one objective may compromise other objectives. There are various factors that need to be considered to address the problems in multidisciplinary research, which is critical for the overall sustainability of human development and activity. In this regard, in recent decades, decision-making theory has been the subject of intense research activities due to its wide applications in different areas. The decision-making theory approach has become an important means to provide real-time solutions to uncertainty problems. Theories such as probability theory, fuzzy set theory, type-2 fuzzy set theory, rough set, and uncertainty theory, available in the existing literature, deal with such uncertainties. Nevertheless, the uncertain multi-criteria characteristics in such problems have not yet been explored in depth, and there is much left to be achieved in this direction. Hence, different mathematical models of real-life multi-criteria optimization problems can be developed in various uncertain frameworks with special emphasis on optimization problems

    Holdout transshipment policy in two-location inventory systems

    No full text
    In two-location inventory systems, unidirectional transshipment policies are considered when an item is not routinely stocked at a location in the system. Unlike the past research in this area which has concentrated on the simple transshipment policies of complete pooling or no pooling, the research presented in this thesis endeavors to develop an understanding of a more general class of transshipment policy. The research considers two major approaches: a decomposition approach, in which the two-location system is decomposed into a system with independent locations, and Markov decision process approach. For the decomposition approach, the transshipment policy is restricted to the class of holdout transshipment policy. The first attempt to develop a decomposition approach assumes that transshipment between the locations occurs at a constant rate in order to decompose the system into two independent locations with constant demand rates. The second attempt modifies the assumption of constant rate of transshipment to take account of local inventory levels to decompose the system into two independent locations with non-constant demand rates. In the final attempt, the assumption of constant rate of transshipment is further modified to model more closely the location providing transshipments. Again the system is decomposed into two independent locations with non-constant demand rates. For each attempt, standard techniques are applied to derive explicit expressions for the average cost rate, and an iterative solution method is developed to find an optimal holdout transshipment policy. Computational results show that these approaches can provide some insights into the performance of the original system. A semi-Markov decision model of the system is developed under the assumption of exponential lead time rather than fixed lead time. This model is later extended to the case of phase-type distribution for lead time. The semi-Markov decision process allows more general transshipment policies, but is computationally more demanding. Implicit expressions for the average cost rate are derived from the optimality equation for dynamic programming models. Computational results illustrate insights into the management of the two-location system that can be gained from this approach.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Marketing for Sustainable Tourism

    Get PDF
    The aim of the Special Issue is to discuss the main current topics concerning marketing for sustainable tourism with reference to territories (i.e., tourism destinations, protected areas, parks and/or natural sites, UNESCO World Heritage Sites, rural regions/areas, etc.) and tourism enterprises and/or organisations (i.e., destination management organisations, hospitality enterprises, restaurant enterprises, cableway companies, travel agencies, etc.). In destinations where natural resources are pull factors for tourism development, the relationships among local actors (public, private, and local community), as well as marketing choices, are essential to develop sustainable tourism products. To this end, the Special Issue encourages papers that analyse marketing strategies adopted by tourism destinations and/or tourism enterprises to avoid overtourism, to manage mass sustainable tourism (as defined by Weaver, 2000), and to encourage and promote sustainable tourism in marginal areas or in territories suffering lack of integration in the tourism offer. Special attention will be given to contributions on the best practices to manage territories and/or enterprises adopting sustainable marketing strategies
    corecore