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Abstract

In two-location inventory systems, unidirectional transshipment policies are considered

when an item is not routinely stocked at a location in the system. Unlike the past research in

this area which has concentrated on the simple transshipment policies of complete pooling or

no pooling, the research presented in this thesis endeavors to develop an understanding of a

more general class of transshipment policy. The research considers two major approaches: a

decomposition approach, in which the two-location system is decomposed into a system with

independent locations, and Markov decision process approach.

For the decomposition approach, the transshipment policy is restricted to the class of

holdout transshipment policy. The first attempt to develop a decomposition approach

assumes that transshipment between the locations occurs at a constant rate in order to

decompose the system into two independent locations with constant demand rates. The

second attempt modifies the assumption of constant rate of transshipment to take account of

local inventory levels to decompose the system into two independent locations with non-con-

stant demand rates. In the final attempt, the assumption of constant rate of transshipment is

further modified to model more closely the location providing transshipments. Again the

system is decomposed into two independent locations with non-constant demand rates. For

each attempt, standard techniques are applied to derive explicit expressions for the average

cost rate, and an iterative solution method is developed to find an optimal holdout transship-

ment policy. Computational results show that these approaches can provide some insights

into the performance of the original system.

A semi-Markov decision model of the system is developed under the assumption of expo-

nential lead time rather than fixed lead time. This model is later extended to the case of

phase-type distribution for lead time. The semi-Markov decision process allows more general

transshipment policies, but is computationally more demanding. Implicit expressions for the

average cost rate are derived from the optimality equation for dynamic programming models.

Computational results illustrate insights into the management of the two-location system

that can be gained from this approach.
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Chapter 1

Introduction

1.1 Introduction

Nowadays, most global enterprise operations are far more complicated than those of the tradi-

tional local family managed business. With significant influences from globalization and wide

application of Information Communication Technology (ICT), logistics operations of global

business giants exercise their controls beyond their geographic boundaries. Some multi-national

business operations can be ranked in scale as a single trade country or entity in the world

independently. For example, Wal-Mart, the world largest retail supermarket chain, reported in

its annual report of year 2006 that it operates more than 2460 super centres around the world,

with annual turnover over US Dollar 312,427 millions, and inventory worth at US Dollar 32,191

millions. In the manufacturing sector, some finished products are made up of components to

a magnitude level. For instance, as revealed in Economist (2006), a Boeing 747 has more than

6 million parts, all of which have been ordered, tracked, assembled and carefully monitored

throughout their service life.

According to the Economist (2006), cost savings can be achieved not only from purchasing

power, but also from more efficient stock management. Hau Lee, a professor of operations,

information and technology at Stanford University, calls one of the biggest sources of inefficiency

in logistics, the “bull-whip effect”, after the way the amplitude of a whiplash increases down the

length of the whip when it is cracked.
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Some might argue that keeping high volume of inventory stock is far less important than two

decades ago since the emerging and popular use of computer network and internet techniques.

We agree with this argument from strong evidence that a new trend for most traditional

businesses is to handle with the plummeting inventory. For instance, Dixons, one of the largest

electronic retailers in UK, claims its long-term strategy is to close more high street outlets to

improve competitiveness in responding to situations where shoppers move to online shopping

systems. Top volume-car manufacturers like GM and Ford are fighting hard to survive by

keeping stock at reasonable low levels in order to compete with their Japanese rivals. However,

these only tell a part of the story.

In practice, the survey in the Economist (2006) suggests that business needs to offer tailored

service levels for different products to meet different requirements. The strategy is never to be

out of stock of high-velocity items, which tend to be the most profitable. On low-velocity items,

there is slightly more room for errors, advised by Same Israelit, an expert in retail logistics for

Bain & Company. The ultimate goal for the supply chain is to become leaner and more agile,

says Chris Poole, P&G’s director of outbound logistics in Western Europe.

On the one hand, for most business operations, enormous savings of tangible inventory goods

become the effective decision policy for the senior manager to decrease the amount of current

assets and to increase operation profits correspondingly. However, it does not mean that any

cost saving strategy can be achieved successfully on compensations of customer services. In

effect, for some businesses, e.g. Military supply, the requirement for a top quality service level

is far more important than cost savings.

On the other hand, reductions on tangible goods lead to escalating demand for service

business. Movements of redundant tangible goods turn out significantly to increase demand

on products and services which are in intangible or virtual forms. Therefore, inventory control

management strategies can be reused to such products or services, like online ordering system

and call centre business. The precise and efficient control and management of inventory stocks

are demanding good inventory control strategies. In Seifert (2006), they reported that Hewlett-

Packard Company (HP) adopted integrated direct and indirect sales channels to cope with

changing situations where more customers are keen to place order online. Precisely, they con-

sider adding new online shopping platform as a new virtual sale channel and integrate it into
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the existing retail network. An unidirectional transshipment policy between the virtual sale

channel and other retail sale channels is deployed to improve customer services and to save

operation costs. Obviously, for some service businesses such as online ticket and e-procurement

systems, conventional inventory control management techniques are still effective to provide the

fundemental guidelines for better management performances.

Among a comprehensive collection of inventory control strategies, we put our research inter-

ests on the lateral transshipment policy to the multi-echelon and multi-location inventory

control system because many business operations still use variants of lateral transshipments

policy within their local retail network systems to improve the customer services and to achieve

cost savings. In fact, Alliance Boots, the largest UK drugs and pharmacy company, uses a

lateral transshipment policy to help customers whenever they cannot find the product from

one particular shop. Royal Mail Holdings Plc., the largest UK postal service company, pro-

vides a transshipment service by charging a small amount of money for a redelivery service

which delivers goods to the nominated local post office by a choice of the customer. In term

of the lateral transshipment policy, it could be crucially important under some specific cir-

cumstances. For instance, Sergeant Steven Roberts, the British tank soldier who was killed

in Iraq because of the lack of protective armour on the war site, could perhaps have been

saved if an emergent lateral transshipment policy had been reviewed and executed from the

nearest British military supply base to the supply point at the front line. In that sense, the

considerate deployment of the lateral transshipment policy will make the warfare manage-

ment better-off under some circumstances.

Nevertheless, there is no panacea in the world. Any logistics strategy has its context. For

high-value and slow-moving inventory stock, the lateral transshipment policy proves to be

effective and to be considered as a decision policy for most business. For example, as reported

in Zhao et al. (2005), Caterpillar Inc. employs a lateral transshipment management policy to

coordinate high-value inventory stock (some expensive tyres amount to ten of thousands dollar

each) among the regional multi-location inventory control systems. Komatsu Ltd., the second

largest heavy duty construction machinery and equipment manufacturer in the world, provides

real-time Vehicle Health Monitoring System (VHMS) to their Repair & Maintenance (R&M)

contractors or dealers, making them informed of the latest working conditions of their machinery

to maintain the optimal repair and maintenance service at a top level of operating efficiency by

avoiding unexpected down time and minimizing unexpected costs.
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In maintenance business services, such as supplying expensive spare parts for airplane main-

tenance, supplying high-value spare parts to airspace manufacturing sites, and supplying the

spare parts to nuclear power stations and other business environments which take a high degree

of business performance as the top priority strategy, the lateral transshipment policy is widely

used to keep a high level of customer service in case of huge loss on the customer’s business

performances.

In addition, even for business which handles with low-value and slow-moving items, for

example, the transshipment service provided by Edinburgh City Library Network, a lateral

transshipment policy is still attractive. For those who might have a busy schedule, time savings

on the item collection could be a good option by paying a little extra money to re-deliver the

item at the right place at right time.

1.1.1 Inventory type classifications

There are various classifications of inventory types according to different criteria. In respective

of production planning and scheduling, conventionally, we can classify inventory types into six

categories as:

1. Cycle inventory: the amount of inventory resulted as ordering or producing in batches

2. Congestion stocks: inventory items compete for limited capacity

3. Safety stock: the amount of inventory on hand to keep the uncertain demand and

uncertain supply in the short run

4. Anticipation inventory: the amount of inventory holding for forecasting demand

5. Pipeline inventory (work-in-progress): the amount of inventory on the way

6. Decoupling stock: the amount of inventory is used when the separation of decision

making at the different echelons is allowed in the multi-echelon system

According to further classifications in Silver (1985), we have a product-process matrix in

Figure 1.1.
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Figure 1.1. Production planning and scheduling and the Product-Process Matrix

For the senior inventory manager, decision methods of production planning and decision

schedule are chosen by identifying the product type and process pattern in the matrix in Figure

1.1.

The stock unit identity (SKU) contains the unit’s main characteristics i.e. specification,

shape, size, colour, location. In terms of usage and value of the SKU, we have a so called

A − B − C classification for most inventory stocks by Silver (1985), in which class A item

means the SKUs amounting up to the largest share of total inventory value and is given serious

attention by any inventory manager; class B item represents moderate value of the SKUs for

any inventory system; and class C item is the SKUs which make up a less important portion

on the inventory value than those of class A and B items.

For some specific SKUs under the relevant context, there is a collection of decision policies

for inventory manager to choose. However, it is very difficult to find one uniform scheduling

and planning decision for general situations. All policies proposed in the sounding modelling

are only effective within their assumptions and constraints.

In terms of our interests on the holdout lateral transshipment policy to the multi-location

inventory system, to our knowledge from the related research, our policy is appropriate for

inventory systems which deal with slow moving, high value SKUs and any loss of SKUs could

result in a significant consequence on the customer service and business performance.
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For the sake of any inventory control system, we need to define some terms to measure the

system performances. Inventory total cost, the most important performance measure for any

inventory system, consists of several components including ordering cost, holding cost, stockout

cost, backorder cost and transshipment cost if necessary. Definitions of these cost components

will be introduced in the later section. In addition, we use other performance measures such as

direct fill rate, back order fill rate and transshipment fill rate to assess the system behaviours

under the given policy.

Note 1.1. By default, in our research, the terms, location and depot are interchangeable.

1.1.2 Inventory management strategy review

Generally, the primary objective of any inventory system is to provide products or services with

a reasonable cost at the right time and right place. On the whole, objectives for any inventory

system operations are to achieve a good balance between a high-level of customer service,

manageable inventory system and economical financial operations cost.

As far as large business organizations are concerned, management strategies are executed

at hierarchy levels. In Silver (1998), four strategy levels are classified as follows.

1. Enterprise strategy: macroeconomic and microeconomic effectiveness of any strategy

applied to the economy and society

2. Corporate strategy: operations identity and resource deployment

3. Business strategy: compete with competitors to maximize market share

4. Functional area strategy:maximization of resource productivity and the development

of distinctive competencies

Clearly, the holdout lateral transshipment decision policy can be categorized as a functional

area strategy, at the bottom level of these four strategy levels. The aim of our research is to

give quantitative analysis support to the decision maker from the stochastic modelling and

simulation implementations.
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According to Silver (1998), direct or indirect consequences of inventory management

strategy to the operations performance is in finance and marketing respects. A good cost-

effective strategy brings a huge cost saving to whole enterprises and gain the competitive

advantages by improving response times and satisfactions to customers. On the contrary, a

poor inventory control management strategy results in catastrophes to some businesses. The

lack of competitiveness for large US and European car manufacturers against Japanese and

Korean competitors is a good example to show how important of good inventory control man-

agement strategy to business decision makers.

1.1.3 Dimensions of an inventory control system

In practice, an inventory control system consists of three basic dimensions: location structure,

replenishment order policy and lateral transshipment policy.

Location structure of inventory control system: a location structure includes two

types of structures: multi-echelon and multi-location. Within a multi-echelon inventory control

system, at the bottom level, each local depot is supplied by one central regional distribution

centre which is supplied by a distribution centre at the upper level. Among local depots,

lateral transshipments are allowed in case of emergency stockout at requesting depot. A

lateral transshipment between regional distribution centres is also allowed. The relationship is

illustrated in Figure 1.2. Within a multi-location inventory control system, as showed in Figure

1.3, we only consider a local system in which each location is replenished by the same central

distribution centre, however, a transshipment is permitted among them in case of stockouts at

any location.

Figure 1.2. Three-echelon system
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Figure 1.3. Three-location system with a region distribution centre

Replenishment order policy: for any inventory control system, we have to answer two

questions: how often should the system be reviewed to place an order? How large should each

order be? Answering the first question gives rise to the frequency of reviewing the system. The

system is called a periodic review system whenever inventory position is reviewed at a fixed

epoch time. On the contrary, we call the system the continuous review system whenever the

inventory position is reviewed continuously and replenishment orders are placed if a pre-defined

condition holds.

The answer to the second question leads to an assortment of replenishment order poli-

cies. The major replenishment order policy in our field comprises the following variants: (R,

Q) and (s, S) polices given in Silver (1998).

Basically, a classification of replenishment order policies depends on a condition to trigger

a replenishment order and an amplitude of order quantity once an order was placed. For a

continuous review system, under (R, Q) replenishment order policy, an order of Q units of

one type of item is placed whenever the inventory position reaches the reorder point R. For

a periodic review system, (s, S) policy places a variable order quantity of one kind of item to

restore the inventory position to S whenever the inventory position at a review epoch is less

than or equal to s.

Lateral transshipment polices: Similar to the questions for the replenishment order

policy, we need to answer three questions for lateral transshipment polices: when to make the

transshipment; what type of transshipment needs to be carried out; what quantity for each

transshipment delivery?
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The conditions to trigger a transshipment delivery are dependent on the specific pooling

policy. For instance, transshipment can be delivered when the inventory level or inventory

position reaches one threshold value. There are two types of lateral transshipment policies:

unidirectional and bidirectional. In addition, we also need to define the quantity for each

transshipment delivery whenever a transshipment decision is made. The common practice is

to deliver one item for each transshipment or to deliver a variable transshipment quantity

depending on the specific pooling policy.

Figure 1.4. Two-location system with unidirectional transshipment policy

In our research, we pay attention to the single item transshipment in the continuous review

two-echelon, two-location inventory system with (R, Q) replenishment policy and the unidirec-

tional transshipment policy. The situation is illustrated in Figure 1.4.

1.1.4 Inventory control system performance measures

The assessment criterion for any inventory system is differentiated by comprehensive system

performance measures. Principally, inventory cost consists of four classifications: order cost,

holding cost, stockout cost and backorder cost.

1. Order cost: the procurement cost results from the order placed, including configuration

cost for each order placed and personnel cost for each order placed
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2. Holding cost: the cost is assumed to occur at a rate proportional to inventory level

a. Space costs: costs charged for the spatial dimension of the SKU consumed

b. Capital costs: inventory operations in the finance term

c. Inventory service costs: costs occurred in term of insurance and taxes

d. Inventory risk costs: costs arising from deterioration, damage or obsolescence of

the SKU

3. Stockout cost: the cost is assumed to occur when demand cannot be met immediately

due to a lack of inventory at the location facing the demand and a lack of a suitable

location to transship from. It is assumed that the stockout cost is a fixed cost per item

and that all stockouts are backordered.

4. Backorder cost: the costs incurred due to damaged goodwill as a result of the delay

in meeting the demand when a stockout occurs. The cost is assumed to be proportional

to the time taken to meet the demand.

Additionally, we define following terms to measure system performances:

1. Fill rate: the proportion of demand arising at the location that is met by local stock

2. Backorder fill rate: the proportion of demand arising at the location that is met by

backorders.

3. Transshipment fill rate: the proportion of demand arising at the location that is met

by transshipment

1.2 Research Objectives

In order to achieve a good understanding of our own research, it is vital to identify our research

objectives and relevant methodologies. Normally, extensive reading and study of relevant papers

are helpful to understand problem domains and to develop our own solutions.
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From our study and observations on historical research of the lateral transshipment policy

to the multi-echelon and multi-location inventory control system, we found that searching an

optimal total cost to the multi-location inventory control system with general transshipment

policy or with holdout transshipment policy still has more works to do due to its complexity.

For example, there are more than 20 parameters in a two-location system, and the system

performances are arbitrarily dependent and influenced by some individual parameter or com-

bination of these parameters under some specific circumstances. Hence, there is no uniform

optimal solution of general approximation models for most situations under the given policy.

Most papers only explore models with complete pooling or no pooling policies. Some promising

estimations for performance measures are only valid and feasible for some specific pooling

policies with particular constraints.

In short, a lack of a general solution to the problem domain gives only limited helps to the

inventory manager from the practical point of view. Meanwhile, more freedoms on assump-

tions to the inventory systems are harmful for a fundamental understanding of the holdout

transshipment policy to multi-echelon or multi-location inventory control systems under given

circumstances.

Put these issues together, we propose that our research at least contains four basic charac-

teristics: Simplification, Accuracy, Framework, Documentation.

• Simplification: models under our study are simple and reflect fundamentals of the

holdout transshipment policy.

• Accuracy: approximations on the optimal total cost and the relevant performance mea-

sure are verified with corresponding simulations.

• Framework: under the same assumptions, our approximations can be extended to an

inventory system which has more than two locations.

• Good documentation: good documentation is helpful for the further research. The

documents on the approximation models and simulation implementations need to be

presented in a good manner conveniently for the further development.
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Generally, we keep our research concentrations on the study of a single product in a single

echelon two-location inventory control system, a continuous review system with (R, Q) replen-

ishment order policy and one item for each transshipment delivery with unidirectional lateral

transshipment policy. Conventional stochastic approximation models and Markov decision pro-

cess approaches are considered in our study. Estimations of the optimal total system cost and

performance measures are examined and verified with simulations.

Many reasons could lead us to draw a line between our research and others. However, the

key reason we consider a single item unidirectional transshipment is due to the complexity of the

system. There are more than 20 parameters which could give an impact to the system perfor-

mance of a system which has intensive interactions due to the holdout transshipment policy. It

is important to understand their impacts to the system under the holdout transshipment policy

by identifying several sensitive parameters first. Therefore, we choose to concentrate our study

on a single-item unidirectional transshipment model rather than a multiple-item bidirectional

transshipment model.

1.3 Research methodologies

As illustrated in Figure 1.5, our research mainly considers conventional stochastic modelling and

simulation modelling approaches. Under the given transshipment policy, stochastic approxima-

tions and simulations are formulated. On the vertical direction, there are mappings between

theoretical and implementation layers for both simulation and Operations Research (OR)

approach; On the horizontal direction, there are mappings between simulation and stochastic

models at the theoretical layer and between simulations and numerical results at the imple-

mentation layer. Therefore, we use simulations to guide us to develop better stochastic approxi-

mation models.

To distinguish our research from others, we aim to establish the approximation models

which are verified with the equivalent simulations. Our research approach can be classified as

a combination study of stochastic modelling, computing simulation and business models, which

heavily involves approximation modelling and simulation programming. We are determined to

contribute a more practical approach providing more insights into the inventory management

system under the given transshipment policy.
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Figure 1.5. Four research quadrants

1.4 Outline of the thesis

Through our research, we define assumptions, establish stochastic approximation & semi-

Markov process models under the given transshipment policy and provide analysis of these

models from the numerical results. Generally, this thesis document is organized in the fol-

lowing manner:

In the introductory chapter, we give the fundamentals of the inventory management strategy

and inventory control system. All relevant notations and terminologies are explained and dis-

cussed for the further research. Meanwhile, research objectives and methodologies are also

identified and explained.

In the second chapter, theory foundations for the Markov decision process modelling, con-

ceptions and classifications of major history research works are introduced. Most research works

on the lateral transshipment or holdout transshipment policy are categorized. Among them,

some key research contributions are discussed and those which are close to our research are

examined in more details as well.

In the third chapter, before we start to discuss approximation models to the two-location

system, we introduce theory and programming structures of simulation implementations. In

fact, the simulation implementation in our research proves to be an effective tool to assist us

to make a better approximation model.

1.4 Outline of the thesis 29



In the fourth chapter, as the first step, we have a quick study of the single-depot system,

which provides a foundation for other decomposition models. The model is formulated and ver-

ified with simulation respectively. The optimal average total cost is searched by using an exhaus-

tive searching method. Then, we establish an approximation model, which decomposes a two-

location system into two independent locations with constant demand rates. The transshipment

agreement probability is introduced to approximate the unidirectional holdout transshipment

policy. This approach is verified with the corresponding simulation.

In the fifth chapter, in order to achieve a high accurate degree of our approximation models,

we decompose the two-location system into two independent systems with non-constant demand

rates. In the first part of this chapter, we define a decomposition approximation model where

the transshipment decision is still dependent on the transshipment agreement probability. In the

second part of this chapter, we give a decomposition approximation model where the transship-

ment decision is dependent on the holdout threshold at location 2 explicitly. For each model,

standard techniques are applied to derive explicit expressions for the average cost rate, and an

iterative solution method is developed to find an optimal holdout transshipment policy. To make

assure the correctness of our approximations, we check the accuracy of these approximations

during a single cycle with corresponding simulations. The numerical results are provided to

illustrate the effects when the partial pooling becomes the optimal transshipment policy.

In the sixth chapter, it is worth considering the Markov decision process technique to

have more insights of the unidirectional holdout transshipment policy because of the nature

of dynamic programming. Hence, we develop a semi-Markov decision processes (SMDP) model

with exponential lead time to find a solution to inventory control system under the holdout

transshipment policy. Furthermore, the SMDP model is extended to the case of phase-type

distribution for the lead time in order to approximate the fixed lead time effectively. In addition,

we investigate how optimal transshipment decisions depend on the state of the replenishment

order process for the SMDP models with exponential lead time and the SMDP models with

phase-type lead time via dynamic programming.

Finally, in the seventh chapter, we summarise all models we explored in our research, discuss

the advantages and disadvantages of those modelling approaches and propose the directions for

the further research.
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For further documentary reference, the core classes and methods for the simulation and

approximation models implemented by JAVA programming are provided in the appendix part.
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Glossary
SKU: The stock unit identity contains the unit’s main characteristics i.e. specification, shape, size, colour,
location
stockout: The situation when the current stock level can not meet its local demand
inventory position: The addition of on hand stock and outstanding orders minus the outstanding backorders
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Chapter 2
Relevant research

2.1 Introduction

Hitherto, comprehensive researches on the emergency transshipment policy to the multi-ech-

elon and multi-location inventory control systems have been done since the METRIC model

of Sherbrook (1968). A group of researchers have made their contributions in this field. Due

to the complexity of multi-echelon and multi-location inventory control systems, we firstly

need to understand the problem domains and methodologies in this field in order to develop

our own research.

Basically, for any research in the field of multi-echelon and multi-location inventory con-

trol systems, we need to identify following relevant issues including the type of inventory con-

trol system, the type of inventory control system review, replenishment order policy, lateral

transshipment policy and research methodology. In other words, any research in this field

should at least handle one of these following issues:

• Inventory control system type: for most papers published in this area, only two

echelons and single echelon inventory system are carefully examined due to the partic-

ular research interests of different researchers.

• Inventory system review type: basically, an inventory control system can be

reviewed on the periodic or continuous basis. In practice, most supermarket retailers

use periodic review inventory control system to monitor and replenish their food stock

on a daily or weekly basis because it is easy to implement. However, for some high-

quality service activities such like military and airplane maintenance, the inventory

control system has to be reviewed continuously only because of a significant economic

consequence for any unmet demand.
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• Replenishment order policy: for any inventory control system, this is a funda-

mental question that needs to be answered. We should make it clear how the replen-

ishment order is placed, under what conditions and what replenishment policy is

imposed whenever the replenishment order is placed. In our research field, the condi-

tions to trigger a replenishment order are possibly dependent on two factors: inven-

tory level (stock on hand) or inventory position (stock on hand plus the out-

standing orders minus back orders placed). Inventory system performance measures

which are based either on the inventory level or on the inventory position result in dif-

ferent research interests. Once the condition for a replenishment order is met, a collec-

tion of possible replenishment order policies become available to choose from. The

most popular replenishment order policies in our field are:

For continuous review system

• Order up to S: an order with variable quantity is placed to ensure that the

inventory position reaches to the order-up-to level S when inventory position

falls to the reorder point s

• (R, Q): the system places an order with Q units of one kind of item when the

inventory position is below R, this outstanding order will arrive after the lead

time L.

For periodic review system

• Order-up-to-level (R, S): during R units time of each cycle, an order is placed

to replenish inventory position up to the level of S

• (R, s, S): during every R units time of each cycle, the inventory position is

checked, if it is less than the reorder point s, an order is placed to raise it back

to S. Otherwise, nothing needs to be done until the next review cycle.

• Transshipment policy: lateral transshipment policies are various in respect of trans-

shipment directions, conditions on transshipment and quantity of transshipment. Fur-

thermore, a transshipment decision is made either before all demand is realised, or

after all demand is realised or in response to stockouts.
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• Transshipment directions: the lateral transshipment direction among the inven-

tory control system contains two types: unidirectional and bidirectional trans-

shipment. Namely, for a multi-location depot system with k locations, k = 1,� ,

n, unidirectional transshipment allows a transshipment only from location k + 1

to location k, k = 1,� , n− 1, vice versa not permitted. On the other hand, bidi-

rectional transshipment allows transshipments between any two neighbouring

depots.

• Conditions on the transshipment: complete pooling and no pooling policies are

commonly used. Complete pooling policy means that when one stockout occurs

at one location, a transshipment request is to be met if and only if the

requested location has one stock; no pooling policy means that the transship-

ment request due to a stockout is never met by the transshipment from the

requested location. In addition to these two pooling policies, we might define a

partial pooling policy which means that a transshipment can be delivered when

a certain condition is met, e.g. the holdout pooling policy is one of partial

pooling policies in which a transshipment request will be met when the inven-

tory level at the requested location is greater than or equal to one specific

holdout threshold value. Otherwise, the transshipment request is rejected.

• Transshipment quantity: normally, we permit only one unit of a kind of item

for each transshipment delivery. However some models also agree to a variable

number for a kind of item for each transshipment delivery. The function of the

transshipment quantity might depend on conditions of inventory levels between

the transshipment requesting and requested locations under some circum-

stances.

• Research methodology: numerous methodologies in the lateral transshipment study

for multi-echelon and multi-location inventory systems can be considered. Major

research methodologies include simulation, analytic modelling, heuristic approxima-

tion, Markov decision process, and Nash Equilibrium techniques. Meanwhile, Approxi-

mations of system performance measures including the optimal average total cost,

direct fill rate, transshipment fill rate and backorder fill rate for the specific model are

discussed respectively.
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2.2 Markov decision process theory foundation

In this section, we give an introduction of major definitions and theory foundations of

Markov decision process which are relevant to our research. Due to the popularity of nota-

tions used by Tijms and Puterman from their series books on the stochastic modelling: Tijms

(1986, 1994, 1995 and 2003) and Puterman (1994), we use their notations in our Markov

decision process (MDP) models.

Principally, a MDP model is a controllable dynamic system in which the system evolves

over a finite or infinite horizon by the possible actions made at each review epoch at the each

specific state. At each review epoch, the system stays at one state and a decision of moving

to next state is based on the possible actions at the current state. A MDP is a time homo-

geneous process, which means that the decision made is only based on the current state

regardless of past historic state transitions. State transitions are reflected by the state transi-

tions probability distributions.

The MDP modelling family comprises two classes, one is the discrete-Markov decision

process (DMDP) and the other is the semi-Markov decision process (SMDP). The key dif-

ference between these two classes is the state review epoch method. For DMDP model, the

system is reviewed at equidistant epoch time t = 0, 1, 2, � , N , On the contrary, the system

reviews the state epoch time at random pace in SMDP model. In that sense, SMDP is a

continuous review Markov decision process.

At each review, the system is classified into one of a possible number of states and subse-

quently a decision has to be made. The set of possible states is denoted by I . For each state

i ∈ I, a set A(i) of decisions or actions is given. The state space I and the action sets A(i)

are assumed to be finite. The cost, an economic consequence of decisions taken at the review

epoch is incurred after decision making. If at a decision epoch that action a is chosen in state

i, then regardless of the past history of the system, the following terms hold:

a) ci(a) = an immediate cost ci(a) is incurred

b) R = a stationary policy R is imposed on the whole horizon
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c) pij(a) = at the next decision epoch the system will be in the state j with probability

pij(a), where
∑
j∈I

pij(a)= 1, i∈ I

d) τi(a) = the expected time until the next decision epoch when action a is chosen in

state i

Note that the one-step immediate cost ci(a) and the one-step transition probability pij(a)

are assumed to be homogeneous. The immediate costs ci(a) often represent the expected cost

incurred until the next decision epoch when action a is chosen at state i.

In order to achieve the unique equilibrium distribution {pij(R), j ∈ I }, we assume that

the Markov chain is an unichain Markov Chain, which has no two disjoint closed sets.

In terms of computing implementation, normally, we apply a policy-iteration algorithm,

linear programming algorithm or value-iteration algorithm to find the optimal cost. however

the first two algorithms are not discussed due to the complexity and effectiveness of numer-

ical computations. In our research, we only utilize the value-iteration algorithm to find the

optimal average cost .

In order to apply the value-iteration algorithm to search the optimal average cost, for

each average cost optimal stationary policy, we have two assumptions as such

• The associated Markov chain {Xn} has no two disjoint closed sets

• The associated Markov chain {Xn} is aperiodic.

Generally, the value-iteration algorithm computes recursively a sequence of value func-

tions for searching the minimal average cost per time unit by dynamic programming.

Under the weak unichain assumption, for each average cost optimal stationary policy, the

upper and lower bounds on the minimal average cost converge under the value-iteration algo-

rithm.
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The algorithm for computing the long-run average cost per time unit for SMDP is too

complicated to implement. Instead of this, we extend the value-iteration algorithms from

DMDP to the SMDP’s implementation, as each stationary policy the average cost per time

unit in the DMDP is the same as in the SMDP.

Therefore, we will apply the data-transformation method followed to transform the

SMDP problem to the DMDP problem.

Data�transformation method

First choose a number τ with

0< τ �min
i,a

τi(a)

Consider now the discrete-time Markov decision process model in which basic elements

are given by

Ī = I , Ā (i)= A(i), i∈ Ī

c̄i(a) = ci(a)/τi(a), a∈ Ā (i) and i∈ Ī

p̄ij(a)= {(τ/τi(a))pij(a)+[1−(τ/τi(a))], j=i, a∈Ā(i) and i∈Ī
(τ/τi(a))pij(a), j� i, a∈Ā(i) and i∈Ī

Value�iteration algorithm

For the SMDP model, the formulation of a value-iteration algorithm is not straightfor-

ward. However, by the data transformation method, the SMDP model is converted into a

discrete-time MDP model and both models have the same average cost for each stationary

policy. A value-iteration algorithm for the original SMDP is replaced by the value-iteration

algorithm for the transformed discrete-time Markov decision model.
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Hence, we have the formulation recursion method for the SMDP model as such

1. Initialization� Choose V0(i) such that 0 � V0(i) � mina {ci(a)/τi(a)} for all i. Choose

a number τ with 0< τ �mini,a τi(a). Let n� 1

2. Value�iteration one step� Compute the function Vn(i), i∈ I , from

Vn(i)= min
a∈A(i)

[ci(a)
τi(a)

+ τ

τi(a)

∑
j∈I

pij(a)Vn−1(j)+ (1− τ

τi(a)
)Vn−1(i)] (2.1)

Let R(n) be a stationary policy whose actions minimize the right-hand side of equa-

tion (2.1).

3. Bounds on the minimal costs� Compute the bounds

mn =min
j∈I

{Vn(j)−Vn−1(j)}, Mn =max
j∈I

{Vn(j)−Vn−1(j)}

4. Stopping condition� when 0 � (Mn − mn) � εmn, where ε is a specified accuracy

number. Otherwise, go to step 3.

5. Next iteration� n� n +1 and go to step 1.

In chapter 6, we will use the theory foundations for Markov decision process to derive our

own SMDP models for the two-location inventory system.

From the following sections, we give an introduction to the relevant historical studies of

the lateral transshipment policy and review some relevant research in the similar area.

Giving a good reference to readers, we classify all relevant papers in Table 2.1. Afterwards, a

collection of papers, which are either ranked as the most important contributions in this field

or relevant to our research, are discussed in more details in the succeeding sections.

2.3 Historical transshipment research

2.3.1 Research classifications

In the preceding sections, we give an introduction to all relevant terms and theoretical foun-

dations relating to the specific research approach. Clearly, these give rise to a research classi-

fication in this field. In Table 2.1, we present a chronological summary of all major published

papers.
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Paper Model Replenishment
order policy

Transshipment Research method Dependence

Das (1975) one period review order-up-to S lateral analytic N/A

Lee (1987)1 continuous review
multi-echelon

one-for-one lateral analytic N/A

Jonsson and
Silver (1987)

period review
two echelon

order-up-to S no approximation N/A

Karmarkar (1987) periodic review unknown no dynamic
programming

N/A

Axsäter (1990)2 period review
two echelon

one-for-one lateral analytic Lee(1987)1

Tagaras and
Cohen (1992)1

period review
two echelon

order-up-to S lateral analytic N/A

Sherbrooke(1992) one-for-one lateral simulation N/A

Archibald et al.
(1997)2

period review
single echelon
two depot

order-up-to S lateral Markov decision
process

N/A

Alfredsson and
Verrijdt (1999)

two echelon one-for-one lateral analytic Axsater(1990)
Lee(1987)
Sherbrooke(1992)

Evers(2001) two location fixed order Q lateral heuristics
derivation

Lee(1987)
Axsater(1990)

Tagaras (2001) periodic review
not multi location

order-up-to S emergency analytic
simulation

N/A

Kukreja et al.
(2001)

continuous review
single echelon
multi-location

one-for-one complete pooling analytic Lee(1987)
Axsater(1990)

Grahovac and
Chakravarty (2001)

multi-echelon (S − 1, S) Sharing and
transshipment

analytic
simulation

Lee(1987)
Axsater(1990)

Rudi et al. (2001) single period (R, Q) lateral Nash equilibrium Krishnan(1965)
Robinson(1990)

Tagaras (2002) periodic review order-up-to S lateral simulation N/A

Axsater(2003a)2 continuous review
single echelon
multi-location

order-up-to S
(R, Q)

unidirectional
transshipment

analytic
simulation

Lee(1987)
Axsater(1990)

Axsater(2003b)2 continuous review
single echelon
multi-location

(R, Q) unidirectional
transshipment

heuristic
simulation

Lee(1987)
Axsater(1990)
Alfredsson and
Verrijdt(1999)

Xu et al . (2003) continuous review
two location

(R, Q) lateral simulations
analytic

Lee(1987)
Axsater(1990)
Sherbrooke(1992)

Dong (2004) periodic newsvendor Q transshipment Stackelberg
equilibrium

N/A

Hu et al . (2005) periodic review (s, S) emergency dynamic
programming
simulation

Krishnan(1965)
Robinson(1990)

Minner (2005) continuous review (R, Q) transshipment analytic N/A

Zhao et al . (2005) continuous review
two location

(S, K) sharing game theory
equilibrium

Krishnan(1965)
Lee(1987)
Rudi et al. (2001)

Wee and
Dada (2005)

single period review order-up-to S lateral mathematical
programming

Krishnan(1965)
Rudi et al. (2001)
Robinson(1990)

Herer (2006) periodic review order-up-to S sharing LP/IPA Robinson(1990)

Ozdemir (2006) periodic review order-up-to S transshipment LP/IPA Herer et al. (2004)

Seifert et al . (2006a)
Seifert et al . (2006b)

Unidirectional
transshipment

mathematical
model

Rudi et al. (2001)

Wong et al . (2006a) continuous review (S − 1, S) lateral integer
programming

Lee(1987)
Sherbrooke(1992)
Alfredsson and
Verrijdt(1999)
Grahovac and
Chakravarty(2001)

Hu et al . (2007) single period (R, Q) lateral Nash equilibrium Rudi et al. (2001)

Zhao et al . (2008) continuous review make-to-stock lateral Dynamic
programming

Zhao et al . (2005)

Kutanoglu (2008) continuous review (S − 1, S) lateral Markov analysis Axsater (1990)

Table 2.1. Relevant research summary

42 Relevant research



Note 2.1. Paper marked with superscript1 is categorized as the most important research in

this field. Paper marked with superscript2 uses the approach which is close to our research

approach. The papers with N/A mark in research dependence means that no similar research

was done prior to this one, or it is difficult to identify its dependence.

2.3.2 Introduction to the transshipment research

Firstly, we give a brief chronological review on the relevant research in the transshipment

policy study to multi-echelon and multi-location inventory control systems in this section.

Major research works which are very close to our research approaches are also explained in

the subsequent sections.

In the paper from Jonsson and Silver (1987), they examined a two-echelon system with a

periodic review system and compared the system service levels between the systems both

with and without the redistribution policy.

The multi-location inventory problem considered in Karmarkar (1987) is a natural exten-

sion of the so-called “newsboy” problem to many locations and multiple time periods with

proportional transfer costs and replenishment costs. A restricted Lagrangian decomposition

of the problem that results in an easily computable lower bound for the problem and a dual

relaxation that gives an upper bound are presented. In numerical example, two sets of tests

were conducted on two-location two-period and three-period problems. The approach in Kar-

markar (1987) is very different with our research approach.

Sherbrooke (1992) paid special interest to the simulation approximation of back orders

within the multi-echelon system with the lateral transshipment policy from the VARI-

METRIC model. It was assumed a Poisson demand process at each location and one-for-one

replenishment order policy. The VARI-METRIC model assumes that resupply requests are

filled on a first-come, first-served bases.

Simulation results show that when lateral transshipment times are less than the trans-

shipment time from a depot to a base, any item completing depot repair should be sent to

some base immediately.
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In the paper of Sherbrooke (1992), it was reported that it is very common to achieve 30-

50% backorder reductions from the introduction of lateral transshipment policy when the

demand rates are low.

Alfredsson and Verrijdt (1999) developed a two-echelon model with one-for-one replenish-

ment order policy and lateral transshipment policy. At each location, they assumed a

Poisson demand process. In case of a demand at a location, the strategy for filling this

demand are considered as the following order: fill the demand from stock on hand, the

demand is satisfied by an emergency lateral transshipment from another randomly chosen

location are situated in one area such that the transshipment is much shorter than the

replenishment time from the central warehouse, the demand is satisfied by a direct delivery

from the central warehouse if it has stock on hand, and the demand is satisfied by a direct

delivery from the plant which has infinite supply.

They developed two models, the first model approximated the fraction of the total

demand that is met by direct delivery from the central warehouse and the fraction of the

total demand that is served by direct delivery from the plant if a customer arrives when

there is no stock on hand, locally or at the central warehouse. The second model applies

Markov analysis to derive the fraction of demand is met by transshipment and the fraction of

demand from stock on hand.

Those system performances were validated with the numerical results of simulations, it

was also revealed that a combination of lateral transshipment and direct deliveries resulted in

a significant cost saving.

Evers (2001) presented two related heuristics in two important respects: the costs and

benefits of transshipments are treated more explicitly and stock transfers of multiple units

are considered. The first heuristic Economic Order Quantity (EOQ) model deals with the

emergency transshipment of a single unit and the second heuristic Economic Order Quantity

(EOQ) model addresses the general case of multiple units. The numerical examples showed

that emergency transshipments may be quite appropriate on many occasions.
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Rudi et al. (2001) paid their attention on the profit by the given pooling policy. They

developed single-period models by investigating cases: the newsvendor problem, inventory

decisions for each location are centrally coordinated to maximize aggregate profits, inventory

decisions are made locally and the expected profit at each location now depends not only on

order quantities, but also on transshipment prices. They considered the lateral transshipment

problem by Nash Equilibrium approach. Through this approach, local decision makers opti-

mize their own performance, rather than a single central decision maker optimizing overall

performance. They found that if each location aims to maximize its own profits, their inven-

tory choices will not, in general, maximize joint profits. To the extent that inventory choice

varies with transshipment prices, transshipment prices that induce the locations to choose

inventory levels are consistent with joint-profits maximization.

Kukreja et al. (2001) gave a study of a two-echelon system with a one-for-one replenish-

ment policy. It was assumed that each plant faces independent and stationary Poisson

demand, and complete pooling of stock is allowed among the plants. The sourcing rule was

based on transshipment costs: from the locations that have stock on hand, transshipment

from that location with the lowest transshipment cost to the location needing the unit.

The model is formulated for slow-moving and expensive parts in which complete pooling

of stock is allowed between the locations. Experimentation was performed to validate the

results from the model and to explore the benefits of pooling of stock in a pilot application.

A queuing-based model was developed to assist in determining the optimal allocation of

inventory throughout the collection of stocking parts.

The analytical model was tested on a variety of measures and reported to perform well.

The experiments also showed that substantial savings were achieved by allowing for pooling

of stock. The pilot study showed that the model bring about 68% cost reductions. The fur-

ther research is needed for the non-complete pooling policy.

Tagaras and Vlachos (2001) considered a single-item periodic review inventory system

that employs a base stock with order-up-to-S replenishment order policy. The review period

is taken as given and determined by considerations such as the need for coordinating the reg-

ular replenishment with those of other items.
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The numerical results proposed that the emergency replenishment with shorter lead times

and higher acquisition costs could result in a big cost saving by their optimization algorithm.

Grahovac and Chakravarty (2001) considered a two-echelon system with one-for-one

replenishment order policy. They assumed the Poisson demand process at all retailers and

developed a solution methodology for analyzing a supply chain with expensive, low-demand

items, and the particular pattern of transshipment in centralized and decentralized supply

chain environments. The numerical results show that the ability to quickly move inventory

within the lowest echelon can reduce the overall cost by up to approximately 20%. However,

they concluded that this savings is not always accompanied by a reduction in the overall

inventory in the supply chain. Furthermore, any reductions in inventory occur at the distri-

bution centre, while retailers experience stable or even increasing inventory level. These con-

tradictory trends can cause problems in decentralised supply chains in which some partici-

pants may need extra incentives and assurances to join the inventory-sharing and transship-

ment arrangement.

Tagaras and Vlachos (2002) considered a two-echelon two-location periodic review

system. At each location, they assumed general random demand process. One of the main

contributions of this paper is that it deals with non-negligible transshipment times. Further-

more, it places special emphasis on the investigation and sensitivity analysis with regard to

the type (shape) and variability of the underlying demand distribution. It reviews the effect

of the type and variability of the demand distributions on the pooling group performance.

Specifically, Normal distribution stands for high demand with a low coefficient of variation

and Poisson distribution stands for low demand items. From the numerical results, they con-

cluded that the shape and variability of demand distribution affect all aspects of design and

operation of pooling groups. No general statements can be made about the appropriateness

of lateral transshipment policies without explicitly taking into account the characteristics of

the demand distributions.

In the paper of Axsäter (2003b), Axsäter proposed a simple but effective approach to

study lateral transshipment policy to the multi-location inventory control system. He con-

sider a number of locations having independent compound Poisson demand process and

assume an (R, Q) replenishment order policy with the fixed lead time. The objective is to
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find a suitable replenishment policy which includes reorder points and batch quantities for

normal replenishment as well as a decision rule for lateral transshipments.

The decision rule for the optimal transshipment policy was evaluated in a series of simula-

tion studies for the situations include lower transshipment costs, fixed transshipment cost

and (R, Q) from the no-pooling case. The numerical results indicates that it is a reasonable

approximation to use the easily available reorder points and batch quantities that are

optimal without lateral transshipments. This approach always gives expected savings com-

pared with the no-pooling case.

Dong and Rudi (2004) paid more attention to the transshipment effect on both the

retailers and manufacturer in terms of order quantities and profits. They considered a distri-

bution system consisting of n retailers owned or operated by the same entity and one manu-

facturer that sells to these retailers in a single period. The lateral transshipment between any

two locations can be allowed after observing demand before having to satisfy it.

They developed models to approximate the retailer’s profit and manufacturer’s profit.

Furthermore, they considered the case of exogenous wholesale price, where the manufacturer

is a price taker and can not affect the wholesale price and the case of endogenous whole sale

price by modelling the interaction between the manufacturer and the retailers. Based on the

Stackelberg equilibrium game between manufacturers and retailers, the numerical results

demonstrated that the impact of transshipment on the manufacturer and the retailers is

largely dependent on whether the manufacturer is a price taker or a price setter.

Hu et al. (2005) considered a periodic-review system with centralized-ordering and emer-

gency transshipments by using the dynamic programming approach. They developed the

approximation models with the general emergency shipment and normal distributed demand

approximation respectively. From their numerical results, they concluded that for a small

number of stores and small transshipment costs, relative to the holding and stock-out costs,

inventory policies may be obtained from a simplified model using zero transshipment costs

but using transshipment as a means to solve emergency situations. If transshipment costs are

equal or greater than the holding plus stock-out costs then a model without transshipment

can be used. In general using transshipment could be a very cost effective way of reducing

inventories for situations with a large number of stores.
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Wee and Dada (2005) considered one warehouse and n-retailer inventory system. At each

location, it was assumed an order-up-to S replenishment order policy before the selling

period and random demand from an arbitrary multivariate distribution. The objective is to

determine the optimal stocking levels so as to maximize the expected profit (net of transship-

ment and penalty cost). They advanced a series of studies on the system performances on

the impact of lateral transshipment policy for five systems: retailer-only, retailer-first system,

warehouse-first system, warehouse-only and no-pooling system. It reported that the optimal

transshipment policy would exclude the partial transshipment policy from their periodic

models.

The paper written by Zhao et al. (2005) is another recent published work which models a

continuous-review infinite-horizon dealer network consisting of two independent dealers.

They assume each dealer uses a base-stock and rationing policy. They employed the Nash

Equilibrium from Game theory to the decentralized supply chains system. Two system per-

formances: dealer’s inventory-sharing behaviour and the expected system back orders are

examined.

They made their contributions from at least key respective. First, they review a network

in which the dealers have the flexibility to share inventory to satisfy customer demand.

Second, they consider inventory sharing as a multiple demand class problem, in which a

dealer’s own demand is considered as a higher priority class of demand, and sharing requests

from other dealers, modelled endogenously are considered as a low-priority class of demand.

Finally, they consider the interactions between the dealers in a decentralized setting.

From the numerical study, they concluded that increasing the manufacturer’s incentives

for sharing and reducing the cost of sharing are two different ways to affect dealers’ inven-

tory-sharing behaviour in a decentralized system. Incentives for sharing lead to achieve full

sharing.

Wong et al. (2005) reviewed a single-echelon system in which N locations coordinate by

pooling their spare-part stock of a particular repairable item. In their work, they developed

models with non-zero or zero lead time and delayed lateral transshipments. By considering

the inventory situation in the group (aggregate) and in the individual level, the problem can
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be simplified as a one-dimension Markov chain. Numerical experiments show that proposed

approximation method is quite accurate and computationally efficient and delayed lateral

transshipment can reduce the expected number of backorders significantly. This could mean

that the assumption of instantaneous lateral transshipment has a risk as it can lead to non-

optimal stocking decisions.

The modelling approach in the paper of Minner and Silver (2005) is very straightforward.

They assumed a distribution system with two identical locations. At each location, there is a

compound Poisson demand process and employs an (R, Q) replenishment order policy. Com-

prehensive numerical results were conducted in terms of two extreme transshipment policies:

no pooling and complete pooling policies. The numerical results show that the approxima-

tions are reasonably accurate, especially for the case of pure Poisson demand. For the

instances with higher percentages demand and longer lead times, the error percentages

increases, especially for the case of no transshipments. The accuracy becomes better under

transshipment.

Herer et al. (2006) considered a single-echelon multi-location system on the periodic

review basis. The demand distribution at each retailer in a period is assumed to be known

and stationary over time. The system is reviewed periodically and replenishment orders are

placed with the supplier.

They considered the multi-location dynamic transshipment problem via an integrated

infinitesimal perturbation analysis (IPA)/linear programming (LP) algorithm. First, an

arbitrary number of non-identical retailers was considered with possibly dependent stochastic

demand. Second, they modelled the dynamic behaviour of the system in an arbitrary period

as a network flow problem. Finally, a simulation-based method using IPA for optimization

was used.

Ozdemir et al. (2006) considered a single-item two-echelon system with periodic review

system. If the demand exceeds the current inventory level at one or more of the stocking

locations, while the inventory level exceeds demand at one or more of the stocking locations,

then before the demand is satisfied lateral transshipments take place to decrease the overall

overage and underage in the system. At each location, two decisions should be made every

period: transshipment and replenishment quantities.
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They developed a LP multi-location transshipment model with N non-identical locations

and with capacity transportation constraints by a sample-path-based optimization approach.

Moreover, they also proposed a stochastic approximation using Monte Carlo simulation by

formulating and validating IPA derivative estimators. Their approach provides the formula-

tion and validation of IPA-based gradient estimators for a stochastic optimization algorithm

to solve the multi-location transshipment problems with transportation capacities. The

numerical experiments show that the impact of transshipment capacity on system behaviour

heavily depends on the number of participating stocking locations as well as on the network

structure.

Hu et al (2007) considered a two-location production inventory model with lateral trans-

shipment and uncertain capacity during the period. Their interest is in whether there exist

coordinating transshipment price such that, if each location made locally optimal decisions,

the two locations’ total profits would be equal to the profits earned by a centralized system.

Hence, the optimal decisions both for a central coordination and local depot are modelled

Numerical study shows that a firm that would like to coordinate two locations’ produc-

tion and transshipment is unlikely to achieve coordination in many instances by setting linear

transshipment price schedule.

Kutanoglu (2008) considered a two-echelon system with N locations and one central

warehouse. It was assumed that each location has one-for-one replenishment order policy and

exponential lead time. He tried to evaluate total costs and time-based fill rates from two

respective: response time service time and inventory sharing.

Numerical experiments show that a complete enumeration scheme can be useful when

there are a small number of facilities each with relatively low demand. However, the models

they chose is on the evaluation rather than optimization.

Zhao et a l (2008) is the latest paper in the transshipment policy. Rather than consid-

ering the conventional replenishment order policy, they considered the make-to-stock queuing

system with transshipment policy. In the two-location, the system faces both production and
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demand filling decisions at each location, with each decision now involving a transshipment

option.

It was assumed that a distribution network with two locations, each consisting of an

inventory pool linked to a make-to-stock production facility. A dynamic programming formu-

lation for the problem was presented and the structure of the optimal policy was proved.

Their study showed that: the optimal policy will use transshipment not only for emer-

gency demand filling, however also to provide capacity flexibility through the sharing of pro-

duction capacity; a dual transshipment policy, in which transshipment is allowed both before

and after demand arrival, significantly outperforms more restrictive policies, which allow only

one type of transshipment; a common restriction on transshipment used in practice, i.e., that

transshipment will be used if and only if there is an emergency, is optimal under certain rea-

sonable assumptions on the problem parameters; as determined by the optimal policy, pro-

duction, demand filling, and transshipment decisions are state dependent.

2.3.3 Key contributions to transshipment research

In the previous discussions on the relevant research of the transshipment policy to the multi-

echelon and multi-location inventory control system, several pioneering works are regarded as

the key research contributions in this field. Therefore it is worth to have a concise review of

these works before we introduce our own approach. For convenience of reference, we present

these momentous papers in a chronological order.

Das (1975) considered a two-location system with periodic review. It was assumed that

replenishment may be ordered only at times of periodic review but transshipments is allowed

between the locations at predetermined times within the replenishment cycle.

The model for a single product system of two locations with independent demands is for-

mulated. The system is reviewed periodically for purposes of replenishment and redistribu-

tion of stock and assumed that the transshipment and ordering are not carried out concur-

rently. The system cost comprises of three operating costs: holding cost, ordering cost and

transshipment cost.
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Das defined the optimal expected total cost function for each period. In order to derive

the optimal transfer and ordering rules, Das gave very detailed analysis and proof using

convex function features and its component functions. The optimal transfer rule for the

single period model and optimal ordering rule under the assumption of complete backlogging

of excess demand are discussed.

Das’s approach provides us with a study of a single period for one single product two-

location inventory system with stock transfer policy. With the strict assumptions on the

convex component function of expected cost, the optimal transfer and ordering rules are

defined in a very general manner. However, Das (1975) does not mention a method of finding

optimal transfer and ordering rule for a specific situation. It is very difficult to judge the

validity of his approach without simulation.

The paper of Lee (1987) is one of most important papers in the 1980’s on the transship-

ment policy because of its popular reference rate. Lee considered a multi-echelon inventory

system with continuous review system. A one-for-one replenishment policy is used and emer-

gency lateral transshipments between some identical bases are allowed. In this paper, Lee

called the transshipment of stock goods from one base to another an emergency lateral trans-

shipment when the stock-out takes place at one base. In the model, a two-echelon multi-loca-

tion inventory system where a group of base stock is supplied by a replenishment depot and

bases are sub-categories by different pooling groups where the emergency lateral transship-

ment is permitted among all bases within the same pooling group.

Three transshipment decision policies are examined to choose the source base in such

orders

• Rule 1: the source base is chosen randomly from any base within the pooling group

with stock on hand

• Rule 2: the base with maximum stock on hand is chosen as the source base, if no such

base exists, go to random rule 1

• Rule 3: first choose the base with the maximum stock on hand, if no such base, search

the base with the smallest number of outstanding orders. If no such base exists again,

go the random rule 1
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Lee (1987) proposed two measures to assess the system performance under the given

policy: performance measures and optimal costs.

Performance measures:

Lee (1987) identifies the number of back-orders and the quantity of emergency lateral

transshipment as the two key performance measures: direct fill rate and transshipment fill

rate.

Optimal total cost:

Based on the definitions and derivations on the performance measures, Lee deduced the

objective function of optimal minimum total cost composed of holding cost, backorder cost

and emergency lateral transshipment cost subject to some service level constraints.

In the end, the numerical results on the performance measures and optimal total cost are

compared and analyzed with those from the simulations.

It must be highlighted here that it is the first time this type of methodology is used,

which is believed to be a more reasonable and sound framework than those before. Since this

paper, many researchers followed this manner in their research approach. The reason making

them consider this approach is because the ultimate objective of our study on the inventory

system is to find the optimal cost policy. To get this goal, we need to define the terms for

the system performance measures and approximate these terms to have more insights of the

given pooling policy. Meanwhile, the approximation model should be verified by the corre-

sponding simulation. In this sense, we think the approach proposed by Lee (1987) delivers a

sound methodology guideline for our research.

2.3.4 Related transshipment research

In the preceding section, several key papers are examined. However, some of them only give

solutions to some general problems. For our research interests of the holdout transshipment

policy to the multi-location inventory system, we need to review the papers which specially

handle the specific problems such like unidirectional transshipment, holdout transshipment,

simulation and approximations.
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Sven Axsäter is one of the key researchers who concentrates his research interest on the

lateral transshipment issue. Therefore, it is worth paying more attention to his paper

Axsäter (1990). In the work of Axsäter (1990), he extends the model from Lee (1987).

Rather than focusing on the approximation of the number of outstanding orders, Axsäter

makes more efforts on the modeling of demand.

Under assumptions of one-for-one replenishment policy, several demands for depot and

group are approximated for the two-echelon multi-location inventory system. Then approxi-

mations of the direct fill rate, transshipment fill rate and backorder fill rate were examined in

respect of identical base and non-identical base scenarios.

In the end, numerical algorithms for searching the correct values of backorder fill rate and

transshipment fill rate were discussed with a comparison of results between Lee (1987)’s sim-

ulation and Axsäter’s approximation. As pointed in the concluding part of Axsäter (1990),

Axsäter’s approximations advance Lee (1987)’s approximations to the non-identical situation.

The numerical results with simulations show that, in case of identical bases, approximations

have good improvement compared to the method suggested by Lee (1987) when the propor-

tion of emergency transshipment is relatively large. These approximation techniques can also

be extended to non-identical bases and performs equally well in such cases.

Tagaras and Cohen (1992) presented a conventional approach to the lateral transshipment

inventory system. Basically, a periodic single-echelon two-location system is under review.

Pooling policy is considered either by the inventory level or inventory position at each loca-

tion, that is to say, the location which is being asked to provide a transshipment wishes to

maintain a safety stock before agreeing to deliver a transshipment. They define four pooling

policies. Among them, policy 1 and 2 are dependent on the inventory level, meanwhile,

policy 3 and 4 are dependent on the inventory position. The definition of the threshold safety

stock value is similar to the meaning of the holdout concept at the location where the trans-

shipment is requested. When two thresholds are equal to zero for two locations, policy 1 and

policy 2 become the complete pooling policy.

54 Relevant research



The expected cost per period is examined and inequalities with respect to the cost differ-

ence are discussed. When the inequality condition is met, the optimal cost gives rise to one

directional transshipment. A series of optimal cost simulations based on the four pooling

policies demonstrates pooling policies 1 and 2 are equally determining on the optimal cost,

however pooling policy 3 becomes dominating pooling policy in most cases to achieve optimal

cost.

To improve optimal cost searching in the simulation, a heuristic algorithm of complete

pooling, which is based on the insensitivity of the optimal safety factor to the replenishment

lead time in non-pooling situations, provides near-optimal solutions. Additionally, the

approximate estimates on the fill rate and average transshipment are reviewed in terms of

complete pooling policy.

The paper of Tagaras and Cohen (1992) might be the first paper introducing the so called

holdout concept for the multi-location inventory system whenever a stockout occurs at one

location. It is very interesting to see its effects over the system under different pooling poli-

cies. However, further particular research on the holdout transshipment policy needs to be

carried out.

The method which Archibald applies in the work of Archibald et al. 1997 is different from

most research in this subject. Rather than choosing conventional approximations of the per-

formance measures and optimal total cost, the system is modelled as a continuous time

Markov decision process.

Firstly, a Markov decision process (MDP) model of a single product two-location inven-

tory system is examined. Inventory levels at the two locations are defined as the finite state

space. A transshipment action is made for situations when inventory level at one location is

zero and the other location has stock on hand. The minimum expected total cost of satis-

fying the demand within a period, given the stock level at location 1 and location 2 at the

beginning of the period, is formulated as the sum of the expected cost of the first unmet

demand occurring at location 1 and location 2, and the expected cost of no unmet demand

occurring before the next review epoch.
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The practical method of getting the optimal total cost is to discretize time and calculate,

working backward in time. Then various modifications of the model are discussed by the

evaluation of the optimal transfer policy. In particular, the likelihood of transfer from loca-

tion 1 to location 2 is dependent on various relations between the increase in the demand at

location 1 and location 2. Furthermore, an extended model for a two depot multiple item

inventory system is discussed and an example of numerical computation on the two depot

two item inventory system is analyzed.

Archibald et al. (1997) shows an innovative approach that reviews the lateral transship-

ment policy for inventory control. By taking advantage of the Markov decision process and

dynamic programming, we will advance Archibald et al. (1997)’s approach to the two-loca-

tion inventory system with non-zero replenishment lead time and holdout transshipment

policy.

The methodology used in Axsäter 2003a concentrates on simulation techniques. The lat-

eral transshipment policy is simple in the paper, that is the unidirectional lateral transship-

ment among the two-echelon multi-location inventory system. In other words, the transship-

ment is only considered from the posterior location to the earlier location on the same supply

chain multi-location system. To simplify the solution, only two and three location inventory

system are examined with order-up-to S or (R, S) replenishment order policy under the uni-

directional lateral transshipment policy. In general, he gave the approximations on the key

performance measures: direct fill rate, fill rate (including lateral transshipment) and indirect

fill rate (only lateral transshipment). In addition to these approximations, the total cost

(which consists of holding order cost, back order cost and transshipment cost) is formulated.

Under several identical and non-identical circumstances, computation results on the fill

rate, stock on hand rate and back orders from the approximations and simulations are pro-

vided in respective of order-up-to S and (R, S) policy for two-location and three-location

inventory system. The numerical results of optimal total cost and simulation for two-location

inventory system with and without transshipment policy are compared. It is reported in

Axsäter (2003a) that some discrepancies are found in the performance measures and total

cost approximations.
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Pros:

The advantage of choosing a simulation approach in Axsäter (2003a) is because it is very

straightforward and proves to be a quick method to learn system performances by the given

policy. Another highlight point is the unidirectional transshipment applied. Due to the com-

plexity of multi-echelon and multi-location inventory control systems, a choice of simple

transshipment policy is helpful to have a good understanding of the key parameter which

contributes to the optimal transshipment policy.

Cons:

The simulation approach is clear-cut to understand impact on a system under the given

lateral transshipment policy. However, there are many ways to gain an improved approxima-

tion on the performance measures and optimal transshipment policy. In addition, no holdout

concept is discussed in Axsäter (2003a).

The paper of Xu et al. (2003) is a recent study especially concentrating on the holdout

transshipment policy under continuous review for the two-location inventory system with (R,

Q) replenishment policy and is the work which might is close to our research problem domain

when we prepare this literature review.

Generally, Xu et al. (2003) derives the assumption of continuous review models from the

work by Lee and Nahmias (1993), and transshipment policy is similar to these in Krishnan

and Rao. (1965) and Tagaras and Cohen (1992). More specifically, the transshipment quan-

tity that location i receives from location j is dependent on the inventory level of location j

and the related control policy. Three pooling policies are discussed as below:

A) Complete pooling policy: location j makes the transshipment without any condition

when a transshipment request is received from location i

B) Reorder-point pooling policy: location j keeps enough inventory on hand to cover the

reorder-point inventory position before agreeing to deliver a transshipment to location

i
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C) Holdout pooling policy: location j keeps a threshold value of inventory on hand, but

unrelated to the reorder-point inventory position, before agreeing to deliver a trans-

shipment to location i

Under the so called (Ri, Qi, Hi) emergency transshipment policy, the following perfor-

mance measures of the inventory system are examined:

1. no stock-out probability at location i before pooling

2. no stock-out probability at location i after pooling

3. fill rate at location i before pooling

4. fill rate at location i after pooling

These performance measure estimations are validated by checking corresponding results

from simulations both for systems with non-identical locations and identical locations. Big

discrepancies between analytic and simulation models for the non-identical situation are

reported. It is suggested that a low Qi relative to average demand during lead time might

explain such big discrepancy. However a small value of Ri leads to large inbound transship-

ment and a good level of agreement between estimation and simulation. On the contrary, the

disagreement between the analytic models with simulation for identical location situations

becomes less than that for non-identical location situation.

Pros:

This is the first paper in which the so called (R, Q, H) replenishment/transshipment

policy is formally used. The performance measures of the two-location continuous review

system are carefully examined and analyzed in respect of three different pooling policies,

though results from these estimations do not agree with these of simulations.

Cons:
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It is assumed that each location can determine its actual demand during a lead time

before the end of the lead time. This is similar to the assumption that transshipments occur

after demand is realised but before it must be satisfied. Meanwhile, further study on the

optimal total cost under such holdout pooling policy is needed for a considerate review.

Seifert (2006a) and (2006b) are recent research works which show the impact of unidirec-

tional transshipment policy.

Instead of allowing transshipments between retailers or transshipments from the virtual

store to a retail store, they consider that an unidirectional transshipment is allowed from the

existing retail network (indirect sale channel) to the virtual on-line store (direct sale

channel). In the dedicated supply chain, the retail stores serve all in-store customers and the

virtual store serves all online customers because transshipments are not allowed. In the inte-

grated supply chain, the excess inventory at the retail stores can be used to fill those online

demands that the virtual store cannot meet from stock. Hence, the problem is modelled as a

discounted stationary multiple-period newsvendor problem with lost sales at the retail stores

and lost sales at the virtual store.

The dedicated supply chain and integrated supply chain models are developed in terms of

optimal base-stock and optimal cost. The examples of cost savings are used to show how the

benefits of integrating the virtual store depend on the following characteristics of the supply

chain: relative channel volume, product characteristics and replenishment lead time. These

results show that integration of the direct and indirect channels improves supply chain per-

formance by substantial channel-stock reductions and reductions in lost sales if the number

of retail stores is large, transshipment penalty cost is relatively low and lost-sales cost, finan-

cial inventory holding cost, demand variability and lead time are high. Their work also

demonstrates that relative channel volume affects the magnitude of the system performance

improvements.

This is the one of few works that directly considers the unidirectional transshipment for

two-location inventory systems. Their approaches provide a good framework to review the

impact of the different characteristics of the system. However, it is assumed that transship-
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ment occurs after the demand is realised and these models need to be validated by the coun-

terpart simulations. In addition, they only handle the complete pooling policy for transship-

ment, not partial pooling (holdout transshipment) and derive the total cost rather than each

cost component.

2.4 Conclusions

From our relevant research study, we learn that most models allowing the transshipment

policy can been classified as three categories: periodic review systems that allow transship-

ments at a single point during a period before the demand for the period is fully known;

periodic review systems that allow transshipments after the demand for the period is known,

however before it has to be satisfied; continuous review systems that allow transshipments in

response to stockouts and use a one-for-one replenishment policy.

However, we are interested to examine the models which can be classified as continuous

review systems that allow transshipments (not only one transshipment) in response to stock-

outs and use a (R,Q) replenishment policy. Rather than considering the models which only

allow the no pooling or the complete pooling policy, we consider the models with more gen-

eral pooling policies which include no pooling, partial pooling and complete pooling policy.

Most papers choose either analytic approximation model or simulation model. Not many

works are conducted by validating the analytic approximation model with the counterpart

simulation model, even for those which apply the two approaches together, such as Xu et al.

(2003). Most report some discrepancy between the analytic approximation and simulation

models. Therefore, we aim to develop an accurate analytic approximation model that is con-

sistent with the counterpart simulation model.

Rather than estimations of a range of performance measures, our research aims to find

the optimal total cost by approximating all cost components at each location. In order to

develop a solid understanding of transshipment policy for inventory systems, we decide to

consider a basic two-location system with unidirectional holdout transshipment policy.
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Furthermore, we also develop the SMDP models to take advantage of dynamic program-

ming. Using the SMDP approach, we develop the models with general unidirectional trans-

shipment policy for two-location systems. We compare the optimal average total cost rate

under general unidirectional transshipment policy with that under unidirectional holdout

transshipment policy to evaluate the performance of the holdout policies. This approach is

also used to approximate the optimal holdout threshold at location 2 and to develop a new

dynamic holdout transshipment policy for two-location inventory systems. By applying

approximation, simulation and dynamic programming techniques, we aim to get a good

understanding of the unidirectional transshipment policy for two-location inventory systems.
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Glossary

Unichain: A Markov chain is said to be unichain if it has no two disjoint closed sets

Aperiodic: If the greatest common divisor of all n for which P n{Xn = i|Xn−1 = i} > 0 is equal to 1, then

state i is said to be aperiodic
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Chapter 3
Problems descriptions & Simulations

3.1 Introduction

In the preceding chapter, we give the theoretical foundations of Markov decision processes

and a summary of the research on multi-echelon and multi-location inventory systems. For

the remainder of the thesis, we will establish a series of approximation models to help us

understand the impact of the general unidirectional transshipment and holdout unidirectional

transshipment policies on two-location inventory systems. In order to guide us in the valida-

tion and evaluation of such approximation models, we use implementations of simulation

models of a variety of inventory systems.

3.2 Problem domain descriptions

The problem domain to which we pay special attention is the impact of the unidirectional

transshipment policy to the multi-location inventory system. As the problem is more compli-

cated than expected due to the transshipment interactions among the locations, we decide to

concentrate our study on the two-location inventory system. We define the following terms:

Definition 3.1. Inventory Level: number of items in stock at a location

Definition 3.2. Backorder level: number of outstanding backorders at a location

Definition 3.3. Inventory Position: inventory level minus the backorder level plus the

number of items ordered, but not yet delivered

Note that the two terms inventory level and stock level are used interchangeably.
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We concentrate our study on the unidirectional transshipment policy, that is, a lateral

transshipment is only allowed to deliver from location 2 to satisfy a stockout at location 1.

We consider the general transshipment and holdout transshipment policies respectively. With

the general transshipment policy, a transshipment decision is made when the inventory level

at location 2 is greater than zero and location 1 has a stockout. With the holdout transship-

ment policy, a transshipment occurs if and only if the inventory level at location 2 is greater

than a specific holdout threshold when there is a stockout at location 1. The holdout trans-

shipment policy can be regarded as a partial pooling policy compared to the two extremes of

the no pooling and complete pooling policies.

We are keen to find the optimal holdout transshipment policy by searching on the average

total cost under the unidirectional transshipment policy. Doing so, we identify the sensitive

parameters which might contribute to the optimal holdout transshipment policy for the two-

location inventory system.

In addition, it is worth introducing several terms as system performance measures to eval-

uate out approximation models. At each location, we define the fill rate, which consists of

the direct fill rate and indirect fill rate (also known as the transshipment fill rate), and the

backorder fill rate. Hence, we define these fill rates for the two-location system as such

1. Direct fill rate: the proportion of demand arising at location k, (k=1,2) that is met

from local stock.

2. Indirect fill rate: the proportion of demand arising at location 1 that is met by

transshipment from location 2.

3. Backorder fill rate: the proportion of demand arising at the location k, (k=1,2)

that is met by backorders and this is equal to 1 minus the sum of direct and indirect

fill rates.

3.3 Simulation implementations

In the OR field, it is intuitive to use simulation techniques due to their straightforward and

accurate reflection of the original problem domain. In practice, a good simulation, which

reflects more system features under the specific policy, can provide a good guide to the devel-
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opment of effective mathematical modelling. From the highly developed simulator for

NASA’s space projects to the simple financial mortgage calculator, we encounter simulations

in diversified forms in our daily life.

However, as mentioned in Winston (2004), like most research techniques, any simulation

approach has twofold features. On the one hand, simulation gives modellers not only a more

flexible but also more straightforward method to implement than approximation modeling

approach. Compared to the approximation model approach, simulations do not imply as

many restrictive assumptions which must be prerequisite for most approximation models, on

the contrary, simulations can be extended directly to other complicated systems under more

flexible constraint environments. Hence, the simulation approach gives us a quick look at the

consequences of a given policy. However, simulations do not provide the optimal solutions in

most cases. In the search of the optimal operation cost, we have to rely on the approxima-

tion models. Overall, we believe that simulation helps us have more accurate details of the

system’s behaviour which can be used as a reference for our approximation models.

In the following sections, we will introduce our simulation implementations. First we give

the assumptions and notations of our simulations, then flow charts of programming control

are presented. The core programming codes are provided for further references in the

appendix of the thesis.

3.3.1 Preliminary results

Simulations for multi-location inventory control models are slightly more complicated than

simulation of the single-depot system. Unlike a Poisson process in a single-depot system,

more Poisson processes are involved in multi-location inventory control models. Therefore,

the following features of merged Poisson processes are used.

Let X1, X2, �Xn be a sequence of non-negative, independent random variables having a

common probability distribution function. Letting S0=0, Sn=
∑n
i=1

Xi, n = 1, 2, � . Define for

each t � 0, N(t) equals to the largest integer n � 0 for which Sn � t, the random variable N(t)

represents the number of events up to time t.
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Suppose that {N1(t), t � 0} and {N2(t), t � 0} are two independent Poisson processes with

respective rates λ1 and λ2. Then it can be proved that the merged process {N(t) = N1(t) +

N2(t)} is another Poisson process with rate λ1 + λ2. The probability that an arrival in the

merged process is from process 1 rather than process 2 is equal to λ1

λ1 + λ2
.

With these results, we can use the merged Poisson process in our simulations to model

the occurence of the demand in the system and determine the origin of the demand from the

merged process.

3.3.2 Assumptions

Before we discuss simulations for single-depot and two-location inventory control systems, we

define assumptions and notations as follows.

In general, we consider a two-location system, in which the demand occurs according to a

Poisson process at rate of λk at location k, k = 1, 2. Meanwhile, an (Rk, Qk) replenishment

order policy is used to manage inventory at location k. That is to say, an order of Qk units

of one kind of product is placed when the inventory position falls down to Rk and this out-

standing order will arrive after a fixed lead time Lk at location k. The system allows more

than one outstanding order, however, we only allow unidirectional transshipment between

the two locations in the system. More precisely, the transshipment is only permitted from

location 2 to location 1, but not vice verse. Transshipment is assumed to be instantaneous

and involves a transshipment cost.

The simulation models are used to estimate performance measures including the total

cost rate, order cost rate, backorder cost rate, stockout cost rate, transshipment cost rate,

direct fill rate and indirect fill rate based on observations of the system for a fixed time

period after a reasonable warm up time period. It is possible to estimate these performance

measures based on the inventory level and position at each location and the number of trans-

shipments during the simulation run.

Let SLk and SPk denote the current inventory level and the current inventory position at

location k. Let NT denote the number of transshipment deliveries.

We note that the simulation models of the general transshipment policy and the holdout

transshipment policy are designed in a way that could easily be extended to systems with

more than two locations.
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3.3.3 Simulation for single-depot system

The simulation of a single-depot system is straightforward by using a discrete event simula-

tion model. Events are defined to be instances of demand and deliveries of replenishment

orders. When the next event is a demand, the inventory level and inventory position are

updated accordingly and the inventory position is checked to determine whether a replenish-

ment order needs to be placed. When the next event is a delivery, the inventory level is

updated accordingly. After a long-run, the system attains at equilibrium mode.

Figure 3.1. Simulation of single-depot model

The flow chart of the single-depot system in Figure 3.1 is intuitive. Initially, we generate

a demand sequence according to a Poisson demand process from zero to the end time of the

simulation. If next event is a demand, we update the inventory level and inventory position
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due to an occurence of a demand. More specifically, both the inventory level and inventory

position are decreased by 1. When the inventory position reaches R then, due to the (R, Q)

replenishment order policy, a replenishment order for Q items is placed and this order will

arrive after lead time L. Accordingly, the inventory position is increased by Q items and,

provided the time until the end of the simulation is at least L, a new delivery event is

inserted into the demand sequence.

If the next event is a delivery of an outstanding order, the inventory level is updated by

adding Q items. When there are no more events, the simulation finishes and all relevant

system performances including the direct and backorder fill rates are worked out.

3.3.4 Simulation for two-location system

Figure 3.2. Simulation of two-location system with the original transshipment policy
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The simulation model of the two-location system uses a similar approach as the simula-

tion model of the single-depot system. Again it is a discrete event simulation in which the

basic events are instances of demand and deliveries of replenishment orders. However, there

are now five distinct events: demand at location 1 that is met from local stock, demand at

location 1 that is met by transshipment, demand at location 2, delivery at location 1 and

delivery at location 2.

Figure 3.2 shows a flow chart of the simulation model. Initially, we generate a sequence of

system demands according to the merged Poisson process with rate λ1+λ2 from zero to the

end time of the simulation. If the next event is a demand at location 1, we first consider

whether it is met by transshipment or not. This depends on the inventory levels of the two

locations and the transshipment policy being considered. For example, if the inventory level

at location 1 is greater than zero, transshipment will never be used. However, if the inven-

tory level at location 1 is less than or equal to zero, the inventory level at location 2 is

greater than zero and the policy is complete pooling, transshipment would be used. If the

demand is to be met from local stock, we update the inventory level and inventory position

and check if a replenishment order should be placed for location 1.

If the demand is to be met by transshipment, we increase the counter of transshipment by

1, update the inventory level and inventory position at location 2, and check if a replenish-

ment order should be placed at location 2. If the next event is a demand at location 2, we

update the inventory level and position at location 2 and check if a replenishment order

should be placed at location 2.

If the next event is a delivery of an outstanding order at location k, the inventory level is

updated by adding Qk items. When there are no more events within the simulation period,

the simulation finishes and all relevant system performances including the direct fill rate,

backorder fill rate and indirect fill rate are worked out.

In this thesis we use the simulation model from Figure 3.2 to simulate complete pooling,

no pooling and holdout transshipment policies by varying the condition in the “Met by trans-

shipment” box.

Complete pooling : for complete pooling, transshipment is used if and only if the inven-

tory level at location 1 is less than one and the inventory level at location 2 is greater than

zero.
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No pooling : for no pooling, demand at location 1 is never met by transshipment.

Partial pooling� a policy in which location 2 may refuse a transshipment request from

location 1 when location 2 has on-hand inventory

Holdout transshipment : for a holdout transshipment policy with threshold I2, trans-

shipment is used if and only if the inventory level at location 1 is less than 1 and the inven-

tory level at location 2 is greater than I2.

To help the verification of our approximation modelling, some simulation results are pro-

vided in the relevant chapters. Meanwhile, the core simulation implementation codes are pro-

vided in an appendix of the thesis.
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Glossary
Inventory Level: number of items in stock at a location
Backorder level: number of outstanding backorders at a location
Inventory Position: inventory level minus the backorder level plus the number of items ordered, but not yet
delivered
Direct fill rate: the proportion of demand arising at location k, (k=1,2) that is met from local stock
Indirect fill rate: the proportion of demand arising at location 1 that is met by transshipment from location
2
Backorder fill rate: the proportion of demand arising at the location k, (k=1,2) that is met by backorders
and this is equal to 1 minus the sum of direct and indirect fill rates
SLk: denote the current inventory level at location k

SPk: denote the current inventory position at location k

NT: denote the number of transshipment deliveries
Complete pooling: transshipment is used if and only if the inventory level at location 1 is less than one and
the inventory level at location 2 is greater than zero
No pooling: demand at location 1 is never met by transshipment
Partial pooling: a policy in which location 2 may refuse a transshipment request from location 1 when loca-
tion 2 has on-hand inventory
Holdout transshipment partial pooling: for a holdout transshipment policy with threshold I2, transship-
ment is used if and only if the inventory level at location 1 is less than 1 and the inventory level at location 2
is greater than I2
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Chapter 4

Decomposition approach based on inde-
pendent locations with constant
demand rates

4.1 Introduction

In this chapter, we seek a simple approximation model that accurately reflects the unidirec-

tional holdout transshipment policy within a two-location inventory control system. We

endeavour to use this model to gain an insight on optimal transshipment policies with little

computation. We use a decomposition approach in which the two-location system is decom-

posed into two independent single-depot systems with constant demand rates. To achieve the

decomposition, we employ an approximation to the system in which location 2 randomly

decides whether or not to satisfy transshipment requests from location 1. The demand rates

in the single-depot systems are based on the original demand rates modified according to the

average rate at which transshipment occurs during a period. Under the approximation, it is

hoped that the decomposition approach will capture important features of the holdout trans-

shipment policy.

The motivation for the decomposition approach is that the single-depot system is well-

understood and relatively straightforward to analyse. Therefore, before discussing the decom-

position approach in detail, we first present in Section 4.2 an analysis of the single-depot

system and derive exact expressions for a range of long-run average performance measures

including average total cost, direct fill rate and backorder fill rate. The JAVA program

written to approximate these performance measures is verified by comparison with a simula-

tion model of the single-depot system. We also present a search algorithm to find the optimal

average total cost and a numerical experiment to illustrate the algorithm.
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Section 4.3 provides details of the decomposition approach for the two-location system.

Following a brief introduction, the assumptions of the two-location system are given in Sec-

tion 4.3.2 Section 4.3.3 explains how the two-location system is decomposed into two inde-

pendent single-depot systems and Section 4.3.4 derives approximate expressions for a range

of performance measures including the long-run average total cost and its individual average

cost components, direct fill rate, backorder fill rate and transshipment fill rate. One search

algorithm on the optimal average total cost under the so called financial budget constraint is

demonstrated with a numerical experiment.

In the end, we compare numerical results which are based on the decomposition approach

and financial budget search algorithm with the original holdout transshipment simulation

model. For five snapshots of system characteristics, we investigate the possible reasons for

the differences in the results of the decomposition approximation and simulation models.

4.2 The single depot model

4.2.1 Assumptions

Customer demand is modelled as a Poisson process with constant rate λ. The inventory at

the depot is managed using an (R, Q) replenishment policy and each order placed is deliv-

ered after a fixed lead time L. Let c denote the fixed order cost and h denote the holding

cost per item per time unit. Any demand that cannot be met from inventory will be backo-

rdered. There is a one-off cost of b̂ when a backorder is placed and a further cost of b per

time unit until this backorder is satisfied. For convenience, we refer to these costs as the

stockout cost and backorder cost respectively.

4.2.2 Steady-state distribution of inventory level

It is well-known, for example from the book by Hadley and Whitin (1963), that under the

above assumptions, the steady-state distribution of the inventory position is uniform between

R + 1 and R + Q. Hence, when the system is in steady-state, the probability that the inven-
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tory position is i is equal to 1

Q
for R + 1 � i � R + Q. If the inventory position at time t − L

is i, then the inventory level at time t will be x if and only if i − x demands occur in the

interval (t − L, t). This is because during the interval (t − L, t), all outstanding orders at

time t −L will arrive and all orders placed will be outstanding at time t. Since demand must

be non-negative, the inventory level at time t must be less than or equal to the inventory

position at time t − L. Hence, if the inventory level at time t is x, the inventory position at

time t − L must have been between max (R + 1, x) and R + Q. Let D to be a random vari-

able representing the demand during the lead time. Conditioning on the inventory position L

time units earlier, the probability that the inventory level is x any time when the system is in

steady-state is given by

p(x) = 1
Q

∑R+Q

i=max(R+1,x)

Pr(D = i−x) for x� R + Q (4.1)

Note that in equation (4.1), negative inventory corresponds to outstanding backorders.

4.2.3 Performance measures

We now are in a position to derive exact expressions for the performance measures of

interest. It follows immediately from the definition of p(x) in equation (4.1) that: the long-

run average inventory level =
∑R+Q

x=1

xp(x) and the long-run average backorder level =
∑∞

x=1

xp(− x).

The direct fill rate α is calculated as the steady-state probability that the depot has at

least one item in inventory which is equal to
∑R+Q

x=1

p(x). Since all demands that cannot be sat-

isfied from inventory are backordered, therefore, the backorder fill rate β is equal to 1−α.

The total demand between successive orders is Q. Hence, the average time between orders

is Q

λ
and the average fixed order cost per time unit is c

λ

Q
. On average, an instance of demand

leads to a backorder being placed with probability 1 − α. Hence, stockouts occur at a rate of

λ(1−α) and the average stockout cost per time unit is b̂λ(1−α).

The other cost terms follow immediately from the expressions for the average inventory

level and average backorder level above. Hence, the long-run average total cost rate for the
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single-depot system is given by

C(R, Q)= c
λ

Q
+ b̂λ(1−α)+ b

∑∞
x

x=1

p(− x) +h
∑R+Q

x=1

xp(x) (4.2)

4.2.4 Model verification

We have written a JAVA program to calculate the performance measures from Section 4.2.3.

Because the number of backorders is unbounded, the expressions for some performance mea-

sures involve infinite summations that need to be approximated in the JAVA program. The

purpose of this section is, therefore, to establish that these approximations are sufficiently

accurate and the JAVA program is correct. We do this by comparing the results of the pro-

gram with the results of a simulation (also written in JAVA) of a single-depot system under

assumptions of Section 4.2.1. A flow chart representation of the structure of the simulation

model is given in Figure 3.1. Another purpose of this comparison is to confirm that the

system performance measures can be estimated satisfactorily from the steady-state distribu-

tion of the inventory level.

In the verification we increase Q from 1 to 20 while holding all other parameters con-

stant. We also choose R = λL. The relatively low values for Q means that there will often be

many outstanding orders at the one time which will test the implementation of the simula-

tion model. The relatively low values for Q and the choice of R ensure that the stockout and

backorder costs are never negligible which is important for testing the calculations. We define

one time unit to be equal to the lead time (i.e. L = 1). The other parameters are given values

as follows: λ= 20, c = 10, b̂ = 10, b = 8 andh = 1.

For the simulation implementation, in order to make a good balance between computa-

tional time and accuracy, we performed 500 independent simulation runs of 50,000 time units

with a warm-up period of 500 time units, for each value of Q. For simplicity, we arbitrarily

choose the initial inventory level and inventory position between R + 1 and R+Q. Hence,

there are no outstanding orders initially. Table 4.1 compares estimates of the total average

cost, average inventory level, average backorder level and direct fill rate from the simulation

model and the analytic expressions based on steady-state probability of the inventory level.

Note that indirect fill rate β can be calculated by 1 − α directly. Columns sim, se and an

for each cost component represent simulation result, standard error of the simulation result

and analytic result respectively.
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C(R, Q) Avg. Inventory level Avg. backorder level α

Q sim se an sim se an sim se an sim se an
1 301.3 0.18 301.2 2.34 0.00 2.34 1.34 0.01 1.34 0.56 0.00 0.56
2 191.7 0.15 191.6 2.66 0.00 2.66 1.16 0.01 1.16 0.60 0.00 0.60
3 149.6 0.14 149.5 3.01 0.00 3.01 1.01 0.01 1.01 0.64 0.00 0.64
4 124.9 0.12 124.8 3.38 0.00 3.38 0.88 0.01 0.88 0.68 0.00 0.68
5 107.8 0.11 107.7 3.77 0.00 3.77 0.77 0.00 0.77 0.71 0.00 0.71
6 94.9 0.11 94.9 4.18 0.00 4.18 0.68 0.00 0.68 0.74 0.00 0.74
7 84.8 0.10 84.7 4.60 0.00 4.60 0.60 0.00 0.60 0.77 0.00 0.77
8 76.6 0.09 76.5 5.03 0.00 5.04 0.54 0.00 0.54 0.79 0.00 0.79
9 69.9 0.08 69.8 5.48 0.00 5.48 0.48 0.00 0.48 0.81 0.00 0.81
10 64.4 0.08 64.3 5.94 0.00 5.94 0.44 0.00 0.44 0.83 0.00 0.83
11 59.8 0.07 59.7 6.40 0.00 6.40 0.40 0.00 0.40 0.84 0.00 0.85
12 55.9 0.07 55.9 6.84 0.00 6.87 0.37 0.00 0.37 0.85 0.00 0.86
13 52.7 0.06 52.7 7.34 0.01 7.34 0.34 0.00 0.34 0.86 0.00 0.86
14 50.0 0.06 50.0 7.82 0.01 7.81 0.32 0.00 0.32 0.87 0.00 0.87
15 47.7 0.06 47.7 8.30 0.01 8.29 0.29 0.00 0.29 0.88 0.00 0.88
16 45.7 0.05 45.7 8.77 0.01 8.78 0.28 0.00 0.28 0.89 0.00 0.89
17 44.1 0.05 44.0 9.26 0.01 9.26 0.26 0.00 0.26 0.90 0.00 0.90
18 42.6 0.04 42.6 9.75 0.01 9.74 0.25 0.00 0.25 0.90 0.00 0.90
19 41.4 0.04 41.3 10.23 0.01 10.23 0.23 0.00 0.23 0.91 0.00 0.91
20 40.3 0.04 40.3 10.72 0.01 10.72 0.22 0.00 0.23 0.91 0.00 0.91

Table 4.1. Performance measures for single depot model

Co Ch Cb̂ Cb

Q sim se an sim se an sim se an sim se an
1 200.0 0.05 200.0 2.3 0.00 2.3 88.2 0.12 88.2 10.7 0.02 10.7
2 100.0 0.03 100.0 2.7 0.00 2.7 79.8 0.11 79.7 9.3 0.02 9.3
3 66.7 0.02 66.7 3.0 0.00 3.0 71.8 0.11 71.8 8.0 0.02 8.0
4 50.0 0.01 50.0 3.4 0.00 3.4 64.5 0.10 64.5 7.0 0.02 7.0
5 40.0 0.01 40.0 3.8 0.00 3.8 57.9 0.10 57.8 6.1 0.01 6.1
6 33.3 0.01 33.3 4.2 0.00 4.2 52.0 0.09 51.9 5.4 0.01 5.4
7 28.6 0.01 28.6 4.6 0.00 4.6 46.8 0.08 46.7 4.8 0.01 4.8
8 25.0 0.01 25.0 5.0 0.00 5.0 42.3 0.08 42.2 4.3 0.01 4.3
9 22.2 0.01 22.2 5.5 0.00 5.5 38.3 0.07 38.3 3.9 0.01 3.9
10 20.0 0.01 20.0 5.9 0.00 5.9 35.0 0.07 34.9 3.5 0.01 3.5
11 18.2 0.00 18.2 6.4 0.00 6.4 32.0 0.06 32.0 3.2 0.01 3.2
12 16.7 0.00 16.7 6.9 0.00 6.9 29.5 0.06 29.4 2.9 0.01 2.9
13 15.4 0.00 15.4 7.3 0.01 7.3 27.3 0.06 27.2 2.7 0.01 2.7
14 14.3 0.00 14.3 7.8 0.01 7.8 25.4 0.05 25.3 2.5 0.01 2.5
15 13.3 0.00 13.3 8.3 0.01 8.30 23.7 0.05 23.7 2.4 0.01 2.4
16 12.5 0.00 12.5 8.8 0.01 8.9 22.2 0.05 22.2 2.2 0.01 2.2
17 11.8 0.00 11.8 9.3 0.01 9.3 21.0 0.05 20.9 2.0 0.01 2.1
18 11.1 0.00 11.1 9.8 0.01 9.8 19.7 0.04 19.7 2.0 0.01 2.0
19 10.5 0.00 10.5 10.2 0.01 10.2 18.7 0.04 18.7 1.9 0.01 1.9
20 10.0 0.00 10.0 10.7 0.01 10.7 17.8 0.04 17.8 1.8 0.01 1.9

Table 4.2. Component of total average cost per time unit

The verification results in Table 4.1 demonstrate that the minimum and maximum differ-

ences in the analytic and simulation based estimates of average total cost, average inventory

level, backorder level and fill rate are from 0.12% to 0.03%, from 0.00% to 0.20%, from 0.00%
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to 4.84% and from 0.002% to 0.054% respectively. Table 4.2 provides further breakdown

details of the cost terms including order cost (Co), holding cost (Ch), stockout cost (Cb̂) and

backorder cost (Cb). Again the results reveal a high degree of consistency between the ana-

lytic and simulation based estimates. The minimum and maximum differences between the

simulation and analytic approximation results for average order cost, average holding cost,

average stockout cost and average backorder cost range from 0.002% to 0.003%, 0.00% to

0.020%, 0.026% to 0.245% and 0.000% to 4.839% respectively. Thus, we can trust our

method of calculating the performance measures for the single-depot system and reuse it in

future research.

In addition, the verification results demonstrate interesting trends in system performance

along with increases on the value of Q. While Q increases, the direct fill rate improves and

the stockout and backorder costs fall. When the system is in steady-state, stockouts will

occur if the demand in the next L time units exceeds the current inventory position. As Q

increases, the average inventory position increases and the risk of stockouts falls.

4.2.5 Optimal average cost algorithm

In equation (4.2), there are two decision variables R and Q, therefore, we aim to find the

optimal total cost by searching on R and Q. From the properties of the Poisson demand pro-

cess, we know that the lead time demand has mean λL and standard deviation λL
√

. Using

the normal distribution to approximate the Poisson distribution, we conclude that there is

approximately a 2.5% chance of the lead time demand exceeding λL + 2 λL
√

. We argue that

the reorder position should be at least as great as the mean lead time demand and that 2.5%

is an acceptable level of risk. Hence, we assume that the reorder position R satisfies the

inequality equation (4.3).

λL � R �λL+ 2 λL
√

(4.3)

We assume the supplier imposes a limit Q̄ on the size of an order, so that the order quantity

Q satisfies 1 � Q � Q̄ . With these constraints, it is possible to perform an exhaustive search

on R and Q to find the optimal average total cost.

4.2.6 Numerical experiments

We provide one example using the exhaustive search method, in which the optimal average

total cost is found when R = 26 and Q = 22. The problem parameters are as follows: λ = 20,
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c = 10, b̂ = 10, b = 8, h= 1, L= 1 and Q̄ = 50.

Table 4.3 shows a series of optimal Q values for the values of R given by the constraint

on R in inequality (4.3). The values marked by stars show the (R, Q) replenishment policy

which minimizes the average total cost. The cost saving compared to the average total cost

when R = 20, Q = 35 is 21.85%.

R 20 21 22 23 24 25 26 27 28 29
Optimal Q 35 31 29 27 25 23 22* 21 21 21

Av. Total Cost 35.00 32.96 31.30 30.06 29.23 28.80 28.72* 28.96 29.42 30.07

Table 4.3. Optimal search on R and Q

From the result in Table 4.4 and Figure 4.1, we observe that function C(R, Q) is a convex

function on Q in this case. We observed this property in all examples that we considered.

Q Cost Q Cost Q Cost Q Cost
1 301.27 14 49.99 27 36.05 40 35.40
2 191.71 15 47.66 28 35.77 41 35.50
3 149.55 16 45.72 29 35.56 42 35.66
4 124.92 17 44.05 30 35.35 43 35.85
5 107.82 18 42.56 31 35.23 44 36.03
6 94.91 19 41.36 32 35.13 45 36.23
7 84.77 20 40.28 33 35.03 46 36.45
8 76.61 21 39.37 34 35.03 47 36.67
9 69.89 22 38.55 35* 35.01* 48 36.92
10 64.38 23 37.90 36 35.05 49 37.14
11 59.76 24 37.32 37 35.10 50 37.41
12 55.94 25 36.82 38 35.19
13 52.72 26 36.41 39 35.28

Table 4.4. Exhaustive search on Q when R = 20

Figure 4.1. Exhaustive search on Q when R = 20
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4.2.7 Conclusion

We have developed an efficient and reliable method to estimate important performance mea-

sures for a single-depot system. This method will be used in the development of a model of a

two-location system via the decomposition approach. In all examples of the single-depot

system we considered, C(R, Q) is a convex function of Q. However, we offer no proof of this

result in general. When C(R, Q) is convex in Q, the optimal value of Q for a fixed R can be

found more efficiently using, for example, a bisection search method. In the remainder of this

chapter, we will assume C(R, Q) has this property to speed up the search for an optimal Q

for the fixed R.

4.3 Decomposition approach based on independent loca-
tions with constant demand rates

4.3.1 Introduction

Now we consider the two-location inventory system with unidirectional holdout transship-

ment policy. Rather than dealing with the explicit holdout transshipment policy directly, we

consider an alternative modelling to reflect the holdout transshipment policy. Essentially, the

transshipment from location 2 to location 1 has the effect of decreasing the average demand

rate at location 1 and increasing the average demand rate at location 2. Hence, one might

expect to establish a modelling to reflect the effect of such unidirectional transshipment

policy by modifying demand rates at two locations to decompose the whole two-location

system into two independent single-depot systems. By this decomposition approach, the level

of holdout at location 2 is controlled by a parameter that models the proportion of transship-

ment requests that location 2 agrees to meet. We refer to this parameter as the transship-

ment agreement probability.
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4.3.2 Assumptions

Principally, at location k, k = 1, 2, an independent Poisson demand process is used to model

local demand and an (Rk, Qk) replenishment order policy is used to manage inventory. In

addition, when a stockout occurs at location 1, transshipment from location 2 to location 1 is

allowed to satisfy the unmet demand. Transshipment from location 1 to location 2 is never

considered.

At location k, k = 1, 2, let ck be the fixed order cost per order and hk be the holding cost

rate per item. Unmet demand at location 1 must be met either by backorder or by transship-

ment from location 2. Transshipment is assumed to be instantaneous and involves a cost of t

per item. When a backorder is placed at location k, there is one-off stockout cost b̂k and a

further backorder cost of bk per time unit until the backorder is satisfied.

4.3.3 Approximation of the two-location system

First consider the situation in which location 1 operates independently of location 2. At loca-

tion 1, from the analysis in Section 4.2.3, the steady-state distribution of inventory level

p1(x) is given by equation (4.1) and hence the fill rate α1
0 =

∑R1+Q1

x=1

p1(x).

Whenever a stockout occurs at location 1, a transshipment request will be sent to loca-

tion 2 and demand rates at locations will only be affected if the request is met. If location 2

agrees to meet the transshipment request, the average demand rate at location 1 will be

reduced and the average demand rate at location 2 will be increased. To model this, we

introduce the transshipment agreement probability z. Precisely, z is the probability that

location 2 agrees to meet a transshipment request. Assume that location 2 will randomly

choose whether or not to meet a transshipment request from location 1 and define ε = (1 −

α1
0)z. Under our assumption ε has the interpretation of the steady probability that a demand

at location 1 results in a transshipment and hence is an approximation to the transshipment

fill rate. With this level of transshipment, on average the demand rate at location 1 is

deflated by λ1ε, the demand rate at location 2 is inflated by λ1ε, and transshipment occur at

a rate of λ1ε. Hence, we decompose the two-location system into a system of two indepen-
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dent locations, one with average demand rate λ1(1 − ε) and the other with average demand

rate λ2 + λ1ε. Again, using equation (4.1) of Section 4.2.3, we deduce the steady-state distri-

bution of inventory level pk
ε(x) with the modified demand rate and the fill rate αk

ε =
∑Rk+Qk

x=1

pk
ε(x) at location k (k = 1, 2).

We hope to use the transshipment agreement probability z to approximate a holdout

transshipment policy. That is to say, the transshipment agreement probability z corresponds

to a holdout threshold value I2 at location 2 where the probability that the inventory level at

location 2 is great than I2 is approximately equal to z, i.e.
∑R2+Q2

x=I2

p2
ε(x)� z.

4.3.4 Performance measures

Firstly by the arguments above the average rate at which transshipments occur is approxi-

mated as λ1ε, so we can easily derive the average transshipment cost rate Ct
ε(R1, Q1, z) = tλ1ε

in equation (4.6). At location 1, we know that the sum of direct fill rate, backorder fill rate

and transshipment fill rate should be equal to 1. The direct fill rate at location 1 can approx-

imated directly from our assumptions as α1
0. The indirect fill rate, or the transshipment fill

rate at location 1 is approximated as ε. Hence the backorder fill rate at location 1 is 1−α1
0−

ε and the average stockout cost rate is b̂1λ1(1−α1
0− ε).

Since we decompose the two-location system into two independent single-depot systems,

we can derive all average cost components at each location with the modified demand rate

using the results in the Section 4.2.3. From equation (4.2) with demand rate λ1(1 − ε) at

location 1, the long-run average order cost rate, average holding cost rate and average backo-

rder cost rate are c1
λ1(1− ε)

Q1
, h1

∑R1+Q1

x=1

xp1
ε(x) and b1

∑∞
x=1

xp1
ε(− x) respectively. Hence, the long-

run average cost rate C1(R1, Q1, z) at location 1 is given by equation (4.4).

Note that while we obtain an approximation to the stockout cost rate at location directly

from the transshipment agreement probability, we could also approximate this cost rate using

equation (4.2). Using that method the long-run average stockout cost rate would be b̂1λ1(1−

α1
ε). If modifying the demand rates accurately captures the effect of transshipment, we would

expect the two approximations to give similar estimates. Note also that, if the approach of

modifying the demand rates is effective, one would expect α1
0 + λ1 = α1

ε.
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Similarly, from equation (4.2) with demand rate λ2 + λ1ε at location 2, the long-run

average order cost rate, average holding cost rate, average stockout cost rate and average

backorder cost rate are c2
λ2 + λ1ε

Q2
, h2

∑R2+Q2

x=1

xp2
ε(x), b̂2λ2(1 − α2

ε), and b2
∑∞

x=1

xp2
ε( − x) respec-

tively. Therefore, the long-run average cost rate C2
ε(R2, Q2) at location 2 is given by equation

(4.5). The long-run average total cost rate C(R1, Q1, R2, Q2, z) in equation (4.7) includes all

costs at location 1 and location 2. From Section 4.2.3, the direct fill rate and backorder fill

rate at location 2 are approximated as α2
ε and 1−α2

ε respectively.

C1(R1, Q1, z)= c1
λ1(1− ε)

Q1
+ h1

∑R1+Q1

x=1

xp1
ε(x)+ b̂1λ1(1−α1

0− ε)+ b1

∑∞
x=1

xp1
ε(− x) (4.4)

C2
ε(R2, Q2)= c2

λ2 + λ1ε

Q2
+ h2

∑R2+Q2

x=1

xp2
ε(x)+ b̂2λ2(1−α2

ε) + b2

∑∞
x=1

xp2
ε(− x) (4.5)

Ct
ε(R1, Q1, z)= tλ1ε (4.6)

C(R1, Q1, R2, Q2, z)= C1(R1, Q1, z)+ C2
ε(R2, Q2) +Ct

ε(R1, Q1, z) (4.7)

4.3.5 Optimal financial budget algorithm

Practically, in any multi-location inventory control system, we will face a constraint, such as

financial budget, volume or weight restriction, on the maximum inventory level at each loca-

tion. Let Fk denote the limit on inventory level due to the financial budget constraint at

location k (k = 1, 2) and note that the maximum inventory level at location k is Rk + Qk.

Since Rk � 0 and Qk > 1, Rk and Qk must satisfy 1 � Rk + Qk � Fk. To allow for an exhaus-

tive search on z, we further assume that z can only take one of a finite number of possible

values between 0 and 1. For each possible combination of R1, Q1 and z, we calculate ε and

decompose the two-location system into a two independent single-depot system. This allows

us to calculate the average cost rate at location 1. Finally, we search for the optimal average

cost rate at location 2 subject to the constrains 0 � R2 � F2 − 1 and 1 � Q2 � F2 − R2. Fol-

lowing the comments of Section 4.2.7, we perform an exhaustive search on R2, but calculate

the optimal Q2 for each value of R2 assuming the function C2
ε(R2, Q2) is convex in Q2. Even-

tually, we have the optimal total cost rate C(R1, Q1, R2, Q2, z) and the corresponding cost

rates at each location.
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4.3.6 Numerical experiments

In order to investigate the performance of our approximation approach, we design five snap-

shots of problem parameters in which b1 is gradually increased to an extremely large value to

provide incentive for transshipment. At the same time b2 is increased (keeping the ratio of b1

to b2 equal 5 to 3) to encourage the use of a partial pooling policy. All other parameters are

held constant. In Table 4.5, we provide detailed values of b1 and b2 for each snapshot. Mean-

while the other parameters are given values as follows: λ1 = 20, λ2 = 20, F1 = 25, F2 = 25, c1 =

10, h1 = 1, b̂1 = 60, c2 = 10, h2 = 1, b̂2 = 20, t = 5, L= 1.

Snapshot S/N b1 b2 b1: b2

1 600 360 5:3
2 700 420 5:3
3 800 480 5:3
4 900 540 5:3
5 1000 600 5:3

Table 4.5. Snapshot summary on b1 and b2

z C∗ C1
∗ R1

∗ Q1
∗ Co1

∗ Ch1
∗ Cb1

∗ C2
∗ R2

∗ Q2
∗ Co2

∗ Ch2
∗ Cb2

∗ Ct
∗

0 898.1 572.0 23 2 100.0 4.9 467.1 326.1 23 2 100.0 4.9 221.2 0.0
0.1 874.8 509.9 23 2 98.2 5.2 406.5 363.1 23 2 101.9 4.6 256.6 1.9
0.2 859.9 452.4 23 2 96.3 5.5 350.6 403.8 23 2 103.7 4.3 295.8 3.7
0.3* 853.2* 399.3 23 2 94.5 5.9 299.0 448.3 23 2 105.5 4.1 338.8 5.5
0.4 854.4 350.2 23 2 92.6 6.2 251.4 496.9 23 2 107.4 3.8 385.7 7.4
0.5 863.4 304.7 23 2 90.8 6.5 207.4 549.5 23 2 109.2 3.5 436.7 9.2
0.6 879.8 262.5 23 2 88.9 6.9 166.8 606.2 23 2 111.1 3.3 491.8 11.1
0.7 903.2 223.3 23 2 87.1 7.2 129.0 667.0 23 2 112.9 3.0 551.0 12.9
0.8 933.3 186.6 23 2 85.2 7.5 93.9 731.9 23 2 114.8 2.8 614.3 14.8
0.9 961.2 239.0 24 1 171.8 7.9 59.3 708.1 23 2 114.1 2.9 591.1 14.1
1.0 990.5 209.6 24 1 168.7 8.2 32.7 765.2 23 2 115.7 2.7 646.8 15.7

Table 4.6. Snapshot 1 of approximation model with constant demand rates

z C∗ C1
∗ R1

∗ Q1
∗ Co1

∗ Ch1
∗ Cb1

∗ C2
∗ R2

∗ Q2
∗ Co2

∗ Ch2
∗ Cb2

∗ Ct
∗

0 1029.0 653.9 23 2 100.0 4.9 548.9 375.2 23 2 100.0 4.9 270.3 0.0
0.1 1001.6 578.9 23 2 98.2 5.2 475.5 420.9 23 2 101.9 4.6 314.4 1.9
0.2 985.2 510.2 23 2 96.3 5.5 408.3 471.3 23 2 103.7 4.3 363.3 3.7
0.3* 979.6* 447.2 23 2 94.5 5.9 346.9 526.8 23 2 105.5 4.1 417.2 5.5
0.4 984.4 389.7 23 2 92.6 6.2 290.9 587.4 23 2 107.4 3.8 476.2 7.4
0.5 999.4 336.9 23 2 90.8 6.5 239.6 653.2 23 2 109.2 3.5 540.5 9.2
0.6 1024.1 288.6 23 2 88.9 6.9 192.8 724.5 23 2 111.1 3.3 610.1 11.1
0.7 1053.7 322.4 24 1 178.1 7.3 137.1 720.3 23 2 111.0 3.3 606.0 11.0
0.8 1083.6 286.4 24 1 174.9 7.6 103.9 784.7 23 2 112.5 3.1 669.1 12.5
0.9 1119.7 252.5 24 1 171.8 7.9 72.8 853.1 23 2 114.1 2.9 736.1 14.1
1.0 1161.5 220.5 24 1 168.7 8.2 43.7 925.4 23 2 115.7 2.7 807.0 15.7

Table 4.7. Snapshot 3 of approximation model with constant demand rates
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z C∗ C1
∗ R1

∗ Q1
∗ Co1

∗ Ch1
∗ Cb1

∗ C2
∗ R2

∗ Q2
∗ Co2

∗ Ch2
∗ Cb2

∗ Ct
∗

0 1148.6 724.3 24 1 200.0 5.3 519.0 424.3 23 2 100.0 4.9 319.4 0.0
0.1 1127.8 656.1 24 1 196.9 5.6 453.7 470.1 23 2 101.6 4.7 363.9 1.6
0.2 1110.5 567.9 23 2 96.3 5.5 466.7 538.9 23 2 103.7 4.3 430.9 3.7
0.3* 1106.0* 495.2 23 2 94.5 5.9 394.9 605.2 23 2 105.5 4.1 495.6 5.5
0.4 1114.4 429.1 23 2 92.6 6.2 330.3 677.9 23 2 107.4 3.8 566.7 7.4
0.5 1135.4 369.1 23 2 90.8 6.5 271.9 757.0 23 2 109.2 3.5 644.3 9.2
0.6 1159.5 385.3 24 1 181.2 7.0 197.1 764.8 23 2 109.4 3.5 651.9 9.4
0.7 1191.3 342.6 24 1 178.1 7.3 157.2 837.7 23 2 111.0 3.3 723.5 11.0
0.8 1230.3 302.9 24 1 174.9 7.6 120.4 914.8 24 1 225.1 3.4 686.3 12.5
0.9 1271.4 266.0 24 1 171.8 7.9 86.3 991.3 24 1 228.2 3.2 759.9 14.1
1.0 1319.7 231.4 24 1 168.7 8.2 54.6 1072.6 24 1 231.4 3.0 838.3 15.7

Table 4.8. Snapshot 5 of approximation model with constant demand rates

Tables 4.6 to 4.8 provide details of the optimal replenishment policy and the corre-

sponding cost rate for different values of z and three of the snapshots including the optimal

Rk
∗ and Qk

∗ at location k (k = 1, 2) and optimal average transshipment cost (Ct
∗). In addition,

we provide the average cost (Ck
∗), order cost (Cok

∗ ), holding cost (Chk

∗ ), the sum of stockout

and backorder cost (Cbk

∗ ) at location k (k = 1, 2) for each z. Note that optimal order quantity

is rather small because of the tight financial budget constraint in these snapshots. The

results from Tables 4.6 to 4.8 demonstrate how the system performance changes as backorder

cost rate increases. In fact, we find consistency in the optimal transshipment policy for the

five snapshots when the ratio between b1 and b2 is 5:3.

Figure 4.2 shows the optimal average total cost rates for the five snapshots. Note that,

z = 0 corresponds to a no pooling policy; z = 1 corresponds to a complete pooling policy; and

other values of z correspond to a holdout transshipment policy. In each snapshot, the

optimal average total cost rate occurs when z = 0.3 indicating that, based on the assumption

of the decomposition model, a partial pooling policy is optimal. In snapshots 1, 3 and 5, the

predicted cost savings from the optimal holdout policy are 5.27%, 5.05% and 3.85% respec-

tively compared to no pooling (z = 0) and 16.09%, 18.58% and 19.33% respectively compared

to complete pooling (z = 1).

We can derive the optimal holdout threshold value at location 2 suggested by the model

by searching for the value of I2 for which the optimal transshipment agreement probability

z �
∑R2+Q2

x=I2+1

p2
ε(x). In Table 4.9, we provide estimates of z �

∑R2+Q2

x=I2+1

p2
ε(x) for values of I2 in the

range from 1 to 10. We deduce that holdout threshold values of I2=6 or I2=5 most closely

correspond to a transshipment agreement probability of 0.3 for these five snapshots. These

results illustrate how a partial pooling policy consisting of a holdout value at location 2 can

be determined for a given transshipment agreement probability. We conclude that the
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approximation method developed in the sections above can be used to determine replenish-

ment and transshipment policies for a two-location inventory system with unidirectional

transshipment policy.

I2

Snapshot 1 2 3 4 5* 6* 7 8 9 10
1 0.67 0.59 0.50 0.42 0.33 0.26 0.19 0.13 0.09 0.05
2 0.67 0.59 0.50 0.42 0.33 0.26 0.19 0.13 0.09 0.05
3 0.67 0.59 0.50 0.42 0.33 0.26 0.19 0.13 0.09 0.05
4 0.67 0.59 0.50 0.42 0.33 0.26 0.19 0.13 0.09 0.05
5 0.67 0.59 0.50 0.42 0.33 0.26 0.19 0.13 0.09 0.05

Table 4.9. The transshipment agreement probability implied by different holdout thresholds

We now check the accuracy of the approximation model’s predictions for these five snap-

shots using the simulation model of the original two-location system with an unidirectional

holdout transshipment policy. For all five snapshots, the approximation model suggests that

the optimal values for R and Q are 23 and 2 respectively at both locations for most values of

z and in particular for the values of z that minimize the total average cost rate. We apply

this replenishment policy at both locations and simulate different holdout transshipment

policies. The results, plotted in Figure 4.3 show that for this replenishment policy, the

optimal transshipment policy for each snapshot is complete pooling. Furthermore, the

holdout policy predicted by the approximation model leads to total average cost rates that

are 57.79%, 62.76% and 65.05% higher than the complete pooling for snapshots 1, 3 and 5

respectively. Although the holdout transshipment policy predicted by the approximation

model does lead to average total cost rates that are 0.10%, 0.11% and 0.87% lower than the

no pooling for snapshots 1, 3 and 5 respectively, we conclude that the approximation model

does not predict the optimal transshipment policy for the original system with sufficient

accuracy.

z C∗ C1
∗ Co1

∗ Ch1
∗ Cb1

∗ C2
∗ Co2

∗ Ch2
∗ Cb2

∗ Ct
∗ α1 γ1 α2

0 898.1 572.0 100.0 4.9 467.1 326.1 100.0 4.9 221.2 0.0 0.82 0.00 0.82
0.1 874.7 509.9 98.2 5.2 406.5 363.1 101.8 4.6 256.6 1.8 0.82 0.02 0.79
0.2 859.7 452.4 96.3 5.5 350.6 403.8 103.7 4.3 295.7 3.6 0.82 0.04 0.77
0.3 852.9 399.3 94.5 5.8 299.0 448.3 105.5 4.0 338.8 5.2 0.82 0.06 0.74
0.4 853.9 350.2 92.6 6.2 251.4 496.9 107.4 3.8 385.7 6.8 0.82 0.07 0.71
0.5 862.2 304.7 90.8 6.5 207.4 549.5 109.2 3.5 436.7 8.4 0.82 0.09 0.69
0.6 878.5 262.5 88.9 6.8 166.8 606.2 111.1 3.3 491.8 9.9 0.82 0.11 0.66
0.7 901.5 223.3 87.1 7.2 129.0 666.9 112.9 3.0 551.0 11.3 0.82 0.13 0.63
0.8 931.1 186.6 85.2 7.5 93.9 731.9 114.8 2.8 614.3 12.6 0.82 0.15 0.60
0.9 967.0 152.3 83.4 7.9 59.3 800.9 116.6 2.6 591.1 13.9 0.82 0.17 0.61
1.0 1008.9 119.9 81.5 8.2 32.7 873.9 118.5 2.4 646.8 15.1 0.82 0.18 0.58

Table 4.10. Snapshot 1 of the approximation model with constant demand rates
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z C C1 Co1 Ch1 Cb1 C2 Co2 Ch2 Cb2 Ct α1 γ1 α2

0 900.2 574.2 100.0 4.9 469.2 326.0 100.0 4.9 221.1 0 0.82 0.00 0.82
0.1 801.7 437.0 98.4 5.1 333.4 363.1 101.6 4.7 256.8 1.6 0.84 0.02 0.79
0.2 741.5 343.1 97.3 5.2 240.5 395.7 102.8 4.5 288.4 2.7 0.87 0.03 0.78
0.3 703.3 276.8 96.5 5.3 175.0 422.9 103.6 4.4 314.9 3.5 0.88 0.04 0.77
0.4 678.2 228.8 95.8 5.4 127.5 445.3 104.2 4.3 336.8 4.2 0.90 0.04 0.76
0.5 662.5 192.9 95.4 5.5 92.0 465.0 104.7 4.2 356.0 4.7 0.91 0.05 0.75
0.6 649.2 164.9 95.0 5.5 64.4 479.3 105.1 4.2 370.0 5.1 0.92 0.05 0.74
0.7 641.7 143.3 94.6 5.6 43.1 493.0 105.4 4.2 383.4 5.4 0.92 0.05 0.74
0.8 635.7 125.9 94.3 5.6 26.0 504.1 105.7 4.1 394.2 5.7 0.93 0.06 0.73
0.9 631.0 111.6 94.1 5.7 11.9 513.4 106.0 4.1 403.3 5.9 0.93 0.06 0.73
1.0 628.9 99.6 93.9 5.7 0.0 523.1 106.2 4.1 412.9 6.2 0.94 0.06 0.73

Table 4.11. Snapshot 1 of the simulation model with transshipment agreement probability

To further investigate the reasons for the inaccuracies in the approximation model, we

consider a simulation model of the original two-location system in which location 2 agrees to

transshipment requests from location 1 at random according to the transshipment agreement

probability. We apply the replenishment policy predicted by the approximation model Rk =

23 and Qk = 2 at each location and simulate different transshipment agreement probabilities.

The results, shown in Figure 4.4, suggest that complete pooling (i.e. z = 1) is optimal for all

five snapshots. This is, of course, consistent with the simulation model of the original two-

location system with a holdout transshipment policy. That gives us a hint that it might still

be possible to capture the effect of a holdout transshipment policy by introducing the such

transshipment agreement probability.

To allow more detailed comparison between these simulation results and the results of the

approximation model, we provide a cost breakdown of snapshot 1 for both the simulation

and approximation models in Tables 4.10 to 4.11. Note that we apply the same notation as

we used in Tables 4.6 to 4.8. In addition, we provide a breakdown of direct fill rate (αk),

backorder fill (βk) rate and transshipment fill rate γ1 at the location k, (k = 1, 2) for compar-

ison.

These comparison results show that the two models are equivalent when z = 0 as no

transshipment occurs. As the value of z increases, the results demonstrate that the cost com-

ponents estimated by the simulation and approximation models for each location display the

same trends. To be specific, at location 1, the order cost, backorder and stock out cost

decrease due to the transshipment from location 2 to location 1. Meanwhile, the holding cost

at location 1 increases due to the higher stock level there. At location 2, we see the changes

in the opposite directions because of the transshipment from location 2 to location 1. Order
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cost, backorder and stock out cost increase, while, at the same time, the holding cost

decrease. However, comparison with simulation shows that such trends from approximation

models are exaggerated due to the lack of accuracy.

It is clear from Tables 4.10 and 4.11 that transshipment has a significant affect on the

direct fill rate at location 1 which is not well captured in the approximation model. In fact,

the approximation model exaggerates the extent to which transshipment is used and the

affect of transshipment on the direct fill rate at location 2. However the trends of these two

measures are correct because γ1 increases with z and α2 decreases with z.
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Figure 4.2. Average total cost for approximation model with constant demand rates

Figure 4.3. Average total cost rate for the original holdout simulation model

Figure 4.4. Average total cost rate for simulation model with transshipment agreement probability
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4.4 Conclusions

In Section 4.3, we formulated an approximation model for the two-location system by decom-

posing the system into two independent single-depot systems with constant demand rates.

This approach provides a simple way to model the unidirectional transshipment between

location 2 and location 1. Extensive numerical experiments have shown that the form of the

transshipment policy predicted by the approximation model is particularly sensitive to the

stockout and backorder costs at the two locations. Detailed results were presented for five

snapshots to illustrate cases where the approximation model predicts that partial pooling

offers significant savings over the naive heuristics of no pooling and complete pooling. How-

ever, a simulation of the original two-location system with unidirectional transshipment

shows that these predictions are not accurate and that complete pooling is optimal for the

cases considered. It appears that the approximation model does not estimate the impact of

transshipment accurately.

From the discussion in Section 4.3.6, we learn that the introduction of the so called trans-

shipment agreement probability works to some extent as we have seen evidence of consis-

tency between the simulation model with transshipment agreement probability and the simu-

lation model of a holdout transshipment policy. For the five snapshots considered in detail,

we observe agreement between the pooling policies suggested by the simulation model of the

two-location system with the transshipment agreement probability and the simulation model

of the two-location system with a holdout transshipment policy. This suggests that the con-

cept of a transshipment agreement probability might be a useful tool for approximating the

impact of transshipment in the original two-location system. The discrepancies between the

predictions of the approximation model and the behaviour of the original approximation

model maybe due to the use of constant demand rates in the sub-problems. Therefore, we

need to establish a new modelling approach to reflect dynamic changes in the demands rates

at the two locations in the system.
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Glossary
R: reorder point of inventory position for a replenishment order
Q: replenishment order quantity
(R,Q): replenish an order with Q units of one kind of item when the inventory position reaches R
L: lead time
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Chapter 5

Decomposition approach based on inde-
pendent locations with variable demand
rates

5.1 Introduction

In the preceding chapter, we examined an approximation model of a two-location system

with unidirectional transshipment via a decomposition approach. By this approach, we

decomposed the system into two independent single-depot systems with constant demand

rates by assuming the unidirectional transshipment decision is made at random, indepen-

dently of the current inventory level at location 2, according to the transshipment agreement

probability. The study of the decomposition approach model showed that the approach does

not always accurately approximate the behaviour of the original system. However, the results

also gave us a hint that the transshipment agreement probability may still be used to

approximate the original system to some degree. It is possible that the interactions between

the two locations in the original system cannot be captured using independent locations with

constant demand rates.

In this chapter, we develop two approximation models of the two-location inventory

system by decomposing the system into two independent single-depot systems with non-con-

stant demand rates. The first approximation model recognises that location 1 will only ben-

efit from transshipment when it is out of stock and that location 2 only meets transshipment

requests when it has stock. Hence, the effective demand rate at location 1 is only reduced

when location 2 has no stock and the effective demand rate at location 2 is only increased

when it has stock. However, the transshipment decision is still made randomly according to

the transshipment agreement probability and we refer to this model as the TAP model to

reflect this. The second approximation model attempts to model a holdout transshipment
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policy explicitly and we refer to this as the HOT model. The HOT model also recognises

that location 1 only benefits from transshipment when it has no stock. However, in the

HOT model, location 2 only meets transshipment requests when its inventory level is above

the holdout threshold and, therefore, the effective demand rate at location 2 is only increased

when its inventory level is above the holdout threshold.

Once we have decomposed the system into two independent subsystems, we analyse the

period between the arrivals of two successive orders at each location. We define this period

as a single cycle for a location. From the renewal theory, we learn that the long-run average

cost rate for a location can be worked out from the average cost rate during a single cycle

divided by the average length of a cycle. During a single cycle, we model the customer

demand at a location as a Poisson process with a variable rate which depends dynamically on

the condition of the current inventory level at that location.

We present the transshipment agreement probability (TAP) model in Section 5.4 and the

explicit holdout transshipment (HOT) model in Section 5.5. As the two models share a sim-

ilar framework, we provide general assumptions in Section 5.2 for both models. In order to

decrease repetitions in derivations of the approximations, we derive a number of commonly

used expressions for the later cost approximations in Section 5.3.

5.2 Assumptions

We consider a two-location inventory control system with unidirectional transshipment from

location 2 to location 1. At location k, k = 1, 2, a Poisson demand process with rates λk is

used to model the customer demand. An (R, Q) replenishment order policy is employed at

each location and the lead time for replenishment at each location is assumed to be constant.

We denote the reorder position, order quantity and lead time for replenishment by Rk, Qk, Lk

respectively at location k, k = 1, 2. Further, we assume that there never can be more than

one outstanding replenishment order at a location. In practical terms, this means that the

order quantity has to be much larger than the average lead time demand (i.e. Qk � λkLk), so

that it is very unlikely that the reorder position will be reached again before the end of the

lead time of an order.
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At location k (k = 1, 2), the fixed order cost is ck and the cost of holding inventory is hk

per item per time unit. Demand that can not be met from on-hand inventory may be backo-

rdered. When a backorder is placed at location k (k = 1, 2), there is one-off stockout cost b̂k

and a further backorder cost of bk per time unit until the backorder is satisfied. Alternatively

unmet demands at location 1 may be met by transshipment from location 2. Transshipment

is assumed to be instantaneous and involves a cost of t per item.

The two approaches considered in the chapter decompose the system into two indepen-

dent locations each facing a Poisson demand process with non-constant demand rate. Due to

our assumptions about the replenishment process, the time between successive orders at a

location (which we refer to as a cycle) consists of an interval when the inventory level is

above the reorder position followed by the constant lead time for orders. Hence, the inven-

tory level at the end of a cycle is equal to the reorder position minus the lead time demand.

We define the random variable Xk(Rk) to represent the inventory level at the end of a cycle

at location k. A cycle at location k ends with the delivery of Qk items. Hence, the inventory

level at the beginning of a cycle is equal to Qk + Xk(Rk). We derive the probability distribu-

tions of the inventory level at the end of a cycle at each location and, hence, deduce approxi-

mations to a number of performance measures at each location under the assumptions of the

decomposition approach.

5.3 Preliminary results

Before we consider the decomposition approaches in detail, we analyze three situations which

frequently arise in the expected cost approximations. Consider a location facing a Poisson

demand process at a rate which may depend on the inventory level at the location. It is con-

venient to define the function F (x, λ), the probability that a Poisson random variable with

mean λ does not exceed x and its complement

F (x, λ) ={
0 when x<0

∑x
j=0

λj

j!
e−λ when x�0

and F (x, λ) ={
1 when x<0

∑∞
j=x+1

λj

j!
e−λ when x�0

Assuming no replenishment orders arrive, we model the inventory level over an interval of

time. When the inventory level is greater than zero, holding costs are incurred at a rate of h

per item per time unit. When the inventory level is less than zero, backorder costs are

incurred at a rate of b per item per time unit.
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Lemma 5.1 derives an expression for the expected holding cost for the situation where

the inventory level falls from X to Y (X > Y � 0) according to a Poisson demand process

with constant rate. Lemma 5.2 derives expressions for the expected holding cost and backo-

rder cost for the situation when inventory level starts from X � 0 and falls according to a

Poisson demand process with constant rate during an interval of length L. Lemma 5.3

derives expressions for the expected holding cost and backorder cost for the situation where

inventory level falls from X , according to a Poisson demand process whose rate changes when

inventory level reaches Y (X >Y � 0) during an interval of length L.

Figure 5.1. Inventory level falls from X to Y due to a Poisson demand process with constant rate λ

Figure 5.2. Inventory level falls from X to Y in L time units due to a Poisson demand process with

constant rate λ
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Figure 5.3. Inventory level falls from X to Y during an interval of length L due to a Poisson

demand process with constant rate λ

Lemma 5.1. Consider an interval in which the inventory level falls from X to Y (X > Y �

0) as a result of demands which occur according to a Poisson process with constant rate λ.

a) Assume the interval ends when the inventory level first reaches Y, the expected holding

cost during the interval is given by

h

2λ
(X −Y )(X + Y + 1) (5.1)

b) Assume the interval ends when the inventory level first reaches Y and the interval is of

length L. The expected holding cost during the interval is given by

hL

2
(X + Y +1) (5.2)

c) Assume the interval is of length L and demand during the interval is X − Y. The

expected holding cost during the interval is given by

hL

2
(X + Y ) (5.3)

Proof. Let ti be the time (measured from the start of interval) at which the ith demand

occurs, where 1 � i � X −Y .
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Three cases are illustrated in Figures 5.1, 5.2 and 5.3. Since demand occurs according to

a Poisson process at a constant rate within the interval, we can assume that, for the purpose

of calculating expected holding cost, the instances of demand are uniformly distributed

within the interval.

a) By considering the area under the graph in Figure 5.1, during the interval we see that

the expected holding cost is h E[
∑X−Y −1

j=0

(X − j)(tj+1 − tj)] where t0 = 0. By the prop-

erties of a Poisson process with constant rate λ, we can assume that, in expectation,

tj+1 − tj = 1/λ for 0 � j � X − Y − 1. Hence, the expected holding cost incurred

during the interval is given by

h

λ

∑X−Y −1

j=0

(X − j)= h

λ
[(X −Y )X − 1

2
(X −Y )(X −Y − 1)]

= h(X − Y )

2λ
(2X −X + Y +1)= h

2λ
(X −Y )(X +Y + 1)

b) Consider the situation when the inventory level falls from X and reaches Y at the end

of an interval of length L. By considering the area under the graph in Figure 5.2, we

see that the expected holding cost during the interval is h E[
∑X−Y −1

j=0

(X − j)(tj+1− tj)]

where t0 = 0. Since X − Y demands occur just within an interval of length L, we can

assume that, in expectation, tj+1 − tj = L

X −Y
for 0 � j � X − Y − 1. Hence, the

expected holding cost incurred during the interval is given by

hL

X −Y

∑X−Y −1

j=0

(X − j)= hL

X − Y
[X(X −Y )− 1

2
(X −Y )(X −Y − 1)]

= hL

2
(2X −X + Y + 1) = hL

2
(X + Y +1)

c) By considering the area under the graph in Figure 5.3, we see that the expected

holding cost during the interval is h E[
∑X−Y

j=0

(X − j)(tj+1 − tj)] where t0 = 0 and

tX−Y +1 = L. Since X − Y demands occur within an interval of length L, we can

assume that, in expectation, tj+1 − tj = L

X −Y +1
for 0 � j � X − Y . Hence, the

expected holding cost incurred during the interval is given by

hL

X −Y +1

∑X−Y

j=0

(X − j) = hL

X −Y +1
[(X −Y + 1)X − 1

2
(X −Y +1)(X −Y )]

= hL

2
(2X −X + Y )= hL

2
(X + Y )

�
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Figure 5.4. Inventory level falls from X for an interval of length L due to a Poisson demand process

with constant rate λ

Lemma 5.2. Consider an interval of length L in which the inventory level starts from X � 0

and demand occurs according to a Poisson process with constant rate λ.

a) The expected holding cost during the interval is given by

hLXF (X − 1, λL)− hλL2

2
F (X − 2, λL)+ hX(X + 1)

2λ
F (X, λL) (5.4)

b) The expected backorder cost during the interval is given by

b
λL2

2
F (X − 1, λL)− bLX F (X, λL)+ bX(X + 1)

2λ
F (X +1, λL) (5.5)

Proof. Let D be the random variable representing demand during the interval. Assume D =

d. Let ti be the time (measured from the start of the interval) at which the ith demand

occurs. Define t0 = 0 and td+1 = L. Since demand occurs according to a Poisson process with

a constant rate within the interval, we can assume that demands are uniformly distributed

within this interval. Hence, in expectation, tj+1 − tj = L

d +1
for 0 � j � d. The inventory level

as a function of time is illustrated in Figure 5.4. Considering the area under the graph above

the horizontal axis in the figure, we see that the expected holding cost during the interval

when X > 0 is
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hE[
∑min(X−1,d)

j=0

(X − j)(tj+1− tj)]

= hL

d + 1

∑min(X−1,d)

j=0

(X − j)= hL

d + 1
[X min (X, d + 1)− 1

2
min (X − 1, d)min (X, d +1)]

= hL

d + 1
min (X, d + 1)[X − 1

2
min (X − 1, d)]

Conditioning on the demand during the interval, we infer that when X > 0 the expected

holding cost during the interval is given by

∑∞
d=0

Pr[D = d] hL

d + 1
min (X, d + 1)[X − 1

2
min (X − 1, d)]

=
∑X−1

d=0

Pr[D = d] hL

d +1
(d +1)(X − 1

2
d)+

∑∞
d=X

Pr[D = d] hL

d +1
X[X − 1

2
(X − 1)]

= hLX
∑X−1

d=0

Pr[D = d]− hL

2

∑X−1

d=0

dPr[D = d] + hLX(X +1)

2

∑∞
d=X

Pr[D = d]

d +1

Since D is a Poisson random variable with mean λL, Pr[D = d] = λL

d
Pr[D = d− 1] for d �

1. Hence, we can simplify the expression for the expected holding cost during the interval as

follows.

hLX
∑X−1

d=0

Pr[D = d]− hL

2

∑X−1

d=1

λLPr[D = d− 1] + hLX(X + 1)

2

∑∞
d=X

Pr[D = d +1]

λL

= hLXF (X − 1, λL)− hλL2

2
F (X − 2, λL) + hX(X +1)

2λ
F (X, λL)

Note that this expression is equal to 0 when X = 0, so the expression is valid for all X �

0.

Consider the area under the graph below the horizontal axis in Figure 5.4. When d > X,

the expected backorder cost during the interval is

bE[
∑d

j=X+1

(tj+1− tj)(j −X)] = bL

d + 1

∑d
j=X+1

(j −X)= bL

d + 1

∑d−X

j=1

j = bL

2(d +1)
(d−X)(d−X + 1)

Conditioning on the demand during the interval, we infer that the expected backorder

cost during the interval is given by

∑∞
d=X+1

Pr[D = d] bL

2(d + 1)
(d−X)(d−X + 1) = bL

2

∑∞
d=X+1

Pr[D = d] (d −X)[(d + 1)−X]

d + 1

= bL

2

∑∞
d=X+1

Pr[D = d]d(d +1)− dX − (d +1)X + X2

d +1
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= bL

2

∑∞
d=X+1

Pr[D = d]d(d +1)− 2(d + 1)X + X2 + X

d + 1

= bL

2

∑∞
d=X+1

Pr[D = d]d− bLX
∑∞

d=X+1

Pr[D = d] + bL(X2 + X)

2

∑∞
d=X+1

Pr[D = d]

d +1

Again using the fact that Pr[D = d] = λL

d
Pr[D = d − 1] for d � 1, we can simply the above

equation as follows

= bλL2

2

∑∞
d=X

Pr[D = d− 1]− bLX
∑∞

d=X+1

Pr[D = d] + bL(X2 + X)

2

∑∞
d=X+2

Pr[D = d + 1]

λL

= b
λL2

2
F (X − 1, λL)− bLX F (X, λL)+ bX(X + 1)

2λ
F (X + 1, λL)

�

Figure 5.5. Inventory level falls from X for an interval of length L due to a Poisson demand process

with a rate that changes when inventory level reaches Y

Lemma 5.3. Consider an interval of length L in which the inventory level starts from X

and demand occurs according to a Poisson process with rate λ1, when inventory level is

greater than Y and with rate λ2 when inventory level is less than or equal to Y (X >Y � 0).

a) The expected holding cost during the interval before the change of demand rate is given

by

hLXF (X −Y − 1, λ1L)− h
λ1L2

2
F (X −Y − 2, λ1L)+
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h
(X + Y + 1)(X −Y )

2λ1
F (X −Y , λ1L)

(5.6)

b) The expected holding cost during the interval after the change of demand rate is given

by

h
∫

0

L λ1
X−YtX−Y −1

(X − Y − 1)!
e−λ1t{(L− t)YF (Y − 1, λ2(L− t))−

λ2(L − t)2

2
F (Y − 2, λ2(L− t))+ Y (Y +1)

2λ2
F (Y , λ2(L− t))}dt

(5.7)

c) The expected backorder cost during the interval is given by

b
∫

0

L λ1
X−YtX−Y −1

(X −Y − 1)!
e−λ1t{λ2(L − t)2

2
F (Y − 1, λ2(L − t)) − (L − t)Y F (Y , λ2(L − t)) +

Y (Y + 1)

2λ2
F (Y +1, λ2(L− t))}dt

(5.8)

Proof. We consider the expected holding cost during the interval when the demand rate is

λ1 and the expected holding cost during the interval when demand rate is λ2 separately.

For the expected holding cost during the interval when the demand rate is λ1, we consider

two situations: one in which the inventory level does not reach Y , and the other in which the

inventory level falls from X to Y within a period of length t.

For the first situation, let D be the random variable representing the demand during the

interval. When demand rate is λ1, during the interval of length L, inventory level falls from

X to X − D > Y � 0 and occurs according to a Poisson process with constant rate λ1. By

Lemma 5.1c, the expected holding cost is given by E[hL

2
(X + X −D)]

For the second situation, note that the time until the inventory level first falls to Y has

an Erlang distribution with shape parameter X − Y and scale parameter λ1L. Assume that

inventory level first falls to Y after time t. During this interval, demand occurs according to

a Poisson process with constant rate λ1. By Lemma 5.1b, the expected holding cost is

ht

2
(X + Y + 1). Hence, the expected holding cost during the interval when the demand rate is

λ1 is given by
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E[
hL

2
(2X −D)]+ h

∫
0

L λ1
X−YtX−Y −1

(X − Y − 1)!
e−λ1t t

2
(X + Y +1)dt

=
∑X−Y −1

j=0

Pr[D = j]
hL

2
(2X − j) + h

(X + Y + 1)(X − Y )

2λ1

∫
0

L λ1
X−Y +1tX−Y

(X − Y )!
e−λ1tdt

= hLX
∑X−Y −1

j=0

Pr[D = j]− hL

2

∑X−Y −1

j=1

jPr[D = j] + h
(X + Y + 1)(X −Y )

2λ1

∫
0

L λ1
X−Y +1tX−Y

(X −Y )!
e−λ1tdt

Recall D is a Poisson random variable with mean λ1L, so jPr[D = j] = λ1LPr[D = j − 1].

Note also that the integral in the expression above equals the probability that the (X − Y +

1)th instance of demand from a Poisson process with mean λ1L occurs during the interval of

length L and so is simply the probability that D is greater than X − Y . Hence, we can sim-

plify this expression further as follows.

= hLX
∑X−Y −1

j=0

Pr[D = j]− hL

2

∑X−Y −1

j=1

λ1LPr[D = j − 1] +h
(X + Y + 1)(X −Y )

2λ1

∑∞
j=X−Y +1

Pr[D = j]

= hLXF (X −Y − 1, λ1L)− h
λ1L2

2
F (X −Y − 2, λ1L) + h

(X + Y + 1)(X − Y )

2λ1
F (X −Y , λ1L)

Expressions for the expected holding cost and the expected backorder cost when the

demand rate is λ2 in Figure 6.5, can be obtained by applying Lemma 5.2. We see that,

during an interval of length L − t, inventory level falls from Y due to a Poisson demand pro-

cess with constant rate λ2. By Lemma 5.2, the expected holding cost during this interval is

given by

h(L− t)YF (Y − 1, λ2(L− t))− hλ2(L− t)2

2
F (Y − 2, λ2(L− t)) + hY (Y + 1)

2λ2
F (Y , λ2(L− t))

and the expected backorder cost during this interval is given by

bλ 2(L− t)2

2
F (Y − 1, λ2(L− t))− b(L− t)YF (Y , λ2(L− t))+ bY (Y + 1)

2λ2
F (Y + 1, λ2(L− t))

Recall that t has an Erlang distribution with shape parameter X − Y and scale parameter

λ1L. Hence, the expected holding cost during the interval when the demand rate is λ2 is

given by

h
∫

0

L λ1
X−YtX−Y −1e−λ1t

(X − Y − 1)!
{(L− t)YF (Y − 1, λ2(L− t))−

λ2(L − t)2

2
F (Y − 2, λ2(L− t))+ Y (Y + 1)

2λ2
F (Y , λ2(L− t))}dt

Finally, the expected backorder cost during the interval of length L is given by

∫
0

L λ1
X−YtX−Y −1

(X − Y − 1)!
e−λ1t{bλ2(L − t)2

2
F (Y − 1, λ2(L− t))− b(L− t)YF (Y , λ2(L− t)) +

bY (Y + 1)

2λ2
F (Y +1, λ2(L− t))}dt �
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5.4 Transshipment agreement probability (TAP) model to
approximate holdout policy

Similar to the decomposition approach we examined in Chapter 4, we reuse the transship-

ment agreement probability to model the unidirectional transshipment from location 2 to

location 1. However, we decompose the two-location system into two independent single-

depot systems with non-constant demand rates and call this the TAP model.

The particular assumptions for TAP model are introduced in Section 5.4.1. The distribu-

tion of the inventory level at the end of a cycle and mean cycle time at location 1 and 2 are

derived in Section 5.4.2 and Section 5.4.3. Subsequently, we provide approximations to a

range of performance measures including average cost rate and direct fill rate at location 1

and 2 in Section 5.4.4. In Section 5.4.5, we present an algorithm to estimate two factors

θ and φ and explain how this algorithm can be used to approximate the optimal transship-

ment policy.

In Section 5.4.6, we verify the correctness of our approximations to the performance mea-

sures at two locations using simulation of a single location with non-constant demand rate.

Finally, a series of numerical experiments designed to evaluate the TAP model are presented

in Section 5.4.7.

5.4.1 Assumptions

In addition to the general assumptions of Section 5.2, we define following assumptions for the

TAP model.

We approximate the transshipment policy by assuming that, when location 2 has a posi-

tive inventory level, there is a probability of location 2 satisfying a transshipment request

from location 1. We call this probability the ‘transshipment agreement probability’ and

denote it by z. More specifically, if z = 0, the transshipment policy is equivalent to the no

pooling policy; if z = 1, the transshipment policy approximates to the complete pooling

policy; if 0 < z < 1, the transshipment policy approximates to a holdout transshipment policy.

We hope the approximations are sufficiently accurate to inform the choice of transshipment

policy.
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Define Xk be the inventory level at location k, (k = 1, 2). We introduce φ = P [X2 � 1] rep-

resenting the probability that location 2 can consider a transshipment request and θ =

P [X1 � 0] representing the probability that location 1 needs to make a transshipment

request. We use these probabilities to decompose the two-location system in the following

manner.

When the inventory level at location 1 is greater than zero, location 1 is able to meet all

of its demands from its local stock. Hence, the inventory level at location 1 falls due to a

Poisson demand process with rate λ1. When the inventory level of location l reaches R1, an

order for Q1 items is placed which will arrive after a fixed time L1. When the inventory level

at location 1 is less than or equal to zero, location 1 makes transshipment requests at a rate

of λ1 per time unit. If location 2 is able to consider transshipment requests, a transshipment

request will be satisfied with probability z. The probability that location 2 is able to consider

transshipment requests is φ. Hence, the probability that a transshipment request at location

1 results in a backorder is 1 − φz. Therefore, when the inventory level at location 1 is less

than or equal to zero, inventory level at location 1 falls due to a Poisson demand process

with rate λ1(1− φz). The situation at location 1 is illustrated in Figure 5.6.

Similarly, at location 2, when the inventory level is greater than zero, location 2 is able to

meet all of its demands from its local stock and consider all transshipment requests from

location 1. Since location 1 only makes transshipment requests when it is out of stock, trans-

shipment requests occur at an average rate of λ1θ per time unit. Hence, when the inventory

level at location 2 is greater than zero, the inventory level at location 2 falls due to a Poisson

demand process with rate λ2 + λ1zθ. When the inventory level of location 2 reaches R2, an

order for Q2 items is placed which will arrive after a fixed time L2. When the inventory level

at location 2 is less than or equal to zero, location 2 backorders all of its demands and is

unable to consider any other transshipment requests from location 1. Hence, the inventory

level at location 2 falls due to a Poisson demand process with rate λ2. The situation at loca-

tion 2 is illustrated in Figure 5.7.

Hence, we decompose the two-location system into two independent single-depot systems

with non-constant demand rates. Because our approach focuses on each location over a cycle,

we need to derive the mean cycle time and distribution of inventory level at the end of a

cycle at each location. Compared to the decomposition approach we considered in Chapter 4,

demand process at each location under this decomposition approach depends on the local
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inventory levels, which hopefully can give us a good approximation to the interactions

between the locations in the two-location system with unidirectional transshipment.

To apply this approach to the original two-location system with unidirectional transship-

ment, we need to be able to associate a value of z with a holdout transshipment policy. Let

I2 denote the holdout threshold value at location 2. The transshipment agreement proba-

bility is the probability that location 2 meets a transshipment request given that it is able to

consider the request. Hence, this is the probability that the inventory level at location 2 is

greater than I2 given that it is least 1. If we can find the value of z which minimises the

average total cost for the whole system, z∗ say, we can derive a corresponding holdout policy

by finding I2 satisfying P [X2 > I2|X2 � 1]� z∗.

5.4.2 Distribution of inventory level & mean cycle time for location

1

Under the assumption that there is never more than one outstanding order at each location,

whenever an order arrives at location 1, the inventory level is restored to a level greater than

R1. Figure 5.6 depicts the inventory level as a function of time during a single cycle for loca-

tion 1.

Demand rate distributions

Figure 5.6. Inventory level at location 1 as a function of time during a single cycle
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We first derive the probability distribution of X1(R1), the inventory level at the end of a

cycle at location 1.

Distribution of X1(R1)

Define D1 to be a random variable representing the lead time demand. We consider two

cases for the demand during the lead time. For the case when the lead time demand is less

then R1, then the rate of the Poisson demand process is equal to λ1 throughout the cycle.

Hence, for 0 � d < R1, the probability that the lead time demand is equal to d is given by a

simple Poisson probability as follows:

P [D1 = d] = (λ1L1)d

d!
e−λ1L1 (5.9)

For the case when the lead time demand is greater than R1, the time at which the inventory

level reaches zero has an Erlang distribution with shape parameter R1 and scale parameter

λ1L1. If t is the time at which the rate changes, the demand during the remainder of the

lead time is a Poisson random variable with mean λ1(1 − φz)(L1 − t). Conditioning on the

time at which the inventory level reaches zero, the probability that the lead time demand

equals d, where d �R1 is as follows

P [D1 = d] =
∫

0

L1 λ1
R1tR1−1e−λ1t

(R1− 1)!
{ [λ1(1− φz)(L1− t)]d−R1

(d −R1)!
e−λ1(1−φz)(L1−t)}dt

= λ1
R1[λ1(1− φz)]d−R1

(R1− 1)!(d −R1)!
e−λ1(1−φz)L1

∫
0

L1 tR1−1(L1− t)d−R1e−λ1φztdt

Note that X1(R1) = R1−D1 and P [X1(R1) = j] = P [D1 = R1− d]. Since X1(R1) = R1−D1

and D1 � 0, X1(R1) � R1. Hence, we can infer the probability distribution of X1(R1) as fol-

lows

For 1� j � R1

P [X1(R1)= j] = (λ1L1)R1−j

(R1− j)!
e−λ1L1 (5.10)

While for j � 0

P [X1(R1)= j] = λ1
R1[λ1(1− φz)]−j

(R1− 1)!(− j)!
e−λ1(1−φz)L1

∫
0

L1

tR1−1(L1− t)−je−λ1φz tdt (5.11)

We then have

E[X1(R1)] =
∑R1

j=−∞
jP [X1(R1) = j] (5.12)

E[X1(R1)2] =
∑

j=−∞

R1

j2 P [X1(R1)= j] (5.13)
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Having established the probability distribution of the inventory level at the end of a cycle,

we are now able to derive the expected cycle time.

Cycle time

As illustrated in Figure 5.6, the mean cycle time consists of two parts, one part before the

lead time starts and the other part is the lead time. During the first part, the inventory level

falls from Q1 + X1(R1) to R1 according to a Poisson process with constant rate λ1. Thus the

mean cycle time is given by

E[Q1 + X1(R1)−R1]
λ1

+ L1 = (Q1−R1)
λ1

+ E[X1(R1)]
λ1

+ L1 (5.14)

5.4.3 Distribution of inventory level & mean cycle time for location

2

We now derive the mean cycle time and the probability distribution of X2(R2), the inventory

level at the end of a single cycle at location 2. Under the assumption that there is never

more than one outstanding order at each location, whenever an order arrives at location 2,

the inventory level is restored to a level greater than R2. Figure 5.7 shows the inventory level

as a function of time during a single cycle for location 2.

Figure 5.7. Inventory level at location 2 as a function of time during a single cycle
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Distribution of X2(R2)

Define D2 to be a random variable representing the lead time demand. We consider two

cases for the demand during the lead time. For the case when the lead time demand is less

than R2, then the rate of the Poisson demand process is equal to λ2 + λ1zθ throughout the

cycle. Hence, for 0 � d < R2, the probability that the lead time demand is equal to d is given

by a simple Poisson probability as follows:

P [D2 = d] = [(λ2 + λ1zθ)L2]d

d!
e−(λ2+λ1zθ)L2 (5.15)

For the case when the lead time demand is greater than R2, the time at which the inventory

level reaches zero and, hence the rate of the Poisson demand process changes, has an Erlang

distribution with shape parameter R2 and scale parameter (λ2 + λ1zθ)L2. If t is the time at

which the rate changes, the demand during the remainder of the lead time is a Poisson

random variable with mean λ2(L2− t). Conditioning on the time at which the inventory level

reaches zero, the probability that the lead time demand equals d, where d �R2 is as follows

P [D2 = d] =
∫

0

L2 (λ2 + λ1zθ)R2tR2−1e−(λ2+λ1zθ)t

(R2− 1)!
[ [λ2(L2− t)]d−R2

(d −R2)!
e−λ2(L2−t)]dt

= [(λ2 + λ1zθ)]R2

(R2− 1)!(d − R2)!
e−λ2L2λ2

d−R2
∫

0

L2 tR2−1e−λ1zθt(L2− t)d−R2dt

(5.16)

Since X2(R2)= R2−D2 andD2 � 0, we can infer the probability of X2(R2) as follows

For 1� j � R2

P [X2(R2)= j] = [(λ2 +λ1zθ)L2]R2−j

(R2− j)!
e−(λ2+λ1zθ)L2 (5.17)

While for j � 0

P [X2(R2)= j] = (λ2 + λ1zθ)R2λ2
−j

(R2− 1)!(− j)!
e−λ2L2

∫
0

L2

tR2−1(L2− t)−je−λ1zθtdt (5.18)

Then we infer the expected mean of X2(R2) and X2(R2)2

E[X2(R2)] =
∑R2

j=−∞
jP [X2(R2) = j] (5.19)

E[X2(R2)2] =
∑R2

j=−∞
j2P [X2(R2)= j] (5.20)
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Having established the probability distribution of the inventory level at the end of a cycle,

we are now able to derive the expected cycle time.

Cycle time

As illustrated in Figure 5.7, the mean cycle time consists of two parts, one part before the

lead time starts and the other part is the lead time. During the first part, the inventory level

falls from Q2 + X2(R2) to R2 according to a Poisson process with rate λ2 + λ1zθ. Thus the

mean cycle time is given by

E[Q2 + X2(R2)−R2]
λ2 + λ1zθ

+ L2 = (Q2−R2) +E[X2(R2)]
λ2 + λ1zθ

+L2 (5.21)

5.4.4 System performance measure approximations

From the renewal theory, we obtain the result that

Average cost rate at location k = mean cost over a single cycle at location k

mean time of a single cycle at location k
(5.22)

Because we have already computed the mean cycle time for each location, in order to esti-

mate the average cost rate at a location, we need to find an expression for the mean cost over

a cycle at the location. We consider four cost components at each location : order cost,

holding cost, backorder cost and stockout cost. The average transshipment

cost per time unit is estimated using a similar approach and added to obtain the average cost

rate for the system as a whole.

Order cost over a cycle

During a cycle at location k, k = 1, 2, exactly one replenishment order is placed. Hence

the order cost over a cycle at location k is given by ck.

Holding cost over a cycle at location �

During the period preceding the point at which the order is placed, inventory level falls

from Q1 + X1(R1) to R1 due to a Poisson demand process with rate λ1. By Lemma 5.1a, the

holding cost during this period is given by

h1

2λ1
[Q1 + X1(R1)−R1][Q1 + X1(R1)+ R1 + 1]

Hence the expected holding cost during this period is given by
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E{ h1

2λ1
[Q1 + X1(R1)−R1][Q1 + X1(R1)+ R1 + 1]}

= h1

2λ1
{Q1

2 + Q1−R1
2−R1 + (2Q1 +1)E[X1(R1)] +E[X1(R1)2]}

(5.23)

During the lead time of length L1, the inventory level starts from R1 and falls due to a

Poisson process with rate λ1 until it reaches zero. After this point, no further holding cost is

incurred. Hence by Lemma 5.2, the expected holding cost during this period is given by

h1L1R1F (R1− 1, λ1L1)−
h1λ1L1

2

2
F (R1− 2, λ1L1)+ h1R1(R1 + 1)

2λ1
F (R1, λ1L1) (5.24)

Hence, the expected holding cost over a single cycle at location 1 is equal to the sum of equa-

tions (5.23) and (5.24).

Holding cost over a cycle at location �

Between the start of a cycle and the point at which an order is placed, the inventory level

falls from Q2 + X2(R2) to R2 due to a Poisson demand process with constant rate λ2 + λ1zθ.

By Lemma 5.1a the expected holding cost during this period is given by

E{ h2

2(λ2 + λ1zθ)
[Q2 + X2(R2)−R2][Q2 + X2(R2)+ R2 + 1]}

= h2

2(λ2 + λ1zθ)
{Q2

2 + Q2−R2
2−R2 +(2Q2 + 1)E[X1(R1)] + E[X2(R2)2]}

(5.25)

During the lead time of length L2, the inventory level starts from R2 and falls due to a

Poisson process with rate λ2 + λ1zθ until it reaches zero. After this point, no further holding

cost is incurred. Hence by Lemma 5.2,

h2L2R2F (R2− 1, (λ2 + λ1zθ)L2)− h2(λ2 + λ1zθ)L2
2

2
F (R2− 2, (λ2 +λ1zθ)L2)+

h2R2(R2 +1)

2(λ2 + λ1zθ)
F (R2, (λ2 + λ1zθ)L2)

(5.26)

Hence, the expected holding cost over a single cycle at location 1 is equal to the sum of equa-

tions (5.25) and (5.26).
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Stockout cost over a cycle

The inventory level at a location is only ever replenished at the beginning of a cycle.

Therefore, any backorder placed at a location during a cycle will still be outstanding at the

end of that cycle. It follows that the number of backorders placed at location k, k = 1, 2

during a cycle is equal to max( − Xk(Rk), 0). Hence, the expected stockout cost during a

cycle at location k is given by

∑∞
j

j=1

b̂kP [Xk(Rk)=− j] (5.27)

Backorder cost over a cycle at location �

If the backorder cost is incurred during a cycle, it is incurred during an interval at the

end of the lead time. During the lead time, the inventory level falls from R1 to zero

according to a Poisson process with constant rate λ1. After this point, the inventory level

continues to fall according to a Poisson process with constant rate λ1(1 − φz). By Lemma

5.3c, the expected backorder cost during a cycle is given by

b1

∫
0

L1 λ1
R1tR1−1e−λ1t

(R1− 1)!

λ1(1− φz)(L1− t)2

2
F (− 1, λ1(1− φz)(L1− t))dt

= b1
λ1

R1+1
(1− φz)

2(R1− 1)!

∫
0

L1 tR1−1e−λ1t(L1− t)2dt

(5.28)

Backorder cost over a cycle at location �

If the backorder cost is incurred during a cycle, it is incurred during an interval at the

end of the lead time. During the lead time, the inventory level falls from R2 to zero

according to a Poisson process with constant rate λ2 + λ1zθ. After this point, the inventory

level continues to fall according to a Poisson process with constant rate λ2. By Lemma 5.3c,

then expected backorder cost during a cycle is given by

b2

∫
0

L2 (λ2 + λ1zθ)R2tR2−1

(R2− 1)!
e−(λ2+λ1zθ)tλ2(L2− t)2

2
F (− 1, λ2(L2− t))dt

= b2
(λ2 + λ1zθ)R2λ2

2(R2− 1)!

∫
0

L2 tR2−1e−(λ2+λ1zθ)t(L2− t)2dt

(5.29)
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Transshipment cost over a cycle

Recall that we assume transshipment is unidirectional from location 2 to location 1 in

this model. Under the assumption of the TAP model, a demand at location 1 results in a

transshipment with probability z when location 1 has no stock and location 2 has some

stocks. Hence, the indirect fill rate, or transshipment fill rate, at location 1 is approximated

as zθφ and transshipment occurs at a rate of λ1zθφ. Hence the average transshipment cost

per time unit is given by

ztλ1φθ (5.30)

Average cost rates

The expected total cost at location 1 over a single cycle is equal to the sum of c1 and

equations (5.23), (5.24), (5.27) and (5.28). The average cost rate at location 1 is obtained by

dividing the result by equation (5.14).

Similarly, we derive the expected total cost at location 2 over a single cycle is equal to

the sum of c2 and equations (5.25), (5.26), (5.27) and (5.29). The average cost rate at loca-

tion 2 is obtained by dividing the result by equation (5.21).

As a whole, the expected total cost rate for the two location system is the sum of the

expected total cost rate at location 1, the expected total cost rate at location 2 and the

expected transshipment cost rate from equation (5.30).

Direct �ll rates

By definitions of θ and φ, we derive the direct fill rate α1 at location 1 as 1 − θ and the

direct fill rate α2 at location 2 as φ. (Note that a method of estimating φ and θ is derived in

Section 5.4.5).

Backorder �ll rates

Unmet demand at location 1 will be met by a backorder if location 2 refuses the trans-

shipment request. Therefore, the backorder fill rate β1 at location 1 is derived as θ(1 − φz).

At location 2, all unmet demand will be backordered. Hence, the backorder fill rate β2 at

location 2 is derived as 1− φ.

Indirect �ll rate at location �

As explained above in the section on transshipment cost, the indirect fill rate, or trans-

shipment fill rate, at location 1 is derived as φθz.
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5.4.5 Solution algorithm

The decomposition approach and approximations to the system performance measures

depend on θ and φ. Therefore before we use the expressions derived in the sections above, we

need a method of estimating θ and φ. In this section we propose an iterative scheme that

starts with estimates based on the assumption that the locations are independent. While we

offer no proof of convergence, the scheme is found to converge after relatively few iterations

in all examples we considered. We first derive expressions for φ and θ.

Factor φ

We address the question of estimating φ, the probability that location 2 has stock, using

renewal type arguments as follows.

φ = P [x2 � 1] = 1−P [x2 � 0] = 1− mean time spent with x2 �0 in a cycle
mean cycle time in equation (5.21)

As shown in Figure 5.7, when the lead time demand is greater than R2, the time at which

the inventory level reaches zero has an Erlang distribution with shape parameter R2 and

scale parameter (λ2 + λ1zθ)L2. Since orders can never be delivered during a cycle, the inven-

tory level will at or below zero for the remainder of the cycle. If t is the time at which the

inventory level reaches zero, the time for which the inventory level is less than or equal to

zero during the cycle is L2 − t. Conditioning on the time at which the inventory level reaches

zero, the mean time for which inventory level is less than or equal to zero during a single

cycle is estimated as follows

∫
0

L2 (λ2 + λ1zθ)R2tR2−1e−(λ2+λ1zθ)t

(R2− 1)!
(L2− t)dt

=L2

∫
0

L2 (λ2 + λ1zθ)R2tR2−1e−(λ2+λ1zθ)t

(R2− 1)!
dt−

∫
0

L2 (λ2 + λ1zθ)R2tR2e−(λ2+λ1zθ)t

(R2− 1)!
dt

=L2{
∑∞

j=R2

[L2(λ2 + λ1zθ)]j

j!
e−(λ2+λ1zθ)L2}− R2

(λ2 + λ1zθ)
{

∑∞
j=R2+1

[L2(λ2 + λ1zθ]j

j!
e−(λ2+λ1zθ)L2}

=L2F (R2− 1, L2(λ2 + λ1zθ))− R2

λ2 + λ1zθ
F (R2, L2(λ2 + λ1zθ))

Thus we can further derive φ as

=1−
L2F (R2− 1, L2(λ2 + λ1zθ))− R2

λ2 + λ1zθ
F (R2, L2(λ2 +λ1zθ))

(Q2− R2)

(λ2 + λ1zθ)
+

E[X2(R2)]

(λ2 + λ1zθ)
+ L2
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Factor θ

Now we address the question of estimating the factor θ, the probability that location 1

has no stock. Again, by renewal-type arguments we have

θ = P [x1 � 0] = mean time spentwithx1 � 0 in a cycle
mean cycle time from equation (5.14)

As illustrated in Figure 5.6, when the lead time demand is greater than R1, the time at

which the inventory level reaches zero has an Erlang distribution with shape parameter R1

and scale parameter λ1L1. Orders are never delivered during a cycle, so the inventory level is

non-increasing during a cycle. If t is the time at which the inventory level reaches zero, the

time for which the inventory level is less than or equal to zero during the cycle is L1 − t.

Conditioning on the time at which the inventory level reaches zero, the mean time for which

inventory level is less than or equal to zero during a single cycle is as follows

∫
0

L1 (L1− t)λ1
R1tR1−1e−λ1t

(R1− 1)!
dt =L1

∫
0

L1 λ1
R1tR1−1e−λ1t

(R1− 1)!
dt− R1

λ1

∫
0

L1 λ1
R1+1

tR1e−λ1t

R1!
dt

= L1[
∑∞

j=R1

(λ1L1)j

j!
e−λ1L1]− R1

λ1
[

∑∞
j=R1+1

(λ1L1)j

j!
e−λ1L1] =L1F (R1− 1, λ1L1)− R1

λ1
F (R1, λ1L1)

Hence, we derive

θ =
L1F (R1− 1, λ1L1)− R1

λ1
F (R1, λ1L1)

(Q1− R1)

λ1
+ E[X1(R1)]

λ1
+ L1

(5.31)

Factor ω

In order to get the predicted value of I2 corresponding to the optimal value of z, we need

to derive the probability that the inventory level at location 2 is greater than the threshold

value I2. Define:

ω = P [X2 > I2] = 1−P [X2 � I2] = 1− mean time spent with x2 � I2 in a cycle
mean cycle time in equation (5.21)

We need to consider three cases: R2 greater than I2, R2 equal to I2 and R2 less than I2

respectively.

For the case when R2 > I2, when the lead time demand is greater than R2 − I2, the time

at which the inventory level reaches I2 has an Erlang distribution with shape parameter

R2 − I2 and scale parameter (λ2 + λ1zθ)L2. Since inventory level is decreasing during a cycle,

if t is the time at which the inventory level reaches I2, the time for which the inventory level

is less than or equal to I2 during the cycle is L2 − t. Conditioning on the time at which the

inventory level reaches I2, the mean time for which the inventory level is less than or equal to

I2 during a single cycle is estimated as
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∫
0

L2 (λ2 + λ1zθ)R2−I2tR2−I2−1e−(λ2+λ1zθ)t

(R2− I2− 1)!
(L2− t)dt

= L2F (R2− I2− 1, (λ2 + λ1zθ)L2)− R2− I2

λ2 + λ1zθ
F (R2− I2, (λ2 + λ1zθ)L2)

Thus we can further derive ω as

1−
L2F (R2− I2− 1, (λ2 + λ1zθ)L2)− R2− I2

λ2 + λ1zθ
F (R2− I2, (λ2 + λ1zθ)L2)

mean cycle time from equation (5.21)
(5.32)

For the case when R2 = I2, as the inventory level starts with R2 at the beginning of the lead

time, the mean time for the inventory level is less than or equal to I2 is equal to the length of

the lead time L2. Hence, ω is derived as follows

1− L2

mean cycle time from equation (5.21)
(5.33)

For the case when R2 < I2, the inventory level at the start of a cycle, Q2 + X2(R2), maybe

above, below or equal to I2. The time at which the inventory level is less than or equal to I2

has two parts, one part before the lead time starts and the other part is the lead time.

During the first part, the inventory level falls either from I2 to R2 or from Q2 + X2(R2) to R2

depending on whether the inventory level at the beginning of the cycle is greater than I2 or

less than or equal to I2 respectively. The fall occurs according to a Poisson process with rate

λ2. Thus ω is given by

1−
E{min(I2, Q2 + X2(R2))}−R2

λ2
+L2

mean cycle time from equation (5.21)
(5.34)

Computation algorithm

From the expressions derived for θ and φ, we learn that φ is dependent on E[X2(R2)] and

θ, and θ is dependent on E[X1(R1)]. Meanwhile, E[X1(R1)] is dependent on φ and

E[X2(R2)] is dependent on θ. We devise an iterative approach on two pairs {φ, θ} and

{E[X1(R1)], E[X2(R2)]}. Specifically, at iteration n we first calculate the estimate

E[X1(R1)]n and E[X2(R2)]n based on known values φn and θn. We then calculate the esti-

mate φn+1 from E[X2(R2)]n and the estimate θn+1 from E[X1(R1)]n. To initialise the itera-

tion we set φ(0) equal to the fill rate at location 2 and θ(0) equal to the backorder fill rate at

location 1 under the assumption that the locations are independent. We continue the calcula-

tion until the values φn and θn converge in the sense that max(|φn − φn−1|, |θn − θn−1|) < ε

where ε is pre-defined tolerance.
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{
θ(0)

φ(0)}
→

{
E[X2(R2)]

(0)

E[X1(R1)]
(0)}

→
{

θ(1)

φ(1)}
→

{
E[X2(R2)]

(1)

E[X1(R1)]
(1)}

�� → continue until converage
{

θ∗

φ∗}

Using the converged estimates φ∗ and θ∗, we calculate the system performance measures

derived in Section 5.4.4.

Optimal total cost algorithm

Given the fixed values of (Rk, Qk) at location k, k = 1, 2, we perform an exhaustive search

to find the value of transshipment agreement probability z, which minimises the approxima-

tion to the average total cost rate. Specifically, for each value of z between 0 and 1, we first

estimate φ and θ using the iterative algorithm described above and then calculate the

average total cost rate for the system.

5.4.6 Model verifications

Before we perform a numerical investigation to evaluate the solution algorithm, we need to

verify the correctness of our JAVA implementation of the approximations to the system per-

formance during a cycle. There are two major reasons to do the verifications. Firstly, the

approximations are the result of a detailed mathematical analysis of the situation at each

location and we want to verify that we have performed this analysis correctly. Secondly, the

approximations involve terms, such as infinite summations and integrals, which are not

straightforward to compute and we want to verify that we deal with these terms appropri-

ately in our JAVA implementation.

Therefore, we compare approximations to the performance measures at each location

from our JAVA implementation with the results of simulation of a single location facing a

Poisson demand process with a non-constant demand rate. The algorithm used to simulate a

single cycle and calculate holding cost, stockout cost, backorder cost and end of cycle inven-

tory level is described in Figure 5.8. We assume that the location uses a (R, Q) replenish-

ment policy and there can be at most one outstanding order. Hence the inventory level at

the start of a cycle must exceed R. We further assume that the rate of demand is equal to

Rate1 at the start of a cycle and changes to Rate2 when the inventory level at the location

reaches 0. For location 1 Rate1=λ1 and Rate2=λ1(1 − φz) while for location 2 Rate1=λ2 +
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λ1zθ and Rate2=λ2.

Let G(λ) be a randomly generated instance of the inter-arrival time for a Poisson demand

process with rate λ. The cycle ends when the next delivery occurs and the final action is to

set the initial inventory level for the next cycle. We also define tEV, t Dem and t Del to be

the time of next event, time of next delivery and time of next demand respectively. Initially,

simulation during a single cycle kicks off from i = i0, t = 0, d Rate= Rate1, tDem = G(Rate1),

t Del = ∞. Next, we check the next demand event is either time of next delivery or time of

next demand. For the case when the time of next event is a next demand, we update the

holding cost and backorder cost for the situations when current inventory level is more than

zero and below zero. When current inventory i equals to reorder point R, the time of next

delivery t Del is updated to t + L. Then the system continues until the condition t Dem �

tDel has been met.

Figure 5.8. Flow chart for the simulation of a single cycle
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Verification of the single cycle time period for the TAP model

Let Tk, Chk, Cb̂k
, Cbk andE[Xk(Rk)] be the mean cycle time, the expected average holding

cost, the expected average stockout cost, the expected average backorder cost and the

expected value of Xk(Rk) during a cycle at location k (k = 1, 2). We use the same parameter

set for both locations, namely Lk =1, hk = 0.8, b̂k = 60, bk =5 , ( k = 1, 2), φ= 0.8 and θ = 0.1.

Tables 5.1 and 5.2 show the results from simulation (columns headed “sim”) and the

results from our JAVA implementation (columns headed “an”) for different values of λk, Rk,

Qk and z. The simulation results are based on the simulation of 1,000,000 cycles. In each

case, the standard errors for simulation are very small and so have not been included in the

tables.

T1 Ch1 Cb̂1
Cb1 E[X1(R1)]

λ1 R1 Q1 z φ sim an sim an sim an sim an sim an
10 10 40 0.0 0.8 4.00 4.00 16.44 16.44 18.79 18.76 0.26 0.26 0.00 0.00
10 10 40 0.3 0.8 4.03 4.03 16.54 16.54 14.15 14.22 0.20 0.20 0.30 0.30
10 10 40 0.7 0.8 4.07 4.07 16.67 16.68 8.11 8.11 0.11 0.11 0.70 0.70
10 10 40 1.0 0.8 4.10 4.10 16.78 16.78 3.65 3.66 0.05 0.05 1.00 1.00
10 10 60 0.0 0.8 6.00 6.00 24.43 24.43 12.51 12.51 0.17 0.17 0.00 0.00
10 10 60 0.3 0.8 6.03 6.03 24.54 24.53 9.45 9.50 0.13 0.13 0.31 0.30
10 10 60 0.7 0.8 6.07 6.07 24.68 24.68 5.43 5.44 0.08 0.08 0.71 0.70
10 10 60 1.0 0.8 6.10 6.10 24.79 24.79 2.46 2.46 0.03 0.03 1.01 1.00
10 20 40 0.0 0.8 4.00 4.00 24.40 24.40 0.04 0.04 0.00 0.00 10.00 10.00
10 20 40 0.3 0.8 4.00 4.00 24.40 24.40 0.03 0.03 0.00 0.00 10.00 10.00
10 20 40 0.7 0.8 4.00 4.00 24.40 24.40 0.02 0.02 0.00 0.00 10.00 10.00
10 20 40 1.0 0.8 4.00 4.00 24.40 24.40 0.01 0.01 0.00 0.00 10.00 10.00
10 10 60 0.0 0.8 6.00 6.00 24.43 24.43 12.51 12.51 0.17 0.17 0.00 0.00
10 10 60 0.3 0.8 6.03 6.03 24.54 24.53 9.45 9.50 0.13 0.13 0.31 0.30
10 10 60 0.7 0.8 6.07 6.07 24.68 24.68 5.43 5.44 0.08 0.08 0.71 0.70
10 10 60 1.0 0.8 6.10 6.10 24.79 24.79 2.46 2.46 0.03 0.03 1.01 1.00
20 10 60 0.0 0.8 3.00 3.00 17.13 17.13 200.27 200.17 4.59 4.58 -10.00 -10.00
20 10 60 0.3 0.8 3.12 3.12 18.02 18.02 146.30 146.28 3.35 3.35 -7.60 -7.60
20 10 60 0.7 0.8 3.28 3.28 19.23 19.23 80.59 80.56 1.85 1.84 -4.40 -4.40
20 10 60 1.0 0.8 3.40 3.40 20.15 20.12 35.34 35.32 0.81 0.81 -1.99 -1.99
20 10 80 0.0 0.8 4.00 4.00 24.95 24.95 150.04 150.13 3.43 3.44 -9.99 -10.00
20 10 80 0.3 0.8 4.12 4.12 25.87 25.86 110.68 110.77 2.53 2.54 -7.59 -7.60
20 10 80 0.7 0.8 4.28 4.28 27.09 27.09 61.69 61.74 1.41 1.41 -4.39 -4.40
20 10 80 1.0 0.8 4.40 4.40 28.02 28.02 27.30 27.30 0.63 0.63 -1.99 -1.99
20 20 60 0.0 0.8 3.00 3.00 24.46 24.46 35.62 35.53 0.37 0.37 -0.00 0.00
20 20 60 0.3 0.8 3.02 3.02 24.60 24.60 26.87 26.81 0.28 0.28 0.42 0.43
20 20 60 0.7 0.8 3.05 3.05 24.80 24.80 15.41 15.37 0.16 0.16 0.99 1.00
20 20 60 1.0 0.8 3.07 3.07 24.95 24.95 6.98 6.94 0.07 0.07 1.42 1.42
20 20 80 0.0 0.8 4.00 4.00 32.45 32.44 26.58 26.65 0.27 0.28 0.01 0.00
20 20 80 0.3 0.8 4.02 4.02 32.60 32.59 20.07 20.14 0.21 0.21 0.43 0.43
20 20 80 0.7 0.8 4.05 4.05 32.80 32.80 11.53 11.58 0.12 0.12 1.00 1.00
20 20 80 1.0 0.8 4.07 4.07 32.96 32.95 5.21 5.23 0.05 0.05 1.42 1.42

Table 5.1. Verification results for TAP model at location 1
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T2 Ch2 Cb̂2
Cb2 E[X2(R2)]

λ1 λ2 R2 Q2 z θ sim an sim an sim an sim an sim an
10 10 10 40 0.0 0.1 4.00 4.00 16.44 16.44 18.79 18.76 0.26 0.26 0.00 0.00
10 10 10 40 0.3 0.1 3.89 3.89 16.22 16.22 21.29 21.26 0.30 0.30 -0.26 -0.26
10 10 10 40 0.7 0.1 3.75 3.75 15.94 15.94 24.85 24.83 0.36 0.36 -0.59 -0.59
10 10 10 40 1.0 0.1 3.65 3.65 15.73 15.73 27.70 27.68 0.41 0.41 -0.83 -0.83
10 10 20 40 0.0 0.1 4.00 4.00 24.40 24.40 0.04 0.04 0.00 0.00 10.00 10.00
10 10 20 40 0.3 0.1 3.88 3.88 24.16 24.16 0.06 0.06 0.00 0.00 9.70 9.70
10 10 20 40 0.7 0.1 3.74 3.74 23.84 23.84 0.10 0.10 0.00 0.00 9.30 9.30
10 10 20 40 1.0 0.1 3.64 3.64 23.60 23.60 0.14 0.13 0.00 0.00 9.00 9.00
10 30 20 90 0.0 0.1 3.00 3.00 28.94 28.93 200.70 200.99 3.33 3.33 -9.99 -10.00
10 30 20 90 0.3 0.1 2.98 2.97 28.76 28.76 206.31 206.63 3.46 3.46 -10.18 -10.20
10 30 20 90 0.7 0.1 2.94 2.94 28.53 28.53 213.89 214.14 3.64 3.64 -10.44 -10.46
10 30 20 90 1.0 0.1 2.92 2.92 28.36 28.36 219.48 219.76 3.77 3.77 -10.63 -10.64
10 30 40 90 0.0 0.1 3.00 3.00 44.41 44.40 1.90 1.91 0.01 0.01 10.02 10.00
10 30 40 90 0.3 0.1 2.97 2.97 44.17 44.16 2.19 2.20 0.01 0.01 9.72 9.70
10 30 40 90 0.7 0.1 2.93 2.93 43.85 43.84 2.65 2.65 0.01 0.01 9.32 9.30
10 30 40 90 1.0 0.1 2.90 2.90 43.61 43.60 3.03 3.03 0.02 0.02 9.02 9.01
20 10 10 40 0.0 0.1 4.00 4.00 16.44 16.44 18.79 18.76 0.26 0.26 0.00 0.00
20 10 10 40 0.3 0.1 3.78 3.78 16.01 16.01 23.94 23.92 0.35 0.35 -0.51 -0.51
20 10 10 40 0.7 0.1 3.53 3.53 15.46 15.46 31.70 31.67 0.48 0.48 -1.14 -1.14
20 10 10 40 1.0 0.1 3.37 3.37 15.06 15.06 38.02 38.04 0.60 0.60 -1.57 -1.57
20 10 20 40 0.0 0.1 4.00 4.00 24.40 24.40 0.04 0.04 0.00 0.00 10.00 10.00
20 10 20 40 0.3 0.1 3.77 3.77 23.92 23.92 0.09 0.09 0.00 0.00 9.40 9.40
20 10 20 40 0.7 0.1 3.51 3.51 23.28 23.28 0.21 0.20 0.00 0.00 8.61 8.60
20 10 20 40 1.0 0.1 3.33 3.33 22.80 22.80 0.36 0.35 0.00 0.00 8.01 8.00
20 30 20 90 0.0 0.1 3.00 3.00 28.94 28.93 200.70 200.99 3.33 3.33 -9.99 -10.00
20 30 20 90 0.3 0.1 2.95 2.95 28.59 28.59 212.02 212.26 3.59 3.59 -10.38 -10.39
20 30 20 90 0.7 0.1 2.88 2.88 28.14 28.14 226.93 227.24 3.95 3.96 -10.88 -10.89
20 30 20 90 1.0 0.1 2.84 2.84 27.82 27.81 238.07 238.41 4.23 4.23 -11.23 -11.25
20 30 40 90 0.0 0.1 3.00 3.00 44.41 44.40 1.90 1.91 0.01 0.01 10.02 10.00
20 30 40 90 0.3 0.1 2.94 2.94 43.93 43.92 2.53 2.53 0.01 0.01 9.42 9.40
20 30 40 90 0.7 0.1 2.87 2.87 43.29 43.29 3.61 3.62 0.02 0.02 8.63 8.61
20 30 40 90 1.0 0.1 2.81 2.81 42.82 42.81 4.66 4.69 0.03 0.03 8.03 8.01

Table 5.2. Verification results for TAP model at location 2

122 Decomposition approach based on independent locations with variable demand rates



We would use the percentage difference to compare the results of the simulation model

and the JAVA implementation. However, as some of the values are close to zero, the per-

centage difference can be large even though the values are close. We will use the percentage

difference when the estimate values are greater than 1 and the difference otherwise. The esti-

mates of mean cycle time are within 0.041% and 0.036% of each other at location 1 and 2

respectively. The estimates of expected holding cost are within 0.018% and 0.025% of each

other respectively. For values greater than 1, the estimates of expected stockout cost are

within 0.608% and 0.702% of each other for location 1 and location 2 respectively. For

smaller values, the estimates are within 0.00 and 0.01 of each other for locations 1 and 2

respectively. For values greater than 1, the estimates of expected backorder cost are within

0.112% and 0.081% of each other for location 1 and location 2 respectively. For smaller

values, the estimates are within 0.01 and 0.00 of each other locations 1 and 2 respectively.

Verdict: The verification results above reveal strong evidence that our JAVA implemen-

tation of the analytic approximations to the performance measures for the TAP model is

accurate. Hence we are confident that we can use our JAVA implementation in a numerical

investigation to evaluate the proposed solution algorithm.

5.4.7 Numerical experiments

The purpose of our numerical experiments is to determine whether the proposed solution

algorithm can be used to find the optimal holdout policy for the two-location inventory

system with unidirectional transshipment. From the numerical results in Chapter 4, we

learned that the parameters bk and b̂k can have a significant effect on the optimal transship-

ment policy and the optimal average total cost. Therefore, we will investigate the relation-

ship between the parameters b̂1 and b̂2 to find the optimal average total cost. To demon-

strate these optimal average total cost features, we choose two snapshot numerical test sets.

In the following result tables, z denotes the transshipment agreement probability, C

denotes the average total cost for the two-location system and Ct denotes the average trans-

shipment cost from location 2 to location 1. Then Ck, Cok
, Chk

, Cb̂k
, Cbk

denote the average
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cost, average order cost, average holding cost, average stockout cost and average backorder

cost at location k (k = 1, 2) respectively. In addition, αk, βk denotes the fill rate and backo-

rder fill rate at location k (k = 1, 2) and γ the transshipment fill rate from location 2 to loca-

tion 1. Since α1 + β1 + γ = 1 and α2 + β2 = 1. We only provide the results for fill rate α1,

α2 and γ in the result tables.

For the simulation implementation, in order to make a good balance between computa-

tional time and accuracy, we performed 500 independent simulation runs of 50,000 time units

with a warm-up period of 500 time units. In all cases, the standard errors are small and so

are not included in the result tables.

Snapshot numerical test set 1

To demonstrate how parameters b̂1 or b̂2 affect the optimal average total cost, we use the

12 snapshots described in Table 5.3 corresponding to 12 different combinations on b̂1 and b̂2.

In each snapshot, the other parameters are given values as follows: λ1 = 20, c1 = 10, h1 = 1,

b1 = 25, R1 = 20, Q1 = 40, L1 = 1, λ2 = 5, c2 = 10, h2 = 0.5, b2 = 70, R2 = 5, Q2 = 10, L2 = 1 and t =

10. Snapshot numerical test set 1 reflects the situation in which there is a higher demand

rate at location 1 than location 2. Hence stockouts are more likely to occur at location 1 and

transshipment is likely to be attractive as there is a less dense customer demand at location

2. As well as the values of b1̂ and b2̂, Table 5.3 also provides the optimal transshipment agree-

ment probability, z∗, for each snapshot.

In the first 6 snapshots the value of b1̂ increases relative to b2̂ and the system is more

likely to favour transshipment, hence z∗ increases accordingly. Meanwhile, for the last 6

snapshots, the value of b2̂ increases relative to b1̂ and the transshipment is less attractive,

hence z∗ decreases accordingly.

s/n b̂1 b̂2 z∗ s/n b̂1 b̂2 z∗

1 17 20 0.0 7 20 15 0.9
2 18 20 0.0 8 20 16 0.8
3 19 20 0.2 9 20 17 0.7
4 20 20 0.5 10 20 18 0.6
5 21 20 0.7 11 20 19 0.5
6 22 20 0.9 12 20 20 0.5

Table 5.3. Summary of the snapshot test set 1 of TAP model
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Figure 5.9. Test set 1 of TAP approximation on b1̂ Figure 5.10. Test set 1 of TAP approximation on b2̂

Figure 5.11. Test set 1 of original TAP simulation on b1̂Figure 5.12. Test set 1 of original TAP simulation on b2̂

Figures 5.9 and 5.10 show the TAP models’ estimate of the average total cost against

transshipment agreement probability for different values of b1̂ and b2̂. Figure 5.9 suggests

that, for the snapshots 1 to 6, the optimal pooling policy is ranging from no-pooling policy to

a partial pooling policy which is very close to the complete pooling policy with the increases

on b1̂ from 17 to 22. Partial pooling is most clearly the optimal pooling policy when b1̂ is

equal to 19 and 20 respectively. For snapshots 7 to 12, Figure 5.10 suggests that partial

pooling is always the optimal pooling policy when the value of b2̂ is ranging from 15 to 20.

From our observations, we find that the TAP model predicts that partial pooling can deliver

cost savings over the simple policies of no pooling and complete pooling under some situa-

tions.

Figures 5.11 and 5.12 show average total cost for a range of holdout transshipment poli-

cies based on simulations of the original system for each snapshot. It is apparent from the

figures that partial pooling is the optimal transshipment policy for all snapshots. It is inter-

esting to note that the optimal holdout value is the same for all snapshots (I2 = 5) and that
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the actual cost savings from partial pooling are up to 5% compared to no pooling (I2=15)

and up to 13% compared to complete pooling (I2=0). These findings appear contrary to the

results of the TAP model. However, the TAP model could still be of use if it correctly pre-

dicts the optimal holdout value or predicts a holdout value which results in average total cost

which is comparable to optimal.

z C C1 Co1 Ch1 Cb̂1
Cb1 C2 Co2 Ch2 Cb̂2

Cb2 Ct α1 γ α2

0 69.42 46.13 5.00 20.61 17.76 2.76 23.29 5.00 2.80 8.77 6.72 0.00 0.96 0.00 0.91
0.1 69.27 44.23 4.98 20.67 16.09 2.50 24.24 5.08 2.76 9.26 7.14 0.80 0.96 0.00 0.91
0.2 69.17 42.37 4.96 20.73 14.44 2.24 25.20 5.16 2.72 9.75 7.57 1.59 0.96 0.01 0.90
0.3 69.09 40.55 4.94 20.79 12.83 1.99 26.18 5.24 2.68 10.25 8.01 2.36 0.96 0.01 0.90
0.4 69.06 38.76 4.92 20.85 11.24 1.74 27.18 5.31 2.65 10.76 8.46 3.12 0.96 0.01 0.89
0.5* 69.06 37.01 4.90 20.91 9.69 1.50 28.18 5.39 2.61 11.27 8.92 3.87 0.96 0.02 0.89
0.6 69.09 35.29 4.89 20.97 8.17 1.27 29.20 5.46 2.58 11.78 9.38 4.59 0.96 0.02 0.87
0.7 69.15 33.61 4.87 21.03 6.67 1.04 30.23 5.53 2.54 12.30 9.86 5.31 0.96 0.03 0.88
0.8 69.25 31.97 4.85 21.10 5.21 0.81 31.27 5.60 2.51 12.82 10.34 6.01 0.96 0.03 0.87
0.9 69.37 30.35 4.83 21.16 3.78 0.59 32.32 5.67 2.48 13.35 10.83 6.70 0.96 0.03 0.87
1.0 69.52 28.78 4.82 21.22 2.37 0.37 33.38 5.74 2.45 13.87 11.32 7.37 0.96 0.04 0.86

Table 5.4. Snapshot 4 in test set 1 of TAP model

Table 5.4 provides the result of snapshot 4 from Table 5.3 in detail and suggests that the

optimal pooling policy is the partial pooling policy corresponding to transshipment agree-

ment probability equal to 0.5. However, it is worth noting that the predicted improvements

on the cost from the optimal partial pooling policy are only 0.67% and 0.52% with respect to

complete pooling (z = 1) and no pooling (z = 0) respectively.

We can derive the optimal holdout threshold value at location 2 suggested by the model

by searching on the value of I2 for which the optimal transshipment agreement probability

z � P [X2 > I2|X2 � 1]. In Table 6.5, we provide a comparison of the optimal holdout value I2

as predicted by the TAP model and as determined by simulation of the original system. We

also provide the actual total cost for the predicted I2 calculated by simulation of the original

system and optimal total cost also from simulation for each snapshot. These values are

shown in columns CTAP and CSIM respectively.

For snapshot 4 in test set 1, the optimal z is equal to 0.5, the optimal holdout value of I2

is predicted as 5 which is equal to the optimal holdout threshold value determined by the

simulation of the original system (see Figures 5.11 and 5.12). Hence, we can say that the

TAP model correctly predicts the optimal holdout value for snapshot 4. However, for other

snapshots in test set 1, there are gaps between the predicted I2 and optimal I2.
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I2 I2

s/n z∗ TAP SIM CTAP CSIM s/n z∗ TAP SIM CTAP CSIM

1 0.0 11 5 66.67 65.00 7 0.9 1 5 68.58 64.48
2 0.0 11 5 67.54 65.60 8 0.8 2 5 67.69 64.95
3 0.2 8 5 67.62 66.20 9 0.7 3 5 67.13 65.41
4 0.5 5 5 66.81 66.81 10 0.6 4 5 66.53 65.88
5 0.7 3 5 69.27 67.41 11 0.5 5 5 66.34 66.34
6 0.9 1 5 72.55 68.01 12 0.5 5 5 66.81 66.81

Table 5.5. Comparison of optimal z, predicted and optimal I2 for snapshot test set 1

Moreover, when we compare costs CTAP and CSIM in Table 6.5 for each snapshot in test

set 1, the difference between the actual total cost for the predicted I2 and the optimal total

cost is ranging from 0.00% to 3.92%.

Snapshot numerical test set 2

Similarly, we use the 14 snapshots described in Table 5.6 corresponding to 14 different

combinations on b̂1 and b̂2. In each snapshot, the other parameters are given values as fol-

lows: λ1 = 10, c1 = 10, h1 = 0.5, b1 = 25, R1 = 1, Q1 = 40, L1 = 1, λ2 = 25, c2 = 10, h2 = 0.5, b2 =

340, R2 = 25, Q2 = 40, L2 = 1 and t = 10. Snapshot numerical test set 2 reflects the situation in

which there is a higher demand rate at location 2 than location 1. Hence, stockout is less

likely to occur at location 1 and transshipment is less likely to be attractive as there is a

more dense customer demand at location 2. As well as the values of b1̂ and b2̂, Table 5.6 also

provides the optimal transshipment agreement probability, z∗ for each snapshot.

In the first 7 snapshots the value of b1̂ increases relative to b2̂ and the system is more

likely to favour transshipment, hence z∗ increases accordingly. Meanwhile, for the last 7

snapshots, the value of b2̂ increases relative to b1̂ and the transshipment is less attractive,

hence z∗ decreases accordingly.

s/n b̂1 b̂2 z∗ s/n b̂1 b̂2 z∗

1 17 20 0.2 8 20 14 0.8
2 18 20 0.3 9 20 15 0.7
3 19 20 0.4 10 20 16 0.6
4 20 20 0.5 11 20 17 0.6
5 21 20 0.6 12 20 18 0.6
6 22 20 0.7 13 20 19 0.5
7 23 20 0.9 14 20 20 0.5

Table 5.6. Summary of the snapshot test set 2 of TAP model

We use Figures 5.13 and 5.14 to show the TAP model’s estimate of the average total cost
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against transshipment agreement probability for different values of b1̂ and b2̂. Figure 5.13

suggests that, for the snapshots 1 to 7, partial pooling is the optimal pooling policy when b1̂

is ranging from 17 to 23. Meanwhile, for snapshots 8-14, Figure 5.14 suggests that the partial

pooling is always the optimal pooling policy when b2̂ is ranging from 13 to 20.

Figure 5.15 and 5.16 show average total cost for a range of holdout transshipment policies

based on simulations of the original system for each snapshot. It is apparent from the figures

that partial pooling is the optimal transshipment policy for all snapshots. It is interesting to

note that the optimal holdout value is the same for all snapshots (I2=25) and that the actual

cost savings from partial pooling are up to 12.03% compared to no pooling (I2=65) and up

to 27.36% compared to complete pooling (I2=0).

Figure 5.13. Test set 2 of TAP approximation on b1̂ Figure 5.14. Test set 2 of TAP approximation on b2̂

Figure 5.15. Test set 2 of original TAP simulation on b1̂Figure 5.16. Test set 2 of original TAP simulation on b2̂

In Table 5.7, we provide the result of snapshot 4 from Table 5.6 in detail which suggests

that the optimal pooling policy is the partial pooling policy corresponding to transshipment

agreement probability equal to 0.5. However, the predicted improvement on the cost from

the optimal partial pooling are only 1.15% and 1.67% with respect to complete pooling (z =
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1) and no pooling (z =0) respectively.

z C C1 Co1 Ch1 Cb̂1
Cb1 C2 Co2 Ch2 Cb̂2

Cb2 Ct α1 γ α2

0 168.58 79.63 2.50 6.26 45.15 25.72 88.95 6.25 10.32 24.87 47.51 0.00 0.77 0.00 0.95
0.1 167.50 71.72 2.45 6.45 40.02 22.80 93.70 6.30 10.22 26.31 50.87 2.09 0.78 0.02 0.95
0.2 166.74 64.18 2.40 6.65 35.13 20.01 98.48 6.35 10.12 27.76 54.24 4.08 0.78 0.04 0.94
0.3 166.20 57.00 2.35 6.84 30.46 17.35 103.22 6.40 10.03 29.17 57.62 5.98 0.79 0.06 0.94
0.4 165.91 50.15 2.31 7.04 25.99 14.81 107.97 6.44 9.94 30.59 61.00 7.79 0.79 0.08 0.94
0.5* 165.81 43.60 2.26 7.24 21.73 12.37 112.68 6.49 9.86 31.97 64.36 9.53 0.80 0.10 0.94
0.6 165.90 37.34 2.22 7.43 17.64 10.05 117.37 6.53 9.78 33.34 67.72 11.19 0.80 0.11 0.93
0.7 166.14 31.34 2.18 7.62 13.72 7.82 122.01 6.57 9.70 34.68 71.07 12.79 0.80 0.13 0.93
0.8 166.53 25.60 2.14 7.82 9.96 5.67 126.62 6.61 9.63 36.00 74.39 14.32 0.81 0.14 0.93
0.9 167.06 20.09 2.11 8.01 6.35 3.62 131.19 6.64 9.55 37.29 77.70 15.78 0.81 0.16 0.93
1.0 167.71 14.80 2.07 8.20 2.88 1.64 135.72 6.68 9.49 38.57 80.98 17.19 0.81 0.17 0.92

Table 5.7. Snapshot 4 in test set 2 of TAP model

Following the same prediction approach on the holdout threshold value I2 in snapshot

test set 1, in Table 5.8, we provide a comparison of the optimal holdout value I2 as predicted

by the TAP model and as determined by simulation of the original system. We also provide

the actual total cost for the predicted I2 calculated by simulation of the original system and

optimal total cost also from simulation for each snapshot. These values are shown in column

CTAP and CSIM respectively.

I2 I2

s/n z∗ TAP SIM CTAP CSIM s/n z∗ TAP SIM CTAP CSIM

1 0.2 28 25 150.69 147.49 9 0.8 9 25 158.41 144.32
2 0.3 26 25 150.07 148.97 10 0.7 12 25 155.27 145.59
3 0.4 24 25 150.92 150.45 11 0.6 16 25 152.29 146.59
4 0.5 20 25 154.85 151.93 12 0.6 16 25 153.80 148.12
5 0.6 16 25 159.35 153.41 13 0.6 16 25 155.32 149.39
6 0.7 12 25 165.07 154.89 14 0.5 20 25 153.45 150.66
7 0.9 5 25 177.34 156.37 15 0.5 20 25 154.85 151.93

Table 5.8. Summary of the snapshot test set 2 of TAP model

For snapshot 4 in test set 2, the optimal z is equal to 0.5, the optimal holdout value of I2

is predicted as 20 which is close to the optimal holdout threshold value determined by the

simulation of the original system (see Figure 5.15 and 5.16). For other snapshots in the test

set 2, there are also differences between the predicted I2 and the optimal I2.

Moreover, we compare cost CTAP and CSIM in Table 5.8 for each snapshot in test set 2,

the difference between the actual total cost for the predicted I2 and the optimal total cost for

the optimal I2 is ranging between 0.31% to 13.41% respectively.
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5.4.8 Conclusions

We have extended the approach of Chapter 4 by decomposing the two-location system into

two independent locations with non-constant demand rates. By this new approach, we have

been able to derive explicit expressions for a range of system performance measures under

the assumptions of the decomposition approach. There is some evidence from numerical

results that the TAP model more closely reflects the behaviour of the system than the

approximations from Chapter 4.

In addition, the type of decomposition approach has a good framework which could be

extended to other systems with more than two locations. For those multi-location systems,

we only need to derive explicit expressions for a range of system performance measures by

reflecting transshipment interactions among them. However, we should emphasize that this

approach is based on the assumption that there is at most one outstanding order any time.

The analysis of the predicted holdout threshold values I2 from the TAP model for two

snapshot test sets show that the predicted values are only close to optimal for a few snap-

shots. For other snapshots, there can be large differences between the predicted I2 and the

optimal I2. Furthermore, the comparison of the actual total cost of the policy predicted by

the TAP model and the optimal total cost shows that the predicted policy can lead to costs

that are significantly higher than optimal. Hence, we conclude that the TAP model does not

provide reliable method of determining an optimal holdout transshipment policy in general.

One reason which might explain the differences between the model’s predictions and sim-

ulations is the lack of accuracy from the transshipment agreement probability. So far, we

only use the transshipment agreement probability to model the degree of transshipment from

location 2 to location 1. The numerical results suggest this approximation is not accurate

enough to capture the true system performance. Hence, in Section 5.5, we will develop a new

approximation approach with the similar decomposition method we used in Section 5.4 and

introduce an explicit holdout transshipment decision variable to replace the transshipment

agreement probability. Hopefully, this approach will lead to a better approximation model.
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5.5 Explicit holdout transshipment policy (HOT) model

As before the aim of this new model is to find an optimal holdout transshipment policy for a

two-location system with unidirectional transshipment. Again, we decompose the two-loca-

tion system into two independent single-depot systems with non-constant demand rates.

However, in this approach we try to model the holdout threshold at location 2 explicitly

rather than using the transshipment agreement probability. We call this model the HOT

model. In theory, when the holdout threshold is equal to zero, the holdout transshipment

policy is equivalent to a complete pooling; when it is infinite, the holdout transshipment

policy is equivalent to no pooling; and when it is between these two extremes, the holdout

transshipment policy represents a partial pooling policy.

Following a similar decomposition approach as we applied in the analysis of the TAP

model, we derive a range of system performance measures for the HOT model. Firstly, we

provide the specific assumptions for the HOT model in Section 5.5.1. The distribution of the

inventory level at the end of a cycle and mean cycle time during a cycle at location 1 and

location 2 are derived in Section 5.5.2 and Section 5.5.3 respectively.

Subsequently, we provide a range of performance measures including average cost rate

and direct fill rate at location 1 and location 2 in Section 5.5.4. In Section 5.5.5, we present

an algorithm that can be used to find an approximation to the optimal transshipment policy.

In Section 5.5.6, we verify the correctness of our approximations to the performance mea-

sures at the locations using simulation of a single location with non-constant demand rate.

Finally, a series of numerical experiments designed to evaluate the HOT model are pre-

sented in Section 5.5.7.

5.5.1 Assumptions

In addition to the general assumptions of Section 5.2, we define following assumptions for the

HOT model. We use the decision variable I2 to represent the holdout threshold at location

2. Define Xk to be the inventory level at location k (k = 1, 2). Hence, demand that occurs at

location 1 is satisfied from local stock if X1 > 0; by transshipment from location 2 if X1 � 0
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and X2 > I2; and by backorder at location 1 if X1 � 0 and X2 � I2. While at location 2,

demand is satisfied from local stock if X2 > 0 and by backorder at location 2 if X2 � 0. If

I2 = 0, the holdout transshipment policy is equivalent to complete pooling; if I2 is large

enough, the holdout transshipment policy approximates no pooling; within this range, the

holdout transshipment policy corresponds to partial pooling.

We introduce ω = P [X2 > I2] representing the probability that location 2 meets a trans-

shipment request from location 1, θ = P [X1 � 0] representing the probability that demand at

location 1 results in a transshipment request and φ = P [X2 � 1] representing the probability

that location 2 has stock. We use these probabilities to decompose the two-location system

in the following manner.

When the inventory level at location 1 is greater than zero, location 1 is able to meet all

of its demands from its local stock. Hence, the inventory level at location 1 falls due to a

Poisson demand process with rate λ1. When the inventory level of location 1 reaches R1, an

order of Q1 items is placed which will arrive after a fixed time L1. When the inventory level

at location 1 is less than or equal to zero, location 1 makes transshipment requests at a rate

of λ1 per time unit. The probability that location 2 meets a transshipment request is ω.

Hence, the probability that a transshipment request at location 1 results in a backorder is

1 − ω. Therefore, when the inventory level at location 1 is less than or equal to zero, inven-

tory level at location 1 falls due to a Poisson demand process with rate λ1(1 − ω). The situa-

tion at location 1 is illustrated in Figure 5.17.

Meanwhile, when the inventory level at location 2 is greater than I2, location 2 meets all

of its demand and all transshipment requests from its local stock. Since location 1 only

makes transshipment request when it is out of stock, transshipment requests occur at an

average rate of λ1θ per time unit. Hence, when the inventory level at location 2 is greater

than I2, the inventory level at location 2 falls due to a Poisson demand process with rate

λ2 + λ1θ. When the inventory level at location 2 is less than or equal to I2, location 2 meets

all of its demand (either from local stock or by backorders), but refuses all transshipment

requests from location 1. Hence, the inventory level at location 2 falls due to a Poisson

demand process with rate λ2. When the inventory level at location 2 reaches R2, an order of

Q2 items is placed and will arrive after a fixed time L2. There are three cases to consider

depending on whether I2 is less than, equal to or greater than R2. The situation at location 2

from illustrated in Figure 5.18 to 5.21.
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Hence, using the probabilities ω and θ, we decompose the two-location system into two

independent single-depot systems with non-constant demand rates. By analysing the time

between the delivery of successive orders (which we refer to as a cycle) at each location, we

can derive approximation to performance measures of the two-location system and so find an

approximation to the optimal holdout transshipment policy. Unlike our previous approxima-

tion models which used the transshipment agreement probability to approximate the holdout

threshold, the HOT model predicts the optimal threshold value directly.

5.5.2 Distribution of inventory level & mean cycle time for location

1

Under the assumption that there is never more than one outstanding order at each location,

whenever an order arrives at location 1, the inventory level is restored to a level greater than

R1. Figure 5.17 depicts the inventory level as a function of time during a cycle for location 1.

Comparing Figure 5.6 at location 1 in the TAP model and Figure 5.17, we note that the sit-

uation at location 1 under the assumption of the HOT model is equivalent to the situation

at location 1 under the assumptions of the TAP model with zφ replaced by ω. Hence, we

can deduce expressions for the distribution of the end of cycle inventory level and the mean

cycle time at location 1 for the HOT model.

Figure 5.17. Inventory level at location 1 as a function of time during a single cycle

5.5 Explicit holdout transshipment policy (HOT) model 133



Distribution of X1(R1)

From analysis of the TAP model, the probability distribution of X1(R1) is as follows

For 1� j � R1

P [X1(R1)= j] = (λ1L1)R1−j

(R1− j)!
e−λ1L1 (5.35)

While for j � 0

P [X1(R1)= j] = λ1
R1[λ1(1−ω)]−j

(R1− 1)!(− j)!
e−λ1L1(1−ω)

∫
0

L1

tR1−1(L1− t)−je−λ1ωtdt (5.36)

We then have

E[X1(R1)] =
∑

j=−∞

R1

jP [X1(R1) = j] (5.37)

E[X1(R1)2] =
∑

j=−∞

R1

j2P [X1(R1) = j] (5.38)

Cycle time

From analysis of the TAP model, we have the mean cycle time as such

(Q1−R1)
λ1

+ E[X1(R1)]
λ1

+L1 (5.39)

5.5.3 Distribution of inventory level & mean cycle time for location

2

We now derive the mean cycle time and the probability distribution of X2(R2), the inventory

level at the end of a cycle at location 2. Under the assumption that there is never more than

one outstanding order at each location, whenever an order arrives at location 2, the inventory

level is restored to a level greater than R2. The analysis is more complicated than in the

TAP model because we need to consider three cases: R2 > I2, R2 = I2 and R2 < I2 respec-

tively. Figures from 5.18 and 5.21 show the inventory level at location 2 as a function of time

during a cycle for these three cases. We give the separate derivations for each case as follows.
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When R2 > I2

Figure 5.18. Inventory level at location 2 during a cycle when R2 > I2

Distribution of X2(R2)

Define D2 to be a random variable representing the lead time demand (LTD). We first

consider two cases for the demand during the lead time. For the case when the lead time

demand is less than to R2 − I2, then the rate of the Poisson demand process is equal to λ2 +

λ1θ throughout the cycle. Hence, for 0 � d < R2 − I2, the probability that the lead time

demand is equal to d is given by a simple Poisson probability as follows.

P [D2 = d] = [(λ2 + λ1θ)L2]d

d!
e−(λ2+λ1θ)L2 (5.40)

For the case when the lead time demand is greater than or equal to R2 − I2, the time at

which the inventory level reaches I2 and hence the rate of the Poisson demand process

changes, has an Erlang distribution with shape parameter R2− I2 and scale parameter (λ2 +

λ1θ)L2. If t is the time at which the rate changes, the demand during the remainder of the

lead time is a Poisson random variable with mean λ2(L2 − t). Conditioning on the time at

which the inventory level reaches I2, the probability that the lead time demand equals d,

where d �R2− I2 is as follows.

P [D2 = d] =
∫

0

L2 (λ2 + λ1θ)R2−I2tR2−I2−1

(R2− I2− 1)!
e−(λ2+λ1θ)t [λ2(L2− t)]d−R2+I2

(d − R2 + I2)!
e−λ2(L2−t)dt
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= λ2
d−R2+I2(λ2 + λ1θ)R2−I2

(R2− I2− 1)!(d −R2 + I2)!

∫
0

L2 e−(λ2+λ1θ)ttR2−I2−1(L2− t)d−R2+I2e−λ2(L2−t)dt

= λ2
d−R2+I2(λ2 + λ1θ)R2−I2

(R2− I2− 1)!(d −R2 + I2)!
e−λ2L2

∫
0

L2 e−λ1θttR2−I2−1(L2− t)d−R2+I2 dt

(5.41)

Since X2(R2) = R2 − D2 and D2 � 0, we have the probability distribution of X2(R2) as

follows.

For I2 < j � R2

P [X2(R2) = j] = [(λ2 + λ1θ)L2]R2−j

(R2− j)!
e−(λ2+λ1θ)L2 (5.42)

While for j � I2

P [X2(R2)= j] = λ2
I2−j(λ2 + λ1θ)R2−I2

(R2− I2− 1)!(I2− j)!
e−λ2L2

∫
0

L2

tR2−I2−1(L2− t)I2−je−λ1θtdt (5.43)

Then we derive the mean of X2(R2) and X2(R2)2

E[X2(R2)] =
∑R2

j=−∞
jP [X2(R2) = j] (5.44)

E[X2(R2)2] =
∑R2

j=−∞
j2P [X2(R2)= j] (5.45)

Having established the probability distribution of the inventory level at the end of a cycle,

we are now able to derive the expected cycle time.

Cycle time

As illustrated in Figure 5.18, the mean cycle time at location 2 when R2 > I2 consists of

two parts, the first part is for the period when the inventory level falls from Q2 + X2(R2) to

R2 according to a Poisson process with rate λ2 + λ1θ before the lead time L2, and the second

part is the lead time L2, hence the mean cycle time is given by

E[Q2 + X2(R2)−R2]
λ2 +λ1θ

+ L2 = (Q2−R2) +E[X2(R2)]
λ2 +λ1θ

+L2 (5.46)
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When R2 = I2

Figure 5.19. Inventory level at location 2 during a cycle when R2 = I2

As illustrated in Figure 5.19 when R2 = I2, before the start of lead time, the inventory

level falls from Q2 + X2(R2) to R2 according to a Poisson demand process with rate λ2 + λ1θ,

and then continue to fall from R2 to zero according to a Poisson demand process with rate λ2

for the duration of the lead time.

Distribution of X2(R2)

Because the inventory level only falls from R2 according to a Poisson demand process

with rate λ2 during the lead time, we first consider the probability of the lead time demand

which is a simple Poisson demand process as follows, for d � 0

P [D2 = d] = (λ2L2)d

d!
e−λ2L2 (5.47)

Then we have the distributions of X2(R2), for j �R2

P [X2(R2)= j] = (λ2L2)R2−j

(R2− j)!
e−λ2L2 (5.48)

Then we infer the mean of X2(R2) and X2(R2)2 from equation (5.44) and (5.45). Having

established the probability distribution of the inventory level at the end of a cycle, we are

now able to derive the expected cycle time.

Cycle time

During the first part of a cycle, the inventory level falls from Q2 + X2(R2) to R2
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according to a Poisson demand process with rate of λ2 + λ1θ. As this point, an order is

placed and the cycle ends after the lead time L2. Hence, the mean cycle time is given by

E[Q2 + X2(R2)−R2]
λ2 +λ1θ

+ L2 = (Q2−R2) +E[X2(R2)]
λ2 +λ1θ

+L2 (5.49)

When R2 < I2

Figure 5.20. Inventory level at location 2 during a cycle when R2 < I2 < Q2 + X2(R2)

Figure 5.21. Inventory level at location 2 during a cycle when R2 < Q2 + X2(R2) < I2
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Distribution of X2(R2)

This case is simpler because the lead time demand is a simple Poisson random variable

with mean λ2L2. Hence, for j � R2, P [X2(R2) = j] equals to the probability that the lead

time demand is equal to R2− j which is given by

(λ2L2)R2−j

(R2− j)!
e−λ2L2 (5.50)

Then we infer the expected mean of X2(R2) and X2(R2)2 from equation (5.44) and (5.45).

Having established the probability distribution of the inventory level at the end of a cycle, we

are now able to derive the expected cycle time.

Cycle time

Shown in Figure 5.20 and 5.21, for the case when R2 < I2, the inventory level at the start

of a cycle, Q2 + X2(R2), maybe above, below or equal to I2. We need to take account of

additional situations when Q2 + X2(R2) is below I2 or over I2 for two periods with two rates

before the lead time L2. More specific, we need to consider the situations when the inventory

level falls down from Q2 + X2(R2) to I2 at rate λ2 + λ1θ and the situation when the inventory

level falls down from I2 to R2 at rate λ2. Therefore, the general mean cycle time is given by

= E{
max (Q2 +X2(R2)− I2, 0)

λ2 + λ1θ
+

min (I2, Q2 + X2(R2))−R2

λ2
+L2}

= E{
Q2 + X2(R2)−min (I2, Q2 + X2(R2))

λ2 + λ1θ
+

min (I2, Q2 + X2(R2))−R2

λ2
+ L2}

=
Q2 + E{X2(R2)}−E{min (I2, Q2 + X2(R2))}

λ2 +λ1θ
+

E{min (I2, Q2 + X2(R2))}−R2

λ2
+ L2

(5.51)

5.5.4 System performance measure approximations

Again, we use the result from the renewal theory that

Average cost at location k = mean cost over a single cycle at location k

mean time of a single cycle at location k
(5.52)
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Because we have already computed the mean cycle time for each location, in order to esti-

mate the average cost rate at a location, we need to find an expression for the mean cost over

a cycle at the location k, k = 1, 2. Typically, we consider four cost components at each loca-

tion: order cost, holding cost, stockout cost and backorder cost. The

average transshipment cost per time unit is estimated using a similar approach and added to

obtain the average cost rate for the system as a whole.

Note that for location 2, we derive the holding cost, stockout cost and backorder cost

during a single cycle for three cases: R2 > I2, R2 = I2, R2 < I2 respectively.

Order cost over a cycle

During a cycle at location k, k = 1, 2, exactly one replenishment order is placed. Hence

the order cost over a cycle at location k is given by ck.

Holding cost over a cycle at location �

Because the situation at location 1 under the assumption of the HOT model is equivalent

to the situation at location 1 under the assumptions of the TAP model with zφ replaced by

ω. Hence, we deduce the expected holding cost during the period preceding the point at

which the order is placed, inventory level falls from Q1 + X1(R1) to R1 due to a Poisson

demand process with rate λ1 as such.

h1

2λ1
{Q1

2 + Q1−R1
2−R1 + (2Q1 +1)E[X1(R1)] +E[X1(R1)2]} (5.53)

The expected holding cost during the lead time of length L1 is given by

h1L1R1F (R1− 1, λ1L1)−
h1λ1L1

2

2
F (R1− 2, λ1L1)+ h1R1(R1 + 1)

2λ1
F (R1, λ1L1) (5.54)

Holding cost over a cycle at location �

When R2 > I2

Between the start of a cycle and the point at which an order is placed, the inventory level

falls from Q2 + X2(R2) to R2 due to a Poisson demand process with constant rate λ2 + λ1θ.

By Lemma 5.1a, the expected holding cost during this period is given by

h2

2(λ2 + λ1θ)
[Q2 + X2(R2)−R2][Q2 + X2(R2)+ R2 + 1]
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Hence the expected holding cost is given by

E{ h2

2(λ2 + λ1θ)
[Q2 +X2(R2)−R2][Q2 + X2(R2)+ R2 + 1]}

= h2

2(λ2 + λ1θ)
{Q2

2 + Q2−R2
2−R2 + (2Q2 + 1)E[X2(R2)] +E[X2(R2)2]}

(5.55)

During the lead time L2, we consider the situations where the inventory level falls from R2 to

I2 due to a Poisson demand process with rate λ2 + λ1θ, then the inventory level falls from I2

due to a Poisson demand process with rate λ2 until it reaches zero, or where the inventory

level falls from R2 to I2 due to a Poisson demand process with rate λ2 + λ1θ. Therefore, by

Lemma 5.3, put these situations together, the expected holding cost occurred during the lead

time L2 is given by

= h2L2R2F (R2− I2− 1, (λ2 +λ1θ)L2)− h2
(λ2 + λ1θ)L2

2

2
F (R2− I2− 2, (λ2 +λ1θ)L2)+

h2
(R2 + I2 +1)(R2− I2)

2(λ2 + λ1θ)
F (R2− I2, (λ2 + λ1θ)L2) +

h2
(λ2 + λ1θ)R2−I2

(R2− I2− 1)!

∫
0

L2 tR2−I2−1e−(λ2+λ1θ)t{(L2− t)I2F (I2− 1, λ2(L2− t))−

λ2(L2− t)2

2
F (I2− 2, λ2(L2− t))+ I2(I2 +1)

2λ2
F (I2, λ2(L2− t))}dt

(5.56)

When R2 = I2

Shown in Figure 5.19, between the start of a cycle and the point at which an order is

placed, the inventory level falls from Q2 + X2(R2) to R2 due to a Poisson demand process

with constant rate λ2 + λ1θ. By Lemma 5.1a, the holding cost till the start of the lead time

L2 is h2

2(λ2 + λ1θ)
[Q2 +X2(R2)−R2][Q2 + X2(R2)+ R2 + 1]

Hence the expected holding cost during the period is given by

E{ h2

2(λ2 + λ1θ)
[Q2 +X2(R2)−R2][Q2 + X2(R2)+ R2 + 1]}

= h2

2(λ2 + λ1θ)
{Q2

2 + Q2−R2
2−R2 + (2Q2 + 1)E[X2(R2)] +E[X2(R2)2]}

(5.57)
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During the lead time L2, the inventory level starts from R2 and falls due to a Poisson process

with rate λ2 until it reaches zero. After this point, no further holding cost is incurred. Hence

by Lemma 5.2, the expected holding cost occurred during the lead time L2 is given by

h2L2R2F (R2− 1, λ2L2)−
h2λ2L2

2

2
F (R2− 2, λ2L2)+ h2R2(R2 + 1)

2λ2
F (R2, λ2L2) (5.58)

When R2 < I2

Shown in Figures 5.20 and 5.21, the inventory level at the beginning of the single cycle

could start above or below I2, therefore, we need to consider two situations in which I2 <

Q2 + X2(R2) and I2 � Q2 +X2(R2) over a period before the lead time respectively.

For the situation in Figure 5.20, the inventory level falls from Q2 + X2(R2) to I2 due to a

Poisson demand process with rate λ2 + λ1θ, then falls from I2 to R2 according to another

Poisson demand process at rate λ2. For the situation in Figure 5.21, the inventory level falls

from Q2 + X2(R2) to R2 due to a Poisson demand process with rate λ2. We can combine

these two situations by thinking of the inventory level first falling from Q2+X2(R2) to

min(I2,Q2+X2(R2)) according to a Poisson demand process with rate λ2+λ1θ and then

falling from this level to R2 according to a Poisson demand process with rate λ2. By Lemma

5.1a, the holding cost from the beginning of a cycle to the start of the lead time is given by

h2

2(λ2 + λ1θ)
[Q2 + X2(R2)−min (I2, Q2 + X2(R2))][Q2 + X2(R2)+min (I2, Q2 + X2(R2))

+ 1] + h2

2λ2
[min (I2, Q2 + X2(R2))−R2][min (I2, Q2 + X2(R2)) +R2 +1]

Hence the expected holding cost during the period is given by

= E{ h2

2(λ2 + λ1θ)
[Q2 + X2(R2)−min (I2, Q2 + X2(R2))][Q2 + X2(R2)+min (I2, Q2 + X2(R2))

+1] + h2

2λ2
[min (I2, Q2 +X2(R2))−R2][min (I2, Q2 +X2(R2))+ R2 + 1]}

= h2

2(λ2 + λ1θ)
{Q2

2 + Q2−E[min (I2, Q2 +X2(R2))2]−E[min (I2, Q2 +X2(R2))] +

(2Q2 + 1)E[X2(R2)] +E[X2(R2)]2}+ h2

2λ2
{E[min (I2, Q2 + X2(R2))2] +

E[min (I2, Q2 + X2(R2))]−R2
2−R2}

= h2

2(λ2 + λ1θ)
{Q2

2 + Q2 + (2Q2 + 1)E[X2(R2)] + E[X2(R2)]2}+ h2λ1θ

2λ2(λ2 + λ1θ)

{E[min (I2, Q2 + X2(R2))]2 + E[min (I2, Q2 + X2(R2))]}− h2

2λ2
{R2

2 + R2}

(5.59)
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During the lead time L2, the inventory level falls from R2 due to a Poisson process with rate

λ2. Hence, by Lemma 5.2, the expected holding cost occurred during the lead time L2 is

given by

h2L2R2F (R2− 1, λ2L2)−
h2λ2L2

2

2
F (R2− 2, λ2L2)+ h2R2(R2 + 1)

2λ2
F (R2, λ2L2) (5.60)

Stockout cost over a cycle

The inventory level at a location is only replenished at the beginning of a cycle. There-

fore, any backorder placed at a location during a cycle will still be outstanding at the end of

that cycle. It follows that the number of backorders placed at location k, k = 1, 2 during a

cycle is equal to max { − Xk(Rk), 0}. Hence, the expected stockout cost during a cycle at

location k is given by

∑∞
j

j=1

b̂kP [Xk(Rk)=− j] (5.61)

Backorder cost over a cycle at location �

As the situation at location 1 of the HOT model is similar to the situation at location 1

of the TAP model with zφ replaced by ω. Hence, by Lemma 5.3c, the expected backorder

cost over a cycle is given by

b1
λ1

R1+1(1−ω)
2(R1− 1)!

∫
0

L1

tR1−1e−λ1t(L1− t)2dt (5.62)

Backorder cost over a cycle at location �

When R2 > I2

Shown in Figure 5.18, during the lead time, the inventory level falls from R2 to I2

according to a Poisson process with rate λ2 + λ1θ. After this point, the inventory level con-

tinues to fall according to a Poisson process with rate λ2. By Lemma 5.3c, the expected

backorder cost over a cycle is given by

b2
(λ2 + λ1θ)R2−I2

(R2− I2− 1)!

∫
0

L2 tR2−I2−1e−(λ2+λ1θ)t{λ2(L2− t)2

2
F (I2− 1, λ2(L2− t))−

(L2− t)I2F (I2, λ2(L2− t)) + I2(I2 +1)

2λ2
F (I2 + 1, λ2(L2− t))}dt

(5.63)
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When R2 = I2

Illustrated in Figure 5.19, the inventory level falls from R2 at the beginning of the lead

time L2 due to Poisson demand process with rate λ2. By Lemma 5.2b, the expected backo-

rder cost over the lead time is given by

b2[
λ2L2

2

2
F (R2− 1, λ2L2)−L2R2F (R2, λ2L2)+ R2(R2 + 1)

2λ2
F (R2 + 1, λ2L2)] (5.64)

When R2 < I2

Illustrated in Figure 5.20 or 5.21, the inventory level falls from R2 at the beginning of the

lead time L2 due to Poisson demand process with rate λ2. By Lemma 5.2b, the expected

backorder cost over the lead time is given by

b2[
λ2L2

2

2
F (R2− 1, λ2L2)−L2R2F (R2, λ2L2)+ R2(R2 + 1)

2λ2
F (R2 + 1, λ2L2)] (5.65)

Transshipment cost over a cycle

Recall that we assume the unidirectional transshipment from location 2 to location 1 in

the HOT model. Under this assumption, a demand at location 1 results in a transshipment

when location 1 has no stock and the inventory level at location 2 at the meantime is greater

than I2. Hence, the indirect fill rate, or transshipment fill rate, at location 1 is approximated

as θω and transshipment occurs at a rate of λ1θω. Hence the transshipment cost over a

single cycle is given by

tλ1θω (5.66)

Average cost rates

The expected total cost rate at location 1 over a single cycle is equal to the sum of c1 and

equations (5.53), (5.54), (5.61) and (5.62). The average cost rate at location 1 is obtained by

dividing the result by equation (5.39).

At location 2, we have the expected total cost rate for three cases: R2 > I2, R2 =

I2 and R2 < I2 respectively. For the case R2 > I2, the expected total cost rate at location 2

over a single cycle is equal to the sum of c2 and equations (5.55), (5.56), (5.61) and (5.63).

The average cost rate at location 1 is obtained by dividing the result by equation (5.46).

144 Decomposition approach based on independent locations with variable demand rates



For the case R2 = I2, the expected total cost rate at location 2 over a single cycle is equal

to the sum of c2 and equations (5.57), (5.58), (5.61) and (5.64). The average cost rate at

location 1 is obtained by dividing the result by equation (5.49).

For the case R2 < I2, the expected total cost rate at location 2 over a single cycle is equal

to the sum of c2 and equations (5.59), (5.60), (5.61) and (5.65). The average cost rate at

location 1 is obtained by dividing the result by equation (5.51).

As a whole, the expected total cost for the two-location system is the sum of the expected

total cost rate at location 1 and location 2 plus the expected transshipment cost rate from

equation (5.66).

Direct �ll rates

By the definitions of θ and φ, we derive the direct fill rate α1 at location 1 as 1 − θ and

the direct fill rate α2 at location 2 as φ. Note that a method of estimating θ, and φ is derived

in Section 5.5.5.

Backorder �ll rates

Any unmet demand will be either met by a backorder or a transshipment delivery at loca-

tion 1, therefore, the backorder fill rate β1 at location 1 is derived as θ(1 − ω). At location 2,

an unmet demand will be backordered, hence, the backorder fill rate β2 at location 2 is

derived as 1− φ. Note that a method of estimating ω is derived in Section 5.5.5.

Indirect �ll rate at location �

As explained above, the indirect fill rate, or transshipment fill rate, at location 1 is

derived as θω.

5.5.5 Solution algorithm

The decomposition approach and the approximations to the system performance measure

depend on θ, φ and ω. Therefore before we use the expressions derived in the sections above,

we need a method of estimating θ, φ and ω. In this section, we propose an iterative scheme

that starts with estimates based on the assumption that the locations are independent.

While we offer no proof of convergence, the scheme is found to converge after relatively few

iterations in all examples we have considered. We first derive expressions for θ, φ andω.
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Factor ω

We address the question of estimating the transshipment factor ω using renewal type

arguments as follows.

ω = P [X2 > I2] = 1−P [X2 � I2] = 1− mean time spentwithx2 � I2 in the cycle
mean cycle time

We need to consider three cases: R2 greater than I2, R2 equal to I2 and R2 less than I2

respectively.

For the case when R2 > I2, when the lead time demand is greater than or equal to R2 −

I2, the time at which the inventory level reach I2 has an Erlang distribution with shape

parameter R2 − I2 and scale parameter (λ2 + λ1θ)L2. Since inventory level is decreasing

during a cycle, if t is the time at which the inventory level reaches I2, the time for which the

inventory level is less than or equal to I2 during the cycle is L2− t. Conditioning on the time

at which the inventory level reaches I2, the mean time in which the inventory level is less

than or equal to I2 during a single cycle is estimated as follows

∫
0

L2 (λ2 + λ1θ)R2−I2tR2−I2−1

(R2− I2− 1)!
e−(λ2+λ1θ)t(L2− t)dt

= L2F (R2− I2− 1, (λ2 + λ1θ)L2)− R2− I2
λ2 + λ1θ

F (R2− I2, (λ2 + λ1θ)L2)

Thus we can further derive ω as such.

1−
L2F (R2− I2− 1, (λ2 + λ1θ)L2)− R2− I2

λ2 + λ1θ
F (R2− I2, (λ2 + λ1θ)L2)

mean cycle time from equation (5.46)
(5.67)

For the case when R2 = I2, as the inventory level starts with R2 at the beginning of the lead

time, the mean time for the inventory level is less than or equal to I2 is equal to the length of

the lead time L2. Hence, ω is derived as such

1− L2

mean cycle time from equation (5.49)
(5.68)

For the case when R2 < I2, the inventory level at the start of a cycle, Q2 + X2(R2), maybe

above, below or equal to I2. The time for which the inventory level is less than or equal to I2

has two parts, one part before the lead time starts and the other part is the lead time.

During the first part, the inventory level falls either from I2 to R2 or from Q2 + X2(R2) to R2

depending on whether the inventory level at the beginning of the cycle is greater than I2 or

less than or equal to I2 respectively. The fall occurs according to a Poisson process with rate

λ2. Thus the ω is given by

1−
E{min (I2, Q2 + X2(R2))}−R2

λ2
+ L2

mean cycle time from equation (5.51)
(5.69)
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Factor θ

We address the question of estimating the factor θ, the probability of location 1 needing

to make a transshipment request. Again, by renewal-type arguments we have

θ =P [X1 � 0] = mean time spentwithX1 � 0 in the cycle
mean cycle time from equation (5.39)

As illustrated in Figure 5.17, when the lead time demand is greater than R1, the time at

which the inventory level reaches zero has an Erlang distribution with shape parameter R1

and scale parameter λ1L1. Orders are never delivered during a cycle, so the inventory level is

decreasing during a cycle. If t is the time at which the inventory level reaches zero, the time

for which the inventory level is less than or equal to zero during the cycle is L1 − t. Condi-

tioning on the time at which the inventory level reaches zero, the mean time at which the

inventory level is less than or equal to zero during a single cycle is as follows.

∫
0

L1 λ1
R1tR1−1

(R1− 1)!
e−λ1t(L1− t)dt =L1

∫
0

L1 λ1
R1tR1−1e−λ1t

(R1− 1)!
dt− R1

λ1

∫
0

L1 λ1
R1+1tR1e−λ1t

R1!
dt

= L1

∑
j=R1

∞ (λ1L1)j

j!
e−λ1L1− R1

λ1

∑
j=R1+1
∞ (λ1L1)j

j!
e−λ1L1

= L1F (R1− 1, λ1L1)− R1

λ1
F (R1, λ1L1)

Hence we derive θ as follows

L1F (R1− 1, λ1L1)− R1

λ1
F (R1, λ1L1)

(Q1−R1)

λ1
+ E[X1(R1)]

λ1
+ L1

(5.70)

Factor φ

Finally we address the question of estimating the factor φ, the probability that location 2

has stock. Again, we use the renewal-type arguments as follows.

φ = P [X2 � 1] = 1−P [X2 < 1] = 1− mean time spentwithx2 < 1 in the cycle
mean cycle time

We need to consider three cases: R2 greater than I2, R2 equal to I2 and R2 less than I2

respectively.
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For the case when R2 > I2, we need to approximate the time at which the inventory level

reaches I2, which has an Erlang distribution with shape parameter R2 − I2 and scale param-

eter (λ2 + λ1θ)L2. Let t denote this time. We then approximate the time at which the inven-

tory level drops from I2 to zero, which has an Erlang distribution with shape parameter I2

and scale parameter λ2(L2 − t). Let s denote this time. Since the inventory level is

decreasing during a cycle, the time for which the inventory level is less than or equal to zero

during the cycle is L2 − t − s. Conditioning on t and s, the mean time for which the inven-

tory level is less than or equal to zero during a single cycle is estimated as follows.

∫
0

L2 (λ2 + λ1θ)R2−I2tR2−I2−1

(R2− I2− 1)!
e−(λ2+λ1θ)t

∫
0

L2−t λ2
I2sI2−1

(I2− 1)!
e−λ2s(L2− t− s)dsdt

= (λ2 + λ1θ)R2−I2

(R2− I2− 1)!

∫
0

L2 tR2−I2−1e−(λ2+λ1θ)t{(L2− t)F (I2− 1, λ2(L2− t))

− I2
λ2

F (I2, λ2(L2− t))}dt

Thus we can further derive φ as such.

1−
(λ2 + λ1θ)R2−I2

(R2 − I2 − 1)!

∫
0

L2 tR2−I2−1e−(λ2+λ1θ)t{(L2− t)F (I2− 1, λ2(L2− t))− I2

λ2
F (I2, λ2(L2− t))}dt

mean cycle time from equation (5.46)
(5.71)

For the case when R2 = I2, when the lead time demand is greater than R2, the time at which

the inventory level reaches zero has an Erlang distribution with shape parameter R2 and

scale parameter λ2L2. Since inventory level is decreasing during a cycle, if t is the time at

which the inventory level reaches zero, the time for which the inventory level is less than or

equal to zero during the cycle is L2 − t. Conditioning on the time at which the inventory

level reaches zero, the mean time for which the inventory level is less than or equal to zero

during a single cycle is estimated as follows.

∫
0

L2 λ2
R2tR2−1

(R2− 1)!
e−λ2t(L2− t)dt = L2F (R2− 1, λ2L2)− R2

λ2
F (R2, λ2L2).

Thus we can further derive φ as such.

1−
L2F (R2− 1, λ2L2)− R2

λ2
F (R2, λ2L2)

mean cycle time from equation (5.49)
(5.72)

For the case when R2 < I2, shown in Figures 5.20 and 5.21, the mean time for which the

inventory level is less than or equal to zero is exactly the same as in the case when R2 = I2.

Hence, we can derive φ as such

1−
L2F (R2− 1, λ2L2)− R2

λ2
F (R2, λ2L2)

mean cycle time from equation (5.51)
(5.73)
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Computation algorithm

From the expressions derived for ω, θ and φ, we learn that ω is dependent on

E[X2(R2)] and θ, θ is dependent on E[X1(R1)] and φ is dependent on θ and E[X2(R2)].

Meanwhile, E[X1(R1)] is dependent on ω and E[X2(R2)] is dependent on θ. Hence, we devise

an iterative approach on two pairs {ω, θ} and {E[X1(R1)], E[X2(R2)]}. Specifically, at itera-

tion n we first calculate the estimate E[X1(R1)]n and E[X2(R2)]n based on known values ωn

and φn. We then calculate the estimate ωn+1 from θ and E[X2(R2)]n and the estimate θn+1

from E[X2(R2)]n. To initialise the iteration we set ω0 equal to the transshipment fill rate at

location 1 and θ0 equal to the backorder fill rate at location 1 under the assumption that the

locations are independent. We continue the calculation until the values ωn and θn converge

in the sense that max(|ωn −ωn−1|,|θn − θn−1|)< ε, where ε a is pre-defined tolerance.

{
θ(0)

ω(0)}
→

{
E[X2(R2)]

(0)

E[X1(R1)]
(0)}

→
{

θ(1)

ω
(1)}

→
{

E[X2(R2)]
(1)

E[X1(R1)]
(1)}

�� → continue until converged {
θ∗

ω∗

}

Then using the converged ω∗ and θ∗, we work out all the expressions for the average cost

rates at the two locations in Section 5.5.4.

Optimal total cost algorithm

Given the fixed values of (Rk, Qk) at location k, k = 1, 2. We perform an exhaustive search

to find the value of holdout threshold I2. which minimises the approximation to the average

total cost rate. Specifically, for each value of I2 ranging from 0 to Q2 + R2, we first estimate

ω and θ using the iterative algorithm described above and then calculate the average total

cost rate for the two–location system.

5.5.6 Model verifications

For the same reasons we explained in Section 5.4.6, we need to verify the correctness of the

cost approximations against the simulation results with the explicit holdout transshipment

policy during a cycle. Hence, we reuse the simulation algorithm for the system performance

measures during a cycle in Section 5.4.6. Generally, T
k
, Chk

, Cb̂k
, Cbk

and E[Xk(Rk)] denote

the mean cycle time, expected average holding cost, expected average stockout cost, expected

average backorder cost and expected end of cycle inventory level at location k, k = 1, 2. We

use the same parameters set for both locations, namely Lk = 1, hk = 0.8, b̂k = 60, bk = 5, (k = 1,

2), ω = 0.2, 0.8 and θ = 0.05, 0.10.
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Tables 5.9 and 5.10 show the results from simulation (column headed “sim”) and the

results from our JAVA implementation (column headed “an”) for different values of λk, Rk,

Qk and I2. The simulation results are based on the simulation of 1,000,000 cycles. In each

case, the standard errors for simulation are very small and so are omitted in the result tables.

T1 Ch1 Cb̂1
Cb1 E[X1(R1)]

λ1 R1 Q1 ω sim an sim an sim an sim an sim an
10 10 60 0.2 6.03 6.03 24.51 24.52 9.98 9.96 0.14 0.14 0.25 0.25
10 10 60 0.8 6.10 6.10 24.79 24.79 2.46 2.46 0.03 0.03 1.00 1.00
10 20 60 0.2 6.00 6.00 32.40 32.40 0.02 0.02 0.00 0.00 10.00 10.00
10 20 60 0.8 6.00 6.00 32.40 32.40 0.01 0.01 0.00 0.00 10.00 10.00
20 10 60 0.2 3.10 3.10 17.87 17.87 155.10 154.97 3.55 3.55 -8.00 -8.00
20 10 60 0.8 3.40 3.40 20.14 20.15 35.35 35.32 0.81 0.81 -1.99 -1.99
20 20 60 0.2 3.02 3.02 24.57 24.58 28.36 28.25 0.29 0.29 0.35 0.36
20 20 60 0.8 3.07 3.07 24.95 24.95 6.96 6.94 0.07 0.07 1.42 1.42

Table 5.9. Verification results for HOT model at location 1

T2 Ch2 Cb̂2
Cb2 E[X2(R2)]

λ1 λ2 I2 R2 Q2 θ sim an sim an sim an sim an sim an
20 10 1 10 40 0.05 3.66 3.66 15.75 15.75 26.90 26.86 0.40 0.40 -0.77 -0.78
20 10 5 10 40 0.05 3.69 3.68 15.90 15.89 23.74 23.70 0.34 0.34 -0.45 -0.48
20 10 10 10 40 0.05 3.73 3.73 16.14 16.14 20.18 20.14 0.28 0.28 0.00 0.00
20 10 15 10 40 0.05 3.77 3.77 16.07 16.07 19.93 19.90 0.28 0.28 0.00 0.00
20 10 20 10 40 0.05 3.82 3.82 16.05 16.05 19.69 19.66 0.27 0.27 0.00 0.00
20 10 1 10 40 0.10 3.38 3.38 15.11 15.10 36.06 36.08 0.56 0.56 -1.44 -1.47
20 10 5 10 40 0.10 3.43 3.43 15.40 15.38 28.85 28.86 0.43 0.43 -0.83 -0.86
20 10 10 10 40 0.10 3.50 3.50 15.86 15.86 21.49 21.45 0.30 0.30 0.00 0.00
20 10 15 10 40 0.10 3.58 3.58 15.73 15.73 20.99 20.95 0.29 0.29 0.00 0.00
20 10 20 10 40 0.10 3.67 3.67 15.70 15.70 20.51 20.47 0.29 0.28 0.00 0.00
20 30 1 20 60 0.05 1.95 1.95 16.68 16.68 327.57 327.86 5.61 5.62 -10.61 -10.61
20 30 5 20 60 0.05 1.95 1.95 16.74 16.73 323.04 323.30 5.50 5.50 -10.48 -10.48
20 30 10 20 60 0.05 1.96 1.96 16.82 16.81 317.37 317.69 5.35 5.36 -10.32 -10.32
20 30 15 20 60 0.05 1.96 1.96 16.91 16.91 311.76 312.14 5.21 5.22 -10.16 -10.17
20 30 20 20 60 0.05 1.97 1.97 17.01 17.01 306.19 306.43 5.07 5.07 -9.99 -10.00
20 30 25 20 60 0.05 1.97 1.97 17.02 17.01 305.36 305.59 5.06 5.06 -9.99 -10.00
20 30 30 20 60 0.05 1.98 1.98 17.03 17.03 304.53 304.76 5.04 5.05 -9.99 -10.00
20 30 1 20 60 0.10 1.90 1.90 16.19 16.18 353.60 353.84 6.26 6.26 -11.18 -11.19
20 30 5 20 60 0.10 1.91 1.91 16.30 16.29 344.42 344.66 6.01 6.01 -10.93 -10.94
20 30 10 20 60 0.10 1.92 1.92 16.45 16.45 333.11 333.43 5.71 5.72 -10.62 -10.63
20 30 15 20 60 0.10 1.93 1.93 16.63 16.63 321.96 322.35 5.42 5.43 -10.31 -10.32
20 30 20 20 60 0.10 1.94 1.94 16.83 16.82 310.97 311.21 5.15 5.15 -9.99 -10.00
20 30 25 20 60 0.10 1.95 1.95 16.84 16.83 309.31 309.55 5.12 5.13 -9.99 -10.00
20 30 30 20 60 0.10 1.96 1.96 16.87 16.86 307.67 307.90 5.10 5.10 -9.99 -10.00

Table 5.10. Verification results for HOT model at location 2

We would use the percentage difference to compare the results of the simulation model

and the JAVA implementation. However, as some of the values are close to zero, the per-

centage difference can be large even though the values are close. Hence, we only use the per-

centage difference when the estimate values are greater than 1 and the difference otherwise.
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The estimates of mean cycle time are within 0.180% and 1.649% of each other at location

1 and location 2 respectively. The estimates of expected holding cost are within 0.008% and

0.083% of each other respectively. For values greater than 1, the estimates of expected

stockout cost are within 0.003% and 0.098% of each other for location 1 and location 2

respectively. For smaller values, the estimates are within 0.00 of each other for location 1.

For values greater than 1, the estimates of expected backorder cost are within 0.000% and

0.176% of each other for location 1 and location 2 respectively. For smaller values, the esti-

mates are within 0.01 and 0.03 of each other for location 1 and location 2 respectively.

Verdict: The verification results above reveal strong evidence that our JAVA implemen-

tation of the analytic approximations to the performance measures for the HOT model is

accurate. Hence we are confident that we can use our JAVA implementation in a numerical

investigation to evaluate the proposed solution algorithm.

5.5.7 Numerical experiments

The aim of our numerical experiments is to determine whether the proposed solution algo-

rithm can be used to find the optimal holdout policy for the two-location inventory system

with unidirectional holdout transshipment policy. Because b̂1 and b̂2 were identified as two

parameters to which the optimal average total cost is sensitive in our numerical experiments

on the TAP model in Section 5.4.7, we continue to examine how the optimal average total

cost depends b̂1 and b2̂.

In the following result tables, I2 denotes the holdout threshold, C denotes the average

total cost for the two-location system and Ct denotes the average transshipment cost from

location 2 to location 1. Then Ck, Cok
, Chk

, Cb̂k
and Cbk

denote the average cost, average

order cost, average holding cost, average stockout cost and average backorder cost at location

k (k = 1, 2) respectively. In addition, αk, βk denotes the fill rate and backorder fill rate at

location k (k = 1, 2) and γ the transshipment fill rate from location 2 to location 1 respec-

tively. Since α1 + β1 + γ = 1 and α2 + β2 = 1. We only provide the fill rate α1, α2 and γ in the

result tables.

For the simulation implementation, in order to make a good balance between computa-

tional time and accuracy, we performed 500 independent simulation runs of 50,000 time units

with a warm-up period of 500 time units. In all cases, the standard errors are small and so

are not included in the result tables. Firstly, we would like to compare the results by using

the same parameter set for the snapshot test 1 and 2 which we used in the TAP model.
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Snapshot numerical test set 1

To demonstrate how parameters b̂1 or b̂2 affect the optimal average total cost, we use 12

snapshots described in Table 5.11 corresponding to 12 combinations on b̂1 and b̂2. In each

snapshot, the other parameters are given values as follows: λ1 = 20, c1 = 10, h1 = 1, b̂1 = 17,� ,

22, b1 = 25, R1 = 20, Q1 = 40, L1 = 1, λ2 = 5, c2 = 10, h2 = 0.5, b̂2 = 15,� , 20, b2 = 70, R2 = 5, Q2 =

10, L2 = 1 and t = 10. In the first 6 snapshots, the value of b1̂ increases relative to b2̂. Mean-

while, for the last 6 snapshots, the value of b2̂ increases relative to b1̂. Snapshot numerical

test set 1 shows the situation in which there is a bigger demand rate at location 1 than loca-

tion 2. So stockout is more likely to occur at location 1 and transshipment is more likely to

be made from location 2 to location 1 as there is a lower customer demand at location 2.

s/n b̂1 b̂2 s/n b̂1 b̂2

1 17 20 7 20 15
2 18 20 8 20 16
3 19 20 9 20 17
4 20 20 10 20 18
5 21 20 11 20 19
6 22 20 12 20 20

Table 5.11. Summary of the snapshot test set 1 of HOT model

Figure 5.22. Test set 1 of HOT approximation on b1̂ Figure 5.23. Test set 1 of HOT approximation on b2̂

Figure 5.24. Test set 1 of original HOT simulation on b1̂Figure 5.25. Test set 1 of original HOT simulation on b2̂
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We use Figures 5.22 and 5.23 to show how the HOT model’s estimates of the average

total cost depend on the parameters b1̂ and b2̂. Figure 5.22 suggests that, for the snapshots 1

to 6, partial pooling with a holdout threshold of 5 (I2=5) is always the optimal pooling

policy when the value of b1̂ is ranging from 17 to 22. Meanwhile, for the snapshots 7 to 12 in

Figure 5.23, partial pooling with a holdout threshold of 5 is also the optimal pooling policy

when the value of b2̂ is ranging between 15 and 20. Hence, the HOT model predicts that

partial pooling can deliver cost savings under the situations defined by the parameter test set

1.

Figures 5.24 and 5.25 show the average total cost for a range of holdout transshipment

policies based on simulations of the original system for each snapshot. It is apparent from

the figures that partial pooling is the optimal transshipment policy for all snapshots. It is

interesting to note that the optimal holdout value is the same for all snapshots (I2=5), and

that this is the same value predicted by the HOT approximation model. For the HOT

approximation model, predicted cost savings from partial pooling are up to 7.16% compared

to no pooling (I2=15) and up to 7.92% compared to complete pooling (I2=0). For the simu-

lation of the original holdout transshipment system, the actual cost savings from partial

pooling are up to 5.03% (I2=15) and up to 13.00% compared to complete pooling (I2=0).

Compared to the numerical results of the TAP model, the results of the HOT model show

good prediction of the optimal holdout threshold values and improved predictions of the cost

savings.

I2 C C1 Co1 Ch1 Cb̂1
Cb1 C2 Co2 Ch2 Cb̂2

Cb2 Ct α1 γ α2

15 69.42 46.13 5.00 20.61 17.77 2.76 23.29 5.00 2.80 8.77 6.72 0.00 0.96 0.00 0.91
14 69.42 46.12 5.00 20.61 17.76 2.75 23.29 5.00 2.80 8.77 6.72 0.01 0.96 0.00 0.91
13 69.39 46.05 5.00 20.61 17.69 2.74 23.30 5.00 2.79 8.78 6.73 0.04 0.96 0.00 0.91
12 69.29 45.83 5.00 20.62 17.50 2.71 23.34 5.01 2.79 8.80 6.74 0.13 0.96 0.00 0.91
11 69.09 45.35 4.99 20.63 17.08 2.65 23.40 5.03 2.78 8.83 6.77 0.33 0.96 0.00 0.91
10 68.75 44.55 4.98 20.66 16.37 2.54 23.52 5.07 2.76 8.89 6.81 0.67 0.96 0.00 0.91
9 68.27 43.42 4.97 20.69 15.37 2.38 23.70 5.11 2.74 8.97 6.87 1.15 0.96 0.01 0.91
8 67.68 42.00 4.96 20.74 14.12 2.19 23.93 5.17 2.72 9.08 6.96 1.75 0.96 0.01 0.91
7 67.00 40.36 4.94 20.80 12.66 1.96 24.19 5.24 2.70 9.20 7.05 2.44 0.96 0.01 0.91
6 66.26 38.55 4.92 20.86 11.06 1.72 24.50 5.32 2.69 9.34 7.15 3.21 0.96 0.02 0.91
5∗ 65.50 36.68 4.90 20.92 9.40 1.46 24.82 5.40 2.68 9.48 7.26 4.00 0.96 0.02 0.91
4 66.01 34.97 4.88 20.98 7.88 1.22 26.31 5.47 2.62 10.26 7.96 4.73 0.96 0.02 0.87
3 66.63 33.25 4.86 21.05 6.35 0.99 27.92 5.55 2.56 11.10 8.71 5.46 0.96 0.03 0.87
2 67.40 31.58 4.85 21.11 4.87 0.76 29.64 5.62 2.51 11.99 9.53 6.17 0.96 0.03 0.87
1 68.35 30.06 4.83 21.17 3.52 0.55 31.47 5.68 2.47 12.91 10.40 6.82 0.96 0.03 0.86
0 69.53 28.78 4.82 21.22 2.37 0.37 33.38 5.74 2.45 13.88 11.32 7.37 0.96 0.04 0.86

Table 5.12. Snapshot 4 in test set 1 of HOT model
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In Table 5.12, we provide the result of snapshot 4 from Table 5.11 in detail which sug-

gests that the optimal pooling policy is the partial pooling policy when the value of the

holdout threshold I2 equals to 5. However, it is worth noting that the predicted improve-

ments on the cost from the optimal partial pooling policy are 6.14% and 5.99% with respect

to complete pooling (I2=0) and no pooling (I2=15) respectively.

Snapshot numerical test set 2

Similarly, we use the 14 snapshots described in Table 5.13 corresponding to 14 different

combinations on b̂1 and b̂2. In each snapshot, the other parameters are given values as fol-

lows: λ1 = 10, c1 = 10, h1 = 0.5, b1 = 25, R1 = 1, Q1 = 40, L1 = 1, λ2 = 25, c2 = 10, h2 = 0.5, b2 =

340, R2 = 25, Q2 = 40, L2 = 1 and t = 10. In the first 7 snapshot the value of b1̂ increases rela-

tive to b2̂. Meanwhile, for the last 7 snapshots, the value of b2̂ increases relative to b1̂. Snap-

shot numerical test set 2 reflects the situation in which there is a higher demand rate at loca-

tion 2 than location 1. Hence, transshipment is less likely to be attractive as there is a higher

customer demand at location 2.

s/n b̂1 b̂2 s/n b̂1 b̂2

1 17 20 8 20 14
2 18 20 9 20 15
3 19 20 10 20 16
4 20 20 11 20 17
5 21 20 12 20 18
6 22 20 13 20 19
7 23 20 14 20 20

Table 5.13. Summary of the snapshot test set 2 of HOT model

We use Figures 5.26 and 5.27 to show how the HOT model’s estimates of the average

total cost depend on the parameters b1̂ and b2̂. Figure 5.26 suggests that, for the snapshots 1

to 7, the partial pooling with holdout threshold 25 is always the optimal pooling policy when

the value of b1̂ is ranging from 17 to 23. Meanwhile, for the snapshots 8 to 14 in Figure 5.27,
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the partial pooling with holdout threshold 25 is also the optimal pooling policy when the

value of b2̂ is ranging between 14 and 20. Hence, the HOT model predicts that partial

pooling can deliver cost savings under the situations defined by the parameter test set 2.

Figures 5.28 and 5.29 show the average total cost for a range of holdout transshipment

policies based on simulations of the original system for each snapshot. It is apparent from

the figures that partial pooling is the optimal transshipment policy for all snapshots. It is

interesting to note that the optimal holdout value is the same for all snapshots (I2=25), and

this is the same value predicted by the HOT approximation model. For the HOT approxi-

mation model, cost savings from partial pooling are up to 13.75% compared to no pooling

(I2=65) and up to 14.66% compared to complete pooling (I2=0). For the simulation of the

original holdout transshipment system, the actual cost savings from partial pooling are up to

13.60% compared to no pooling (I2=65) and up to 11.79% compared to complete pooling

(I2=0). Compared the numerical results of the TAP model, the results of the HOT model

show good predictions of the optimal holdout threshold values and improved prediction of

the cost approximations.

Figure 5.26. Test set 2 of HOT approximation on b1̂ Figure 5.27. Test set 2 of HOT approximation on b2̂

Figure 5.28. Test set 2 of original HOT simulation on b1̂Figure 5.29. Test set 2 of original HOT simulation on b2̂
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I2 C C1 Co1 Ch1 Cb̂1
Cb1 C2 Co2 Ch2 Cb̂2

Cb2 Ct α1 γ α2

40 165.76 75.54 2.47 6.36 42.51 24.21 89.20 6.28 10.27 24.95 47.70 1.02 0.78 0.01 0.94
39 165.06 74.48 2.47 6.38 41.82 23.81 89.27 6.28 10.26 24.98 47.75 1.30 0.78 0.01 0.94
38 164.26 73.27 2.46 6.41 41.03 23.37 89.36 6.29 10.25 25.01 47.81 1.62 0.78 0.02 0.94
37 163.37 71.93 2.45 6.45 40.16 22.87 89.46 6.30 10.24 25.05 47.88 1.98 0.78 0.02 0.94
36 162.41 70.48 2.44 6.48 39.22 22.33 89.57 6.31 10.23 25.09 47.95 2.36 0.78 0.02 0.94
35 161.39 68.93 2.43 6.52 38.21 21.76 89.69 6.32 10.21 25.13 48.03 2.77 0.78 0.03 0.94
34 160.32 67.30 2.42 6.57 37.16 21.16 89.81 6.33 10.20 25.17 48.11 3.20 0.78 0.03 0.94
33 159.21 65.62 2.41 6.61 36.06 20.53 89.94 6.34 10.19 25.21 48.20 3.65 0.78 0.04 0.94
32 158.07 63.88 2.40 6.66 34.94 19.89 90.07 6.35 10.18 25.26 48.28 4.11 0.78 0.04 0.94
31 156.91 62.12 2.39 6.70 33.79 19.24 90.21 6.36 10.17 25.31 48.37 4.58 0.79 0.05 0.94
30 155.74 60.34 2.37 6.75 32.63 18.58 90.35 6.38 10.16 25.35 48.46 5.05 0.79 0.05 0.94
29 154.57 58.55 2.36 6.80 31.47 17.92 90.49 6.39 10.15 25.40 48.55 5.53 0.79 0.06 0.94
28 153.39 56.76 2.35 6.85 30.30 17.25 90.63 6.40 10.14 25.45 48.64 6.00 0.79 0.06 0.94
27 152.22 54.96 2.34 6.90 29.13 16.59 90.77 6.41 10.13 25.49 48.73 6.48 0.79 0.06 0.94
26 151.06 53.18 2.33 6.95 27.97 15.93 90.92 6.42 10.13 25.54 48.82 6.95 0.79 0.07 0.94
25* 149.89 51.40 2.31 7.00 26.81 15.27 91.06 6.44 10.12 25.59 48.91 7.42 0.79 0.07 0.95
24 150.31 49.76 2.30 7.05 25.75 14.66 92.68 6.45 10.08 26.09 50.06 7.86 0.79 0.08 0.95
23 150.68 48.13 2.29 7.10 24.68 14.06 94.25 6.46 10.04 26.57 51.18 8.29 0.79 0.08 0.95
22 151.14 46.51 2.28 7.15 23.62 13.45 95.91 6.47 10.01 27.07 52.36 8.73 0.79 0.09 0.95
21 151.61 44.89 2.27 7.20 22.57 12.85 97.56 6.48 9.97 27.57 53.54 9.16 0.80 0.09 0.94
20 152.10 43.29 2.26 7.25 21.52 12.26 99.23 6.49 9.94 28.07 54.73 9.58 0.80 0.10 0.94
19 152.60 41.69 2.25 7.29 20.48 11.66 100.91 6.50 9.90 28.58 55.93 10.01 0.80 0.10 0.94
18 153.14 40.10 2.24 7.34 19.45 11.07 102.61 6.51 9.87 29.09 57.14 10.43 0.80 0.10 0.94
17 153.70 38.52 2.23 7.39 18.41 10.49 104.32 6.52 9.84 29.60 58.37 10.85 0.80 0.11 0.94
16 154.28 36.95 2.22 7.44 17.39 9.90 106.05 6.53 9.81 30.11 59.61 11.27 0.80 0.11 0.94
15 154.88 35.39 2.21 7.49 16.37 9.32 107.80 6.54 9.78 30.62 60.86 11.69 0.80 0.12 0.94
14 155.50 33.83 2.20 7.54 15.35 8.74 109.56 6.55 9.75 31.14 62.12 12.10 0.80 0.12 0.94
13 156.14 32.29 2.19 7.59 14.34 8.17 111.34 6.56 9.72 31.66 63.39 12.51 0.80 0.13 0.94
12 156.81 30.76 2.18 7.64 13.34 7.60 113.13 6.57 9.69 32.18 64.68 12.92 0.80 0.13 0.94
11 157.50 29.23 2.17 7.69 12.34 7.03 114.93 6.58 9.67 32.71 65.97 13.33 0.80 0.13 0.93
10 158.19 27.72 2.16 7.74 11.35 6.47 116.73 6.59 9.65 33.23 67.26 13.73 0.81 0.14 0.93
9 158.94 26.23 2.15 7.80 10.38 5.91 118.58 6.60 9.62 33.76 68.60 14.13 0.81 0.14 0.93
8 159.71 24.75 2.14 7.85 9.41 5.36 120.43 6.61 9.60 34.29 69.93 14.53 0.81 0.15 0.93
7 160.50 23.30 2.13 7.90 8.46 4.82 122.29 6.62 9.58 34.82 71.27 14.92 0.81 0.15 0.93
6 161.34 21.89 2.12 7.95 7.53 4.29 124.16 6.63 9.56 35.35 72.62 15.29 0.81 0.15 0.93
5 162.22 20.52 2.11 7.99 6.63 3.78 126.05 6.64 9.55 35.88 73.98 15.66 0.81 0.16 0.93
4 163.16 19.20 2.10 8.04 5.77 3.29 127.95 6.65 9.53 36.42 75.35 16.01 0.81 0.16 0.93
3 164.17 17.96 2.09 8.09 4.96 2.82 129.86 6.66 9.52 36.95 76.73 16.34 0.81 0.16 0.93
2 165.25 16.80 2.08 8.13 4.20 2.39 131.79 6.67 9.50 37.49 78.13 16.65 0.81 0.17 0.93
1 166.42 15.74 2.08 8.17 3.50 1.99 133.74 6.67 9.49 38.03 79.54 16.94 0.81 0.17 0.93
0 167.68 14.79 2.07 8.20 2.88 1.64 135.70 6.68 9.49 38.57 80.96 17.19 0.81 0.17 0.92

Table 5.14. Snapshot 4 in test set 2 of HOT model

In Table 5.14, we provide the result of snapshot 4 from Table 5.13 in detail which sug-

gests that the optimal pooling policy is the partial pooling policy when the value of the

holdout threshold I2 equals to 25. However, it is worth noting that the predicted improve-

ments on the cost from the optimal partial pooling policy are 11.87% and 12.30% with

respect to complete pooling (I2=0) and no pooling (I2=65) respectively.
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Snapshot numerical test set 3

Furthermore, we consider another situation in which location 1 has more intensive

demands than location 2 and the stockout cost at location 2 is much greater than at location

1 (b2̂=90 while b1̂ � 45). We use 8 snapshots described in Table 5.15 corresponding to 8 dif-

ferent combinations of b1̂ and b2̂. In each snapshot, the other parameters are given values as

follows: λ1 = 20, c1 = 7, h1 = 5, b1 = 15, L1 = 1, λ2 = 10, c2 = 10, h2 = 8, b̂2 = 90, b2 = 12, L2 = 1,

R1 = 24, Q1 = 40, R2 = 13, Q2 = 20 and t = 20. Snapshot numerical test set 3 reflects the situa-

tion in which there is a higher demand rate at location 1 than location 2, which could be an

incentive to transshipment, and a higher stockout cost at location 2 that location 1, which

could be a deterrent to transshipment. The stockout cost at location 1 increases from snap-

shot 1 to 8 and, hence, the system will become increasingly likely to favour transshipment.

Hence, we might expect the optimal holdout threshold to be non-increasing from snapshot 1

to 8.

Snapshot S/N b̂1 I2
∗ Snapshot S/N b̂1 I2

∗

1 10 18 5 30 6
2 15 17 6 35 5
3 20 11 7 40 4
4 25 11 8 45 3

Table 5.15. Summary of snapshot test set 3 of HOT model

Figure 5.30. Test set 3 of HOT approximation on b1̂ Figure 5.31. Test set 3 of original HOT simulation on b̂1

5.5 Explicit holdout transshipment policy (HOT) model 157



We use the Figure 5.30 to show how the HOT model’s estimates of the average total cost

depend on the parameter b1̂. This suggests that, for all snapshots, partial pooling is the

optimal pooling policy when b1̂ is ranging from 10 to 45. Table 5.15 shows that the HOT

model’s prediction of the optimal holdout threshold for each snapshot. As expected from the

choice of problem parameters in the snapshots, the holdout threshold decreases from 18 in

snapshot 1 to 3 in snapshot 8. Figure 5.31 shows the average total cost based on simulations

of the original system for each snapshot. It is apparent that partial pooling is the optimal

transshipment pooling for all snapshots. For the HOT approximation model, the predicted

cost savings from partial pooling are only up to 1.97% compared to complete pooling (I2=33)

and up to 1.33% compared to complete pooling (I2=0). For the simulation of the original

holdout transshipment system, the actual cost savings from partial pooling are up to 1.35%

compared to no pooling (I2=33) and up to 2.06% compared to complete pooling (I2=0).

I2 C C1 Co1 Ch1 Cb̂1
Cb1 C2 Co2 Ch2 Cb̂2

Cb2 Ct α1 γ α2

30 260.46 132.55 3.50 122.61 6.09 0.34 127.91 5.00 108.16 14.51 0.24 0.00 0.99 0.01 0.98
29 260.45 132.54 3.50 122.61 6.09 0.34 127.91 5.00 108.16 14.51 0.24 0.00 0.99 0.01 0.98
28 260.45 132.54 3.50 122.61 6.08 0.34 127.90 5.00 108.15 14.51 0.24 0.01 0.99 0.01 0.98
27 260.44 132.52 3.50 122.62 6.06 0.34 127.90 5.00 108.14 14.51 0.24 0.03 0.99 0.01 0.98
26 260.42 132.48 3.50 122.62 6.02 0.34 127.88 5.00 108.13 14.52 0.24 0.06 0.99 0.01 0.98
25 260.39 132.42 3.50 122.63 5.96 0.33 127.86 5.00 108.10 14.52 0.24 0.11 0.99 0.01 0.98
24 260.34 132.32 3.50 122.64 5.86 0.33 127.83 5.00 108.06 14.52 0.24 0.19 0.99 0.01 0.98
23 260.29 132.19 3.50 122.66 5.72 0.32 127.80 5.01 108.02 14.53 0.24 0.30 0.99 0.01 0.98
22 260.22 132.03 3.50 122.68 5.54 0.31 127.76 5.01 107.97 14.54 0.24 0.44 0.99 0.01 0.98
21 260.15 131.83 3.49 122.70 5.33 0.30 127.72 5.02 107.91 14.56 0.24 0.60 0.99 0.01 0.98
20 260.07 131.60 3.49 122.73 5.09 0.28 127.68 5.02 107.85 14.57 0.24 0.79 0.99 0.01 0.98
19 260.00 131.36 3.49 122.76 4.83 0.27 127.65 5.02 107.80 14.58 0.24 1.00 0.99 0.01 0.98
18 259.93 131.10 3.49 122.80 4.55 0.25 127.62 5.03 107.75 14.60 0.24 1.22 0.99 0.01 0.98
17 259.87 130.83 3.49 122.84 5.26 0.24 127.60 5.04 107.71 14.62 0.24 1.45 0.99 0.01 0.98
16 259.82 130.55 3.49 122.87 3.97 0.22 127.59 5.04 107.68 14.63 0.24 1.68 0.99 0.01 0.98
15 259.78 130.27 3.48 122.91 3.67 0.20 127.59 5.05 107.65 14.65 0.24 1.92 0.99 0.01 0.98
14 259.75 129.99 3.48 122.95 3.37 0.19 127.60 5.05 107.64 14.67 0.24 2.16 0.99 0.01 0.98
13 259.72 129.71 3.48 122.99 3.07 0.17 127.62 5.06 107.63 14.69 0.24 2.39 0.99 0.01 0.98
12 259.68 129.43 3.48 123.03 2.77 0.15 127.62 5.07 107.46 14.85 0.24 2.63 0.99 0.01 0.98
11 259.63 129.16 3.47 123.07 2.47 0.14 127.61 5.07 107.27 15.01 0.25 2.87 0.99 0.00 0.98
10 259.61 128.88 3.47 123.12 2.17 0.12 127.62 5.08 107.11 15.18 0.25 3.10 0.99 0.00 0.98
9 259.59 128.61 3.47 123.16 1.88 0.10 127.65 5.08 106.96 15.35 0.25 3.33 0.99 0.00 0.98
8* 259.59 128.34 3.47 123.20 1.58 0.09 127.69 5.09 106.82 15.52 0.26 3.57 0.99 0.00 0.98
7 259.61 128.08 3.47 123.24 1.30 0.07 127.74 5.09 106.69 15.69 0.26 3.79 0.99 0.00 0.98
6 259.64 127.84 3.47 123.28 1.04 0.06 127.81 5.10 106.58 15.87 0.26 4.00 0.99 0.00 0.98
5 259.70 127.62 3.46 123.31 0.80 0.04 127.90 5.10 106.49 16.04 0.27 4.19 0.99 0.00 0.98
4 259.78 127.43 3.46 123.34 0.59 0.03 128.00 5.11 106.41 16.21 0.27 4.35 0.99 0.00 0.98
3 259.88 127.27 3.46 123.37 0.42 0.02 128.12 5.11 106.36 16.38 0.27 4.49 0.99 0.00 0.98
2 260.00 127.15 3.46 123.39 0.28 0.02 128.26 5.11 106.32 16.55 0.28 4.59 0.99 0.00 0.98
1 260.14 127.06 3.46 123.41 0.18 0.01 128.41 5.12 106.29 16.72 0.28 4.67 0.99 0.00 0.98
0 260.29 126.99 3.46 123.42 0.11 0.01 128.57 5.12 106.28 16.89 0.28 4.73 0.99 0.00 0.98

Table 5.16. Snapshot 5 of test set 4 of HOT model
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In Table 5.16, we provide the results of snapshot 4 from Table 5.15 in detail which sug-

gests that the optimal pooling policy is the partial pooling policy corresponding to holdout

transshipment threshold I2 equal to 8. However, the predicted improvements on the cost

from the optimal partial pooling policy are only 0.27% and 0.33% with respect to complete

pooling (I2=0) and no pooling (I2=33) respectively.

Table 5.17 compares the predicted optimal holdout threshold from the HOT approxima-

tion (I2-HOT) with the optimal holdout threshold from simulation (I2-SIM) for 8 snapshots.

This shows that the predicted value does not coincide to the optimal value in many cases.

The table also shows the simulated average cost rate using the predicted holdout value

(CHOT) and the optimal holdout value (CSIM).

I2 I2

s/n HOT SIM CHOT CSIM s/n HOT SIM CHOT CSIM

1 29 28 256.80 256.77 5 6 10 259.85 260.48
2 23 23 258.00 257.95 6 4 10 260.02 261.00
3 17 15 259.02 259.07 7 3 7 260.13 261.47
4 8 12 259.59 259.86 8 3 5 260.21 261.80

Table 5.17. Comparison of predicted and optimal I2 for snapshot test set 3

We conclude that the HOT model has a poor prediction accuracy on the optimal I2

under the situations of test set 3. However, when we compare the costs CHOT and CSIM in

Table 5.17 for each snapshot in test set 3, the difference between the actual total cost for the

optimal holdout threshold predicted by the HOT model and the optimal total cost from sim-

ulation with between 0.00% and 0.61%. This suggests that although the predicted optimal

holdout threshold is not always accurate, the HOT model is a good approximation model

with an improved accuracy.

5.6 Conclusions

In Section 5.5, we develop an approximation model which reflects the holdout transshipment

policy explicitly. Instead of the transshipment agreement probability in the TAP model, we

introduce the decision variable I2 to represent the holdout threshold in the HOT model.

Meanwhile, we still use the approach of decomposing the two-location system into two inde-

pendent locations with non-constant demand rates.

5.6 Conclusions 159



The HOT approximation model provides a more insightful study on the transshipment

interactions between the two locations due to the given holdout transshipment policy. The

verification results of the HOT model show that the derived explicit expressions for a range

of system performance measures are highly consistent with estimates of these system perfor-

mance measures by simulation. More importantly, by using the same parameters for the

snapshot test set 1 and 2, the numerical results for the TAP and HOT models show that

the HOT model can be a more accurate approximation model than the two approximation

models based on the transshipment agreement probability.

In addition, as we reported in snapshot test set 2, there is evidence that partial pooling

can lead to significant cost savings compared to no pooling and complete pooling. (up to

13.75% and 14.66% respectively) and the HOT model can identity the optimal holdout

threshold for partial pooling. Hence, the HOT approximation does help to deliver great cost

savings for the two-location system under some situations.

Meanwhile, the framework developed using the property of renewal theory to analyse a

single cycle can be applied to other systems. For example, we can extend this modelling

framework to a system which has more then two locations. For multi-location systems which

could have more than two locations, we only need to derive the demand and inventory level

distributions during a single cycle at each location, then modify those demand rates and

inventory level distributions due to the transshipment interactions between the locations.

The approximation models developed in this chapter are based on a number of assump-

tions which may not always hold. Firstly, for the TAP and HOT model, we give a strong

assumption that we require that there is at most one outstanding order at any time in a

cycle. This assumption is too strong and not realistic for the real problem. Nevertheless, this

modelling approach will be difficult if we consider more than one outstanding orders during

the cycle. Because we use the Poisson demand process to model customer demands at each

location, an Erlang distribution is used to model the time taken for the inventory level to

fall by a certain amount due to a specific Poisson demand process. If we choose a different

demand process, this time condition needs to be reviewed.

Secondly, from the numerical results in HOT approximation model, we learn that the

estimation of the optimal holdout threshold I2 and approximations of a range of system per-

formance measures are not accurate with the simulation counterparts under some situations.

Therefore, we need to develop further our approximation approach to improve the accuracy

of the model.
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Thirdly, it is uncommon in our results to find an optimal partial pooling policy con-

tributing to a significant cost saving. To get more evidence of significant cost savings, we

need to explore further numerical experiments. The results shown could mean that we would

not expect to see huge cost savings with the holdout transshipment policy commonly. How-

ever, the average total cost would not lead to more costs to the system under the holdout

transshipment policy. We could say that this holdout transshipment policy has no harm to

the general inventory control management but provides more flexibility.

Overall, we conclude that the HOT model provides a fresh and better approach to

understand the impact of the holdout transshipment policy to the two-location inventory

control system. It is an improved accurate approximation with an extendable framework.

However there are opportunities for further enhancement to make it more robust. So far, all

approximation models we have developed are based on the decomposition approach, it is

worth to consider a different modelling technique to help us get more insights of the system

performance and behaviours under the holdout transshipment policy.
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Glossary
TAP model: the approximation model where the transshipment decision is still made randomly according to
the transshipment agreement probability
HOT model: the approximation model which assumes a holdout transshipment policy explicitly
Rk: reorder point at location k

Qk: replenishment order quantity at location k

Lk: lead time at location k

F (x, λ): the probability that a Poisson random variable with mean λ does not exceed x

z: transshipment agreement probability
Xk: the inventory level at location k

Xk(Rk): the inventory level at the end of a cycle at location k

φ: the probability that location 2 can consider a transshipment request
θ: the probability that location 1 needs to make a transshipment request
I2: the decision variable of holdout transshipment threshold at location 2
ω: the probability that the inventory level at location 2 is greater than the threshold value I2
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Chapter 6
Markov decision process approximation

6.1 Introduction

Until now we have developed a series of approximation models for a two-location inventory

system with unidirectional transshipment via decomposition approaches. Although some

interesting results have been obtained, these models only consider holdout transshipment

policies and, even then, might not find the optimal holdout level because they do not exactly

capture all interactions between two locations in the system. In this chapter, we aim to

examine the potential benefits of general transshipment policies and develop a methodology

that captures interactions between locations more closely. Instead of decomposing the two-

location system into two independent locations, we model the entire system as a semi-

Markov decision process (SMDP).

The key strength of the SMDP approach for the analysis of the two-location system is

that the transshipment decision can be allowed to depend on the actual inventory levels at

two locations. Hence, it is possible to consider a wider class of transshipment policy than the

simple holdout policy. The SMDP approach also makes it possible to consider the replenish-

ment decision in more details. However, it is not practical to model fixed replenishment lead

times using the SMDP approach due to the complexity of the resulting models. Hence, we

consider two stochastic models of replenishment lead time.

Firstly we assume that the replenishment lead time has an exponential distribution. This

is convenient for a SMDP model because of the memory-less property, i.e. the time until an

order is delivered does not depend on the time that has passed since the order was placed.

However this does not model the fixed replenishment lead time effectively, so we develop a

second model in which we assume that the replenishment lead time has a phase-type distri-

bution. More precisely, we assume that the replenishment lead time is the sum of a fixed

number of independent and identically distributed (IID) exponential random variables. The

number of variables in the sum is referred to as the number of phases. As the number of

phases increases, the phase-type distribution more closely approximates a fixed replenishment
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lead time. The phase-type distribution is also convenient for a SMDP model because the

time until the end of a phase does not depend on the time that has passed since the start of

the phase. Hence, to model the time until the delivery of an order, it is only necessary to

know how many phases have been completed since the order was placed.

Using a SMDP approach, it is not possible to derive explicit expressions for each com-

ponent of the expected total cost rate. Rather, using the principle of optimality from

Bellman (1957) , the expected total cost rate is calculated in an iterative manner through the

optimality equation. Due to the popularity of the notations used by Tijms and Puterman in

their books on stochastic modelling: Tijms (1986, 1994, 1995 and 2003) and Puterman

(1994), we use their notations in our SMDP models.

The remainder of the Chapter is organised as follows. We provide the general assump-

tions for all SMDP models of this chapter in Section 6.2. For the exponential lead time, we

present two SMDP models with general transshipment policy and holdout transshipment

policy in Sections 6.3. Some numerical examples of the SMDP models with exponential lead

time are presented in Section 6.3.3. For the phase-type lead time, we present two SMDP

models with general transshipment policy and holdout transshipment policy in sections 6.4.

Some numerical examples of the SMDP models with phase-type lead time are presented in

Section 6.4.3. In Section 6.5, we give a conclusion for all SMDP models in this chapter.

6.2 Assumptions

We consider a two-location inventory system with unidirectional transshipment from location

2 to location 1. At location k, k = 1, 2, a Poisson demand process with rate λk is used to

model the customer demand. The fixed order cost at location k (k = 1, 2) is ck and the cost of

holding inventory at location k is hk per item per time unit. Demand that cannot be met

from on-hand inventory may be backordered. When a backorder is placed at location k, there

is one-off stockout cost b̂k and a further backorder cost of bk per time unit until the back-

order is satisfied. Alternatively unmet demands at location 1 may be met by transshipment

from location 2. Transshipment is assumed to be instantaneous and involves a cost of t per

item. In addition, we have following explicit assumptions for the SMDP model.

At each location k, k = 1, 2, we assume that the inventory level at location k can not

exceed the storage capacity Mk and the maximum number of backorders that can be placed

is Nk. This assumption is necessary for a finite state model. If a demand occurs at a location
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after the maximum number of backorders has been reached and, in the case of location 1,

transshipment is not possible, the demand results in a lost sale at a cost of Bk per item.

Ideally, we would like to choose values of Nk and Mk large enough not to impose any prac-

tical restrictions on the choice of policy. However, increasing Nk and Mk increases the

number of states in the model and hence the computational complexity of the model. We

therefore experiment with the choice of Nk and Mk to find a balance between the tractability

of the model and the impact of Nk andMk on the optimal cost and policy.

Although it is possible to consider an (R, Q) replenishment order policy in our SMDP

models, we introduce a more general form of the replenishment order policy, because it is

straightforward to do this for a SMDP model while it is not for the earlier approximation

models. We still assume that the system only allows one outstanding order at each location.

Whenever a replenishment order is placed at location k, k = 1, 2, the order quantity qk > 0

must be one of the finite number of values in Qk, the set of possible order quantities for loca-

tion k. The storage capacity imposes a further constraint on the size of a replenishment

order. The current inventory level plus the order quantity must not exceed the storage capa-

city. Otherwise it is possible (for example, if there is no demand during the replenishment

lead time) that the storage capacity will be violated when the order is delivered.

The assumption of fixed replenishment lead time, which we used in our earlier approxima-

tion models is not suitable for a SMDP model. This is because we would need to define a

continuous state variable for each location to keep track of the time until the delivery of any

outstanding replenishment order. Due to the complexity of the resulting model, it is unlikely

that analysis would lead to any useful insight about the transshipment and replenishment

decisions in the original inventory system.

Instead of the fixed replenishment lead time, we consider two stochastic models of replen-

ishment lead time which overcome this problem by exploiting the memory-less property of

the exponential distribution. Define 1

µk
to be the mean replenishment lead time at location k.

In the first model, the replenishment lead time at location k is assumed to be an exponential

random variable with mean 1

µk
. The second model uses a phase-type distribution (see P261,

Tijms (1995)) and the lead time at location k is assumed to be the sum of Wk independent

exponential random variables each with mean 1

Wkµk
. We call it the phase-type distribution of

the lead time. Each random variable represents a phase of the lead time and Wk is referred

to as the number of phases.
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In both cases, due to the memory-less property of exponential random variable, the

delivery of outstanding orders can be modelled without knowledge of when the orders were

placed. The assumption of the exponential lead time results in a simple model, but it is not

always well-suited to model the lead time and it is certainly very different from the fixed lead

time assumed in the previous models. The assumption of phase-type lead time can some-

times be more appropriate, but it leads to models which are computationally more

demanding. Of particular relevance to this work is the property that the phase-type model of

lead time more closely approximates a fixed lead time as the number of phases increases.

For the models with holdout transshipment policy, the decision variable I2 denotes the

holdout threshold at location 2. To help us to define relevant terms, we denote the indicator

function δ(x) = {1 if x>0
0 if x�0 and its complement function δ̂ (x) = 1 − δ(x) = {0 if x>0

1 if x�0. Throughout

this chapter the terms decision and action are interchangeable.

6.3 SMDP models with exponential lead time

In a SMDP model, the state of the process is observed at random points in time known as

decision epochs. At each decision epoch, the state of the system is observed and a decision is

made. The state and decision may influence the time until the next decision epoch, the costs

incurred until the next decision epoch and the state of the process at the next decision

epoch.

6.3.1 General transshipment policy formulation

State space

For each location, we need one state variable to model the inventory process and one

state variable to model the replenishment order process. Let ik denote the inventory level at

location k, k = 1, 2, where negative values indicate outstanding backorders. Let qk = 0 rep-

resent the situation where there is no outstanding replenishment order at location k. Let

qk > 0 represent the situation where there is one outstanding replenishment order for qk items

at location k, k = 1, 2.

Definition 6.1. Under our assumptions, the state space is given by

I={(i1,i2, q1, q2): −Nk � ik � Mk, ik + qk � Mk and qk ∈{0}∪ Qk for k =1, 2}
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From the assumption, we conclude that the state space I is finite.

Action space

We need two decision variables to model the order decisions at the two locations and one

decision variable to model the transshipment decision from location 2 to location 1. If there

is no outstanding order at location k (i.e. qk = 0), we can choose not to order or to place an

order for any quantity in the set Qk that will not violate the storage capacity constraint.

Because we have the assumption which only allows one outstanding order, if there is already

an outstanding order at location k (i.e. qk > 0), we cannot place another order. We model

this by setting the replenishment order decision equal to the quantity of the outstanding

order (i.e. qk). Let Xk(i) denote the set of possible replenishment order decisions at location

k when the state of the process is i= (i1, i2, q1, q2). It follows that

Xk(i) = {qk} if qk > 0 and Xk(i)= {x: ik +x �Mk,x∈ {0}∪ Qk} if qk = 0

Let qk

′
represent the decision taken regarding the order process at location k, k = 1, 2. For

the given state i∈ I, qk

′
can take any value in the set Xk(i).

Let i = (i1, i2, q1, q2) be the current state of the system. We consider the decision of how

to satisfy a demand at location 1. Due to the memory-less property of all the random vari-

ables in the model, this decision remains valid until one of the state variables changes. The

inventory levels at the two locations determine whether or not transshipment is a feasible

way of satisfying a demand at location 1. If i1 > 0, location 1 would meet the demand from

local stock and so there is no possibility of a transshipment. If i2 � 0, location 2 has no stock

to transship and again transshipment is impossible. If i1 = − N1 and i2 > 0, then transship-

ment would be essential to avoid a lost sale at location 1. Otherwise a transshipment

decision would arise. It is convenient for some of the later expressions to use 1 to denote no

transshipment and 0 to denote transshipment. Let D(i) denote the set of possible transship-

ment decisions when the system is in state i. It follows that

D(i)= {1} if i1 > 0 or i2 � 0, D(i)={0,1} if −N1 < i1 � 0 and i2 > 0

and D(i)= {0} if −N1 = i1 and i2 > 0 for i∈ I (6.1)

Let d represent the decision with regard to transshipment from location 2 to location 1. For

given state i∈ I, d can take any value in the set of D(i).
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Definition 6.2. Under our assumptions, the action space in state i is given by

A(i)={(q1

′
, q2

′
, d): qk

′ ∈Xk(i) for k = 1, 2, d∈D(i)}

From the assumption, we conclude that the action space A(i) is finite.

Decision epoch

Decisions need to be taken when a demand occurs at one of the two locations and when a

delivery of a replenishment order is made to one of the two locations. It is convenient to

introduce the concept of an event to mean any occurrence of a demand or a delivery in the

system. We can then say that the next decision epoch occurs at the time of the next event.

We denote τi(a) as the expected time until the next decision epoch when decision a is

chosen in state i. If there are outstanding orders at both locations, then the next event could

be a demand at location 1, a demand at location 2, a delivery at location 1 or a delivery at

location 2. By the memory-less property of the exponential distribution, the time until the

next decision epoch is equal to the minimum of four independent exponentially distributed

random variables, namely the time until the next demand at location 1, the time until the

next demand at location 2, the time until the next delivery at location 1 and the time until

the next delivery at location 2. It follows from further properties of the exponential distribu-

tion that the time until the next decision epoch has an exponential distribution with scale

parameter λ1 + λ2 + µ1 + µ2. Hence, if q1

′
> 0 and q2

′
> 0, then τi(a) = 1

λ1 + λ2 + µ1 + µ2
. If there

is an outstanding order at location 1 and no outstanding order at location 2, the next event

could be a demand at location 1, a demand at location 2 or a delivery at location 1. Fol-

lowing the same argument as above, the time until the next decision epoch has an exponen-

tial distribution with scale parameter λ1 + λ2 + µ1. Hence, if q1

′
> 0 and q2

′
= 0, then τi(a) =

1

λ1 + λ2 + µ1
. Similarly, if q1

′
= 0 and q2

′
> 0, then τi(a) = 1

λ1 + λ2 + µ2
. Finally, if q1

′
= 0 and q2

′
=

0, the time until the next decision epoch has an exponential distribution with scale para-

meter λ1 + λ2 and τi(a) = 1

λ1 + λ2
. These four cases can be combined into a single expression

as follows.

τi(a)= 1
λ1 + λ2 + δ(q1

′
)µ1 + δ(q2

′
)µ2

(6.2)

The value iteration algorithm that we use to solve the SMDP model is more straightforward

when the expected time until the next decision epoch does not depend on the state or action.

For the two-location inventory process, it is possible to do this with the introduction of ficti-
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tious decision epochs. When there is no outstanding order at location k (i.e. qk = 0), we

introduce a fictitious event after a time that has an exponential distribution with mean 1

µk
.

This event can be thought of as the delivery of a zero replenishment order at location k and

will leave the state unchanged. Hence, whatever the state and action, the next event can

always be a demand at location 1, a demand at location 2, a delivery (of a possible zero)

replenishment order at location 1 or a delivery (of a possible zero) replenishment order at

location 2. The time until each of the possible events is exponential with scale parameter

independent of the state and action. Hence, the expected time until next decision epoch no

longer depends on state i or decision a. We can now define τ as the expected time until the

next decision epoch where

τ = 1
λ1 + λ2 + µ1 + µ2

(6.3)

Transition probabilities

We need to define the probability that the process is in state j at the next decision epoch

given that action a is chosen in state i at the current decision epoch. We define the trans-

ition probabilities for the model implicitly by considering which of the four possible events

occurs at the next decision epoch. Each event results in a transition to a single state at the

next decision epoch, but it is possible for several events to result in a transition to the same

state. Therefore the probability of the events occurring do not always correspond directly to

transition probabilities. However, the transition probabilities can be deduced from the prob-

abilities of the events occurring.

Consider a decision epoch at which the system is in state i = (i1, i2, q1, q2) and action a =

(q1

′
, q2

′
, d) is chosen. The probability that the next event is a demand at location 1 is λ1τ . If

d = 0, this demand will be met by transshipment from location 2 and the inventory levels at

the two locations at the next decision epoch will be i1 and i2 − 1 respectively. If d = 1 and

i1 > −N1, the demand will be met by local stock or a backorder at location 1. In both cases,

the inventory level at location 1 at the next decision epoch will be i1 − 1. However, if d = 1

and i1 = − N1, the demand will result in a lost sale and the inventory level at location 1 at

the next decision epoch will be unchanged. If d = 1, the inventory level at location 2 at the

next decision epoch will be unchanged. If there is an outstanding order at location k, then

qk

′
= qk > 0 and the order will still be outstanding at the next decision epoch. If an order is

placed at location k, then qk

′
> qk = 0 and this order will be outstanding at the next decision
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epoch. If there is no outstanding order and no order is placed, then qk

′
= qk = 0 and there will

be no outstanding order at the next decision epoch. Hence, at the next decision epoch, the

state variable describing the replenishment order process at location k will be equal to qk

′
.

Therefore, when the next event is a demand at location 1, the state of the process at the

next decision epoch is (max(−N1,i1− d), i2− (1− d),q1

′
,q2

′
).

The probability that the next event is a demand at location 2 is λ2τ . As there is no

transshipment into location 2, all demand has to be dealt with locally. If i2 > − N2, the

demand will be met by local stock or a backrorder at location 2 and the inventory level at

location 2 at the next decision epoch will be i2 − 1. If i2 = − N2, the demand will result in a

lost sale and no change in inventory level. As above the state variable describing the replen-

ishment order process at location 1 will be qk

′
at the next decision epoch. Therefore, when

the next event is a demand at location 2, the state of the process at the next decision epoch

is (i1,max (−N2, i2− 1), q1

′
, q2

′
).

The probability that the next event is a delivery at location 1 is µ1τ . If q1

′
= 0, this is a

fictitious delivery and there is no change in state. If q1

′
> 0, q1 items are added to the

inventory at location 1 and, due to our assumptions, there can not be any outstanding orders

at location 1. A delivery at location 1 will not affect the state variables relating to location 2.

Therefore, when the next event is a delivery at location 1, the state of the process at the

next decision epoch is (i1 + q1, i2, 0, q2

′
). The probability that the next event is a delivery at

location 2 is µ2τ and, following a similar argument to the above, the state of the process at

the next decision epoch is (i1,i2+q2,q1
′,0).

Immediate cost

We need to define the expected cost incurred until the next decision epoch when action a

is chosen in state i at the current decision epoch. We denote this expected cost by ci(a).

This so called immediate cost is the short-run economic consequence of making a given

decision in a given state. In our model, the cost consists of the fixed order cost, holding cost,

backorder cost, stockout cost, lost sale penalty cost and transshipment cost.

Under our assumptions, a replenishment order is placed at location k at the current

decision epoch if and only if qk

′
> qk. Replenishment orders can only be placed at decision

epochs, so the fixed order cost incurred until the next decision epoch is equal to ckδ(qk

′ − qk)

at location k, k = 1, 2.
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The inventory levels at the two locations do not change between decisions epochs. Hence,

if ik > 0, holding cost is incurred at location k at a constant rate of ikhk per time unit. Simil-

arly, if ik < 0, backorder cost is incurred at location k at a rate of − ikbk per time unit.

Therefore, the expected holding cost incurred at location k until the next decision epoch is

equal to δ(ik)ikτhk. and the expected backorder cost incurred at location k until the next

decision epoch is equal to − δ̂ (ik)ikτbk.

From the definition of a decision epoch, there can be at most one demand in the system

in the time until the next decision epoch and this demand can only occur at the time of the

next decision epoch. The probability that the next event is a demand at location 1 is λ1τ .

Assume that the next event is a demand at location 1. If i1 � 0 and d = 1, the demand will

result in a stockout, and hence a stockout cost of b1̂ at location 1. Otherwise (i.e. if i1 > 0 or

d = 0), the demand will be satisfied and there is no stockout cost. Therefore, the expected

stockout cost incurred at location 1 until the next decision epoch is equal to δ̂ (i1)λ1τdb̂1. If

d = 0, the demand will be met by transshipment from location 2 at a cost of t. While if d =

1, there will be no transshipment cost incurred. Therefore, the expected transshipment cost

until the next decision epoch is equal to λ1τ (1− d)t.

The probability that the next event is a demand at location 2 is λ2τ . Assume now that

the next event is a demand at location 2. The demand will result in a stockout, and hence a

cost of b2̂ at location 2 if and only if i2 � 0. Therefore, the expected stockout cost incurred at

location 2 until the next decision epoch is equal to δ̂ (i2)λ2τb̂2.

When ik = − Nk, a stockout at location k will result in a lost sale, and hence an addi-

tional cost of Bk − bk̂ at location k. Lost sales cannot occur at location k under any other

circumstances (i.e. when there is no stockout at location k or ik > − Nk). Note that Nk +

ik > 0 if ik > − Nk and Nk + ik = 0 if ik = −Nk. Therefore, the expected additional cost due

to lost sales until the next decision epoch is equal to δ̂ (N1 + i1)λ1τd(B1 − b1̂) and δ̂ (N2 +

i2)λ2τ(B2− b2̂) at location 1 and location 2 respectively.

Combining the cost components above, we conclude that the expected cost until the next

decision epoch when action a is chosen in state i at the current decision epoch is as follows.

ci(a) = {
∑2

k=1

{ckδ(qk

′ − qk)+ [hkδ(ik)− bkδ̂ (ik)]ikτ }+ λ1τd{δ̂ (i1)b̂1 + δ̂ (N1 + i1)(B1− b̂1)}+

λ2τ {δ̂ (i2)b̂2 + δ̂ (N2 + i2)(B2− b̂2)}+ λ1τ(1− d)t (6.4)
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Value iteration algorithm

Following standard techniques for SMDP models (see for example Tijms (2003)), the

optimal long-run average cost per time unit can be calculated using the value iteration

algorithm. This approach applies a data transformation to the SMDP model to create a dis-

crete-time Markov decision process (DMDP) model. Under mild assumptions, which we will

assume hold for the model being examined, the DMDP model has the same class of sta-

tionary policies and the same long-run average expected cost per time unit as the original

SMDP model.

When the expected time until the next decision epoch does not depend on the state or

action, the data transformation simply involves dividing the immediate costs by the expected

time between successive decision epochs. Hence, we transform the immediate costs as follows.

Ci(a) = ci(a)
τ

for i∈ I and a∈A(i)

Define Pi
e(a) to be the probability that, when action a is taken in state i, the next event is a

demand at location 1, a demand at location 2, a delivery to location 1 or delivery to location

2 for e = 1, 2, 3 or 4 respectively. Define Ji
e(a) to be the state of the process at the next

decision epoch when action a is taken in state i and the next event is a demand at location

1, a demand at location 2, a delivery to location 1 or delivery to location 2 for e = 1, 2, 3 or 4

respectively.

A value-iteration algorithm for the SMDP model of the inventory system with unidirec-

tional transshipment and exponential lead time can be stated as follows.

Step 1: LetV0(i)= 0 ∀i∈ I and letn = 1

Step 2: Compute the functionVn(i), ∀i∈ I , using

Vn(i)= min
a∈A(i)

[Ci(a)+
∑4

e=1

Pi
e(a)Vn−1(Ji

e(a))] (6.5)

and determine R(n) as a stationary policy whose actions minimise the right side of equation

(6.5)

Step 3: Compute

mn =min
j∈I

{Vn(j)−Vn−1(j)}, Mn =max
j∈I

{Vn(j)−Vn−1(j)}
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Step 4: if Mn − mn > εmn (where ε is a specified tolerance), add 1 to n and repeat from

step 2. Otherwise stop the iteration: R(n) approximates an optimal stationary policy and

(Mn +mn)/(2τ ) approximates the optimal long-run average cost per time unit.

6.3.2 Holdout transshipment policy formulation

For comparison we formulate the problem under the assumption of a holdout transshipment

policy. Because there is only a change to the transshipment policy in this model, most defini-

tions including the state space, decision epoch, transition probabilities, immediate cost and

value-iteration algorithm remain as the same as in Section 6.3.1. Therefore, we just redefine

the action space for this model as follows.

Action space

Let Xk(i) denote the set of possible replenishment order decisions at location k when the

state of the process is i =(i1, i2, q1, q2). It follows that

Xk(i) = {qk} if qk > 0 and Xk(i) = {x: ik + x� Mk,x∈{0}∪ Qk} if qk = 0

Let qk

′
represent the decision taken regarding the order process at location k, k = 1, 2. For

any given state i∈ I, qk

′
can take any value in the set Xk(i).

Let i = (i1, i2, q1, q2) be the current state of the system and let the decision variable I2

denote the holdout threshold at location 2. We consider the decision of how to satisfy a

demand at location 1. The inventory levels at the two locations determine whether or not

transshipment is used to satisfy a demand at location 1. If i1 > 0, location 1 would meet the

demand from local stock and so there is no possibility of a transshipment. If i2 � I2, location

2 will not transship and again transshipment is impossible. If i1 � 0 and i2 > I2, then trans-

shipment would be used to satisfy the demand. We again use 1 to denote no transshipment

and 0 to denote transshipment. Let D(i) denote the set of possible transshipment decisions

when the system is in state i. Hence, a holdout transshipment policy can be modelled by

revising equation (6.1) as follows.

D(i)= {1} if i1 > 0 or i2 � I2 and
D(i)= {0} if i1 � 0 and i2 > I2, i∈ I (6.6)
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Let d represent the decision with regard to be the transshipment decision from location 2 to

location 1. For any given state i∈ I, d can take any value in the set of D(i).

Definition 6.3. Under our assumptions, the action space in state i is given by

A(i)= {(q1

′
, q2

′
, d): qk

′ ∈Xk(i) for k =1 , 2, d∈D(i)}

From the assumption, we conclude that the action space A(i) is finite.

6.3.3 Numerical experiments

The purpose of our numerical experiments is to find the optimal average total cost rate

under the holdout transshipment policy and to compare this to the optimal average total

cost rate under a general transshipment policy. However, the choice of the limit on back-

orders and storage capacity (Nk, Mk) impact on the computation of the average total cost

rate. Therefore, as the first step, we need to determine suitable values for Nk and Mk in our

numerical experiments.

In the following result tables, column “Iter. No.” and “Av. Total Cost” denote the number

of iterations and the average total cost rate respectively. In all the examples considered in

this section, we only allow one possible order quantity at each location. For convenience, we

use Qk to represent the one possible order quantity at location k rather than a set. The

problem parameters are given values as follows: λ1 = 10, Q1 = 30, µ1 = 1, c1 = 20, h1 = 0.5, b̂1 =

10, b1 =5, B1 = 500, t = 1, λ2 = 10, Q2 = 30, µ2 = 1, c2 = 20, h2 = 0.5, b2̂ = 10, b2 = 5, B2 = 500.

Nk Mk Iter. No. Av. Total Cost Nk Mk Iter. No. Av. Total Cost
-40 40 3384 77.74 -40 90 4006 49.26
-50 50 3896 52.27 -50 90 4014 47.71
-60 60 4010 47.24 -60 90 4018 46.95
-70 70 4018 46.61 -70 90 4018 46.61
-80 80 4016 46.47 -80 90 4016 46.47
-90 90 4016 46.41 -90 90 4016 46.41
-100 100 4016 46.39 -100 90 4016 46.39
-110 110 4016 46.38 -110 90 4016 46.38
-120 120 4016 46.37 -120 90 4016 46.37

Table 6.1. Choice of Nk and Mk
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The average total cost rates of the two-location system for different choices of Nk and Mk

are provided in Table 6.1. On the left hand side of Table 6.1, we start the search on the large

range from (-40,40) to (-120,120). These computational results for the average total cost rate

suggest that the average total cost rate is largely unaffected when the bound on the absolute

inventory level is increased beyond 90. From the further searching on the right hand side of

Table 6.1, we identify that a suitable choice of Nk and Mk is (-80,90). Hence we define Nk =

− 80 andMk = 90 for k = 1, 2 as the limit on backorders and storage capacity in our numerical

experiments of Section 6.3.

From the numerical results in Chapter 5, we learnt that bk and bk̂ at location k, k = 1, 2

are two parameters to which the performance of the system can be particularly sensitive.

Hence, in these experiments we vary bk and bk̂ separately and observe the optimal average

total cost rate under a general transshipment policy. In Table 6.2, we provide the number of

iterations and average total cost rate for each value of b1 and b1̂.

b1 b1̂ Iter. No. Av. Total Cost b1 b1̂ Iter. No. Av. Total Cost
1 10 3970 46.08 5 2 3978 45.45
3 10 3992 46.29 5 4 3996 45.80
5 10 4016 46.47 5 6 4006 46.07
7 10 4036 46.62 5 8 4012 46.29
9 10 4050 46.76 5 10 4016 46.47

Table 6.2. Average total cost rate for optimal transshipment policy with different values of b1 and b1̂

We are keen to know these results compare to the optimal average total cost rate under

the holdout transshipment policy. We are also interested to learn whether the optimal hol-

dout policy is a partial pooling policy rather than one of complete pooling or no pooling.

The results in Table 6.3 show that, when b1 = 1, 3, 5 and 7, 9, the optimal holdout trans-

shipment policy is the partial pooling policy with holdout threshold I2 equal to 6, 5, 3 and 2

respectively. However, when b1=9, the optimal holdout transshipment policy is complete

pooling. The predicted improvements in the average total cost from the optimal holdout

transshipment policy are 0.34%, 0.18%, 0.08%, 0.02% and 0.00% with respect to complete

pooling (I2=0) and 1.89%, 2.44%, 2.97%, 3.46% and 3.93% with respect to no pooling (I2 =

M2) respectively. Further, the difference between the average total cost rates under the

optimal holdout transshipment policy and the optimal general transshipment policy is
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0.004% , 0.003%, 0.002%, 0.002% and 0.000% respectively.

Similarly, when b1̂ = 2, 4, 6, and 8, 10, the optimal holdout transshipment policy is the par-

tial pooling policy with holdout threshold I2 equal to 12, 9, 6, 5 and 3 respectively. The pre-

dicted improvements in the average total cost from the optimal holdout transshipment policy

are 1.06%, 0.62%, 0.34%, 0.18% and 0.08% with respect to complete pooling (I2=0) and

0.71%, 1.29%, 1.88%, 2.44% and 2.97% with respect to no pooling (I2=M2) respectively.

Further, the difference between the average total cost rates under the optimal holdout trans-

shipment policy and the optimal general transshipment policy is 0.003%, 0.002%, 0.003%,

0.003% and 0.002% respectively.

b1̂=10 b1=5
I2 b1 = 1 b1 = 3 b1 = 5 b1 = 7 b1 = 9 b1̂ =2 b1̂ =4 b1̂ =6 b1̂ = 8 b1̂ = 10
0 46.23 46.37 46.50 46.63 46.76* 45.93 46.09 46.23 46.37 46.50
1 46.19 46.34 46.49 46.62 46.76 45.86 46.03 46.19 46.34 46.49
2 46.16 46.32 46.47 46.62* 46.77 45.80 45.98 46.15 46.32 46.47
3 46.12 46.30 46.47* 46.63 46.78 45.73 45.93 46.12 46.30 46.47*
4 46.10 46.29 46.47 46.65 46.81 45.68 45.89 46.10 46.29 46.47
5 46.09 46.29* 46.49 46.67 46.85 45.62 45.86 46.08 46.29* 46.49
6 46.08* 46.30 46.51 46.71 46.89 45.58 45.84 46.07* 46.30 46.51
7 46.08 46.32 46.54 46.75 46.95 45.54 45.82 46.07 46.31 46.54
8 46.09 46.34 46.58 46.81 47.02 45.50 45.81 46.08 46.34 46.58
9 46.11 46.38 46.63 46.87 47.10 45.48 45.80* 46.10 46.38 46.63
10 46.13 46.42 46.69 46.95 47.18 45.46 45.81 46.13 46.42 46.69
11 46.17 46.48 46.77 47.03 47.28 45.45 45.83 46.16 46.48 46.77
12 46.22 46.55 46.85 47.13 47.39 45.45* 45.85 46.21 46.54 46.85
13 46.28 46.62 46.94 47.24 47.51 45.46 45.88 46.27 46.62 46.94
14 46.34 46.71 47.04 47.35 47.64 45.47 45.93 46.34 46.70 47.04
15 46.42 46.81 47.16 47.48 47.78 45.50 45.98 46.41 46.80 47.16
16 46.51 46.91 47.28 47.61 47.93 45.54 46.05 46.50 46.91 47.28
17 46.60 47.03 47.41 47.76 48.08 45.58 46.12 46.59 47.02 47.41
18 46.71 47.15 47.55 47.91 48.25 45.64 46.20 46.70 47.15 47.55
19 46.83 47.28 47.70 48.07 48.42 45.70 46.30 46.82 47.28 47.70
20 46.95 47.42 47.85 48.24 48.59 45.77 46.40 46.94 47.42 47.85

Table 6.3. Average total cost rate under the holdout transshipment policy with different holdout

thresholds and values of b1 and b1̂

The Figures 6.1 and 6.2 demonstrate an interesting property of the holdout transship-

ment policy. At location 1, when the expected stockout or backorder cost rate is likely to

increase because of increases in b1 or b1̂, under the holdout transshipment policy, the optimal

strategy is to lower the holdout threshold I2 at location 2 in order to give more transship-

ment support. The evidence is clear from the movement of optimal holdout threshold in

these two figures.
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Figure 6.1. Average total cost rate for b1 and b1̂ = 10

Figure 6.2. Average total cost rate for b1̂ and b1=5

These results show that there exist situations where partial pooling is the optimal hol-

dout transshipment policy, though the cost savings, compared to complete pooling or no

pooling, may not always be very significant. More importantly, in each case we considered,

the optimal average total cost rate with the holdout transshipment policy is very close to the

optimal average total cost rate with the general transshipment policy. This suggests that

there often exists a holdout transshipment policy that effectively perform as well as the
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optimal general transshipment policy. This has practical implications, because holdout trans-

shipment policies are easier to implement.

Note that we do not compare the numerical results with those in the previous TAP or

HOT approximations, because in our SMDP models, we assume the more general replenish-

ment order policy rather than the (R, Q) replenishment order policy.

6.3.4 Optimal replenishment and transshipment decisions

In this section we consider the optimal replenishment and transshipment decisions for the

model with general transshipment policy. We are keen to know how the optimal holdout

transshipment policy compares to the optimal general transshipment policy. We also demon-

strate that the optimal general transshipment policy does not depend on the state of the

replenishment order process. We also examine the form of the optimal replenishment policy.

Figure 6.3. O p t im a l a c t i o n s w h e n b1 = 5, b1 = 1 0 , q1= 0 ,q2= 0 Figure 6.4. O p t im a l a c t i o n s w h e n b1 = 5, b1 = 1 0 , q1= 0 ,q2= 3 0

Figure 6.5. O p t im a l a c t i o n s w h en b1 = 5, b1 = 1 0 , q1= 3 0 ,q2= 0 Figure 6.6. O p t im a l a c t i o n s w h e n b1 = 5, b1 = 1 0 , q1= 3 0 ,q2= 3 0

Note that we use the x-axis and y-axis to represent the inventory level at location 1 and

location 2 respectively. The areas covered by green colour represent situations in which

transshipment is optimal to meet demand at location 1. Other areas coorrespond to situ-
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ations where transshipment is not the optimal decision.

Figures 6.3 to 6.6 plot the optimal decisions as a function of the inventory levels at the

two locations when b1 = 5 and b1̂ = 10. Each plot represents a different state of the replenish-

ment order process. Different decisions are represented by different colours, so the plots

clearly show the regions in which different decisions are optimal. By the choice of Mk, it is

only feasible to place a replenishment order at a location when the inventory level is less

than or equal to 60. In the figures it is never optimal to place a replenishment order when

the inventory level is greater than 12 at location 1 and greater than 45 at location 2. This

suggests that the replenishment decision is not being constrained by the storage capacity of

the locations.

The two green areas to the left of the figures show the situations in which transshipment

is optimal to meet demand at location 1. The other areas show the situations in which it is

optimal to meet demand at location 1 from local stock or by backorders. The most striking

feature about the figures is that the optimal transshipment decision does not depend on the

state of the replenishment order process (the green colours cover the same area in each plot).

This is largely explained by the memory-less property of the exponential lead time for replen-

ishment orders. The fact there is an outstanding order at a location does not affect the

expected time until the earliest replenishment of the location and so has little affect on the

transshipment decision. It is also interesting to note that the optimal transshipment policy is

not a simple holdout policy. Rather there is a transition from complete pooling to partial

pooling as the inventory level at location 1 increases from -30 to 0 and the inventory level at

location 2 is at most 3. This means that location 2 becomes more willing to share inventory

as the number of outstanding backorders at location 1 increases.

When the inventory level at location 2 is greater than 3, transshipment is always optimal

when location 1 has no local stock. It is interesting to note that this value is consistent with

the threshold value in the optimal holdout transshipment policy for this case from Table 6.3.

In fact if the inventory level at location 1 is between -9 and 0, it is optimal to use transship-

ment to meet demand at location 1 if and only if the inventory level at location 2 is greater

than 3. In other words, in such situations the optimal transshipment policy is a holdout

policy with threshold 3. If the inventory level at location 1 rarely falls below -9, the perform-

ance of a holdout transshipment policy with threshold 3 would be very similar to that of the

optimal general transshipment policy. This perhaps explains the results in Figure 6.1.
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Figure 6.7. O p t im a l a c t i o n s w h e n b1 = 3, b1 = 5, q1 = 0, q2 = 0 Figure 6.8. O p t im a l a c t io n s w h en b1 = 3, b1 = 5, q1= 0 ,q2= 3 0

Figure 6.9. O p t im a l a c t i o n s w h e n b1 = 3, b1 = 5, q1= 3 0 ,q2= 0 Figure 6.10. O p t im a l a c t i o n s w h en b1 = 3, b1 = 5, q1= 3 0 ,q2= 3 0

Figure 6.11. O p t im a l a c t i o n s w h en b1 = 5, b1 = 4, q1= 0 ,q2= 0 Figure 6.12. O p t im a l a c t i o n s w h e n b1 = 5, b1 = 4, q1= 0 ,q2= 3 0

Figure 6.13. O p t im a l a c t io n s w h en b1 = 5, b1 = 4, q1= 3 0 ,q2= 0 Figure 6.14. O p t im a l a c t i o n s w h en b1 = 5, b1 = 4, q1= 3 0 ,q2= 3 0
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Figure 6.3 shows the situation where there are no outstanding orders. In the figure it is

optimal to place a replenishment order for location 2 when its inventory level is less than

some threshold level which depends on the inventory level at location 1. The threshold level

is between 28 and 45 and exhibits a downward trend as the inventory level at location 1

increases. However, the threshold does not decrease monotonically as the inventory level at

location 1 increases. Similarly, it is optimal to place a replenishment order at location 1

when its inventory level is less than a threshold value between 0 and 12 depending on the

inventory level at location 2. The threshold value exhibits a downward trend as the inventory

level at location 2 increases, but the increase is not monotonic.

Figures 6.4 and 6.5 show the situations where there is one outstanding order in the

system at location 2 and location 1 respectively. It is apparent that the situations in which it

is optimal to replenish location 1 are different in Figures 6.3 and 6.4. Similarly the situations

in which it is optimal to replenish location 1 are different in Figures 6.3 and 6.5. We con-

clude that the optimal replenishment decision is a complex function of the state of the

system.

Similarly, Figures 6.7 to 6.10 plot the optimal decisions as a function of the inventory

levels at the two locations when b1 = 3 and b1̂ = 10 and Figures 6.11 to 6.14 plot this informa-

tion when b1 = 5 and b1̂ = 4. These figures demonstrate similar features in terms of replenish-

ment and transshipment decisions to Figures 6.3 to 6.6. One important difference is the

extent to which transshipment is used. The green area in these graphs is smaller than in Fig-

ures 6.3 to 6.6, indicating transshipment is used less often to meet demand at location 1.

This is because either the backorder cost (Figures 6.7 to 6.10) or stockout cost (Figures 6.11

to 6.14) is lower.

When b1 = 3, b1̂ = 10 and the inventory level at location 2 is greater than 5, transshipment

is always optimal when location 1 has no local stock. When b1 = 5, b1̂ = 4 and the inventory

level at location 2 is greater than 9, transshipment is always optimal when location 1 has no

local stock. Again these values are consistent with the threshold values in the optimal hol-

dout transshipment policy for these cases from Table 6.3. We hypothesise that a suitable

threshold value for a holdout transshipment policy can be estimated by the largest inventory

level at location 2 for which it is optimal to reject a transshipment request in an optimal gen-

eral transshipment policy.
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6.3.5 Conclusions

In Section 6.3, we developed two SMDP models with exponential lead time to reflect the

general transshipment and holdout transshipment policies. The numerical results in Section

6.3.3 illustrate how these models can be used to find the optimal average total cost rate and

optimal policy for a given set of parameters. In particular, we investigate the effect of the

parameters b1̂ and b1 on the optimal holdout threshold for a holdout transshipment policy.

When b1 and b1̂ are increasing the optimal strategy for the system is to lower the holdout

threshold in order to give more transshipment support. In the cases we consider, the optimal

average total cost rate under the holdout transshipment policy is very close to that under the

general transshipment policy. This suggests that, under the assumption of exponential lead

time, the benefits of transshipment can often be captured by a simple holdout transshipment

policy.

In addition, we use the optimal general transshipment policy to estimate the holdout

threshold for the optimal holdout transshipment policy. Therefore, the SMDP modelling

technique provides another way to understand the two-location system with unidirectional

holdout transshipment policy. To some extent, analysis of the optimal decisions provides

some insights into how the optimal replenishment decisions depend on the inventory level of

the locations and the state of the replenishment order process.

Overall, we can conclude that the optimal average total cost rate can be found using the

SMDP models with exponential lead time. The difference between the optimal average total

cost rate under the general and holdout transshipment policy appears to be small. However,

because of our assumption of exponential lead time, the optimal transshipment decision does

not depend on the state of the replenishment order process due to the memory-less property

of the exponential distribution. Intuitively one might expect that location 2 would become

more willing to share inventory as its next replenishment approaches. One might also expect

that, due to the form of the backorder cost, the incentive for transshipment would decrease

as the next replenishment at location 1 approaches. These features cannot be captured by

the SMDP model with exponential lead time. Therefore, the results of the SMDP model

with exponential lead time might not be applicable to, for example, the situation of fixed

lead time. Therefore, we develop another SMDP model with phase-type lead time in which

the optimal transshipment decision is not only dependent on inventory level at the locations,

but also dependent on the state of the replenishment order process.
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6.4 SMDP models with phase-type lead time

In Section 6.3, we examined two SMDP models of the two location inventory system with

the assumption of exponential lead time. The numerical results demonstrate some interesting

features of the transshipment policy. Although the SMDP models benefit from the memory-

less property of the exponential lead time, the exponential random variable does not model

the fixed replenishment lead time effectively because of its long-tail property.

In this section, instead of assuming exponential lead time, we develop another SMDP

model assuming a phase-type distribution for the lead time. Rather than modelling the lead

time by a single exponential random variable, the idea is to model the lead time as the sum

of a fixed number of IID exponential random variables. As the number of phases increases,

this phase-type model of replenishment lead time more closely approximates the fixed replen-

ishment lead time. Meanwhile, to compensate for the increased complexity due to the phase-

type model, we restrict the choice of order quantity at each location to a single value for the

SMDP models in this section instead of allowing a set of possible order quantities as for the

SMDP models in Section 6.3. We denote the number of phases in the model of the lead

time at location k by Wk and the order quantity at location k by Qk. Following the structure

of Section 6.3, we first develop a SMDP model of the system with general transshipment

policy and then modify it for holdout transshipment policy.

6.4.1 General transshipment policy formulation

State space

For each location, we need one state variable to model the inventory process and, under

the assumption above, one state variable to model the replenishment order process. Note

that if we allowed more than one possible order quantity at each location, we would need two

state variables at each location to model the replenishment order process. Such a model is

too demanding computationally to be considered in our research.

Let ik denote the inventory level at location k, k = 1, 2, where negative values indicate

outstanding backorders. Let wk = 0 represent the situation where there is no outstanding

replenishment order at location k. Let wk > 0 represent the situation where there is one out-

standing replenishment order for Qk items at location k and that this order will arrive after
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wk phases (i.e. after a time equal to the sum of wk IID exponential random variables each

with mean 1

Wkµk
).

Definition 6.4. Under our assumptions, the state space is given by

I={(i1,i2, w1, w2); −Nk � ik � Mk, 0 � wk � Wk for k =1, 2}

From the above assumptions, we conclude that the state space I is finite.

Action space

We need two decision variables to model the order decisions at the two locations and one

decision variable to model the transshipment decision from location 2 to location 1. When

there is no outstanding order at location k (i.e. wk=0), we can choose to place a replenish-

ment order provided the delivery of Qk items would not violate the capacity constraint (i.e.

ik+Qk � Mk). We model this by setting the replenishment order decision equal to Wk. When

there is no outstanding order at location k, we model the decision not to place an order by

setting the replenishment order decision equal to 0. When there is already an outstanding

order at location k (i.e. wk > 0), we cannot place another one and we set the replenishment

order decision equal to the number of phases remaining in the lead time (i.e. wk). Let Xk(i)

denote the set of the possible replenishment order decisions at location k, k = 1, 2 when the

system is in state i= (i1, i2, w1, w2). It follows that

Xk(i)= {wk} if wk > 0, Xk(i)={0} if wk =0 and ik + Qk > Mk

and Xk(i)={0, Wk} if wk = 0 and ik + Qk � Mk

Let wk

′
represent the decision taken regarding the replenishment order at location k, k = 1, 2.

For any given state i∈ I, wk

′
can take any value in the set Xk(i).

Let i = (i1, i2, w1, w2) be the current state of the system. Because we have the same uni-

directional transshipment policy as we have defined in Section 6.3, we just reuse the defini-

tion of the set of the transshipment decisions (where 0 represents transshipment and 1 rep-

resents no transshipment) as such.

D(i)= {1} if i1 > 0 or i2 � 0;
D(i)= {0, 1} if−N1 < i1 � 0 and i2 > 0; and

D(i)= {0} if−N1 = i1 and i2 > 0 for i∈ I (6.7)
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Let d represent the decision with regard to transshipment from location 2 to location 1. For

any given state i∈ I, d can take any value in the set of D(i).

Definition 6.5. Under our assumptions, the action space in state i is given by

A(i)= {(w1

′
, w2

′
, d); w k

′ ∈Xk(i), d∈D(i) for k = 1, 2}

From the above assumptions, we conclude that the action space A(i) is finite.

Decision epoch

Decisions need to be taken when a demand occurs at each location and when the system

reaches the end of a phase of the lead time at each location. We define an event to be any

occurrence of a demand or the end of any phase of a replenishment order lead time in the

system. With this definition, the time of the next event depends on the state of the system.

As before we introduce fictitious decision epochs so that the time of the next event is inde-

pendent of the state of the process and the action chosen.

When there is no outstanding order at location k, we introduce a fictitious event after a

time that has an exponential distribution with mean 1

Wkµk
. This can be thought of as the

end of the final phase of the lead time of a zero replenishment order at location k and will

leave the state unchanged. Hence, whatever the state and action, the next event can always

be a demand at location 1, a demand at location 2, the end of a phase of the lead time of a

(possible fictitious) replenishment order at location 1 or location 2. The time until each of

the possible events is exponential with scale parameter independent of the state and action.

Hence, the expected time until next decision epoch no longer depends on state or decision.

We can now define τ as the expected time until the next decision epoch where

τ = 1
λ1 + λ2 +W1µ1 +W2µ2

(6.8)

Transition probabilities

We need to define the probability that the process is in state j at the next decision epoch

given that action a is chosen in state i at the current decision epoch. As before we define the

transition probabilities for the model implicitly by considering which of the four possible

events occurs at the next decision epoch.
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Consider a decision epoch in which the system is in state i = (i1, i2, w1, w2) and action a =

(w1

′
, w2

′
, d) is chosen. Assume the next event is a demand. If there is an outstanding order at

location k, then wk

′
= wk > 0 and the order will still be outstanding at the next decision

epoch. If an order is placed at location k, then wk

′
> wk = 0 and this order will be out-

standing at the next decision epoch. If there is no outstanding order and no order is placed,

then wk

′
= wk = 0 and there will be no outstanding order at the next decision epoch. Hence,

at the next decision epoch, the state variable describing the replenishment order process at

location k will be equal to wk

′
. The change in the state variable describing the inventory pro-

cess follows from a similar argument as in Section 6.3. Therefore, when the next event is a

demand at location 1, the state of the process at the next decision epoch is (max( − N1,i1 −

d),i2 − (1 − d),w1

′
,w2

′
). Similarly, when the next event is a demand at location 2, the state of

the process at the next decision epoch is (i1,max( − N2,i2 − 1),w1

′
,w2

′
). The probability that

the next event is a demand at location k is λkτ .

The probability that the next event is the end of a phase of a replenishment order lead

time at location 1 is W1µ1τ . If w1

′
= 0, this is a fictitious event and there is no change in

state. If 1 < w1

′ � W1, the lead time of the outstanding replenishment order at location 1 now

has w1

′
-1 phases remaining. If w1

′
= 1, this is the end of the lead time of the outstanding

order at location 1. Q1 items are added to the inventory at location 1 and there cannot any

more outstanding orders at location 1. This event will not affect the state variables relating

to location 2. Therefore, when the next event is the end of a lead time phase at location 1,

the state of the process at the next decision epoch is (i1 + Q1,i2,0,w2
′) if w1

′
= 1 and (i1, i2,

min (0, w1

′ − 1), w2

′
) otherwise. The probability that the next event is the end of a phase of a

replenishment order lead time at location 2 is W2µ2τ and, following a similar argument to

the above, the state of the process at the next decision epoch is (i1,i2+Q2,w1
′ ,0) if w2

′
=1 and

(i1, i2, w1

′
,min (0, w2

′ − 1)) otherwise.

Immediate cost

We now define ci(a) the expected cost incurred until the next decision epoch when action

a is chosen in state i at the current decision epoch. To reiterate, this cost consists of the

fixed order cost, holding cost, backorder cost, stockout cost, lost sale penalty cost and trans-

shipment cost.

Under our assumptions, a replenishment order is only placed at location k at a decision

epoch when wk

′
> wk. Hence, the fixed order cost incurred until the next decision epoch is
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equal to ckδ(wk

′ −wk) at location k, k = 1, 2.

Because introduction of phase-type replenishment lead time only affects the expected

replenishment order cost, we can reuse the expected costs for the holding cost, backorder

cost, stockout cost, lost sale penalty cost and transshipment cost from Section 6.3.1. Hence,

we conclude that the expected cost until the next decision epoch when action a is chosen in

state i at the current decision epoch is as follows.

ci(a) = {
∑2
k=1

{ckδ(wk

′ −wk) + [hkδ(ik)− bkδ̂ (ik)]ikτ }+ λ1τd{δ̂ (i1)b̂1 + δ̂ (N1 + i1)(B1− b̂1)}+

λ2τ {δ̂ (i2)b̂2 + δ̂ (N2 + i2)(B2− b̂2)}+ λ1τ(1− d)t (6.9)

Value�iteration algorithm

Because the SMDP model developed in this section has a similar structure to the

SMDP model in Section 6.3.1, we can reuse the value-iteration algorithm from that Section.

6.4.2 Holdout transshipment policy formulation

For the SMDP model with the phase-type lead time and holdout transshipment policy,

most definitions including the state, decision epoch, transition probabilities, immediate cost

and value-iteration algorithm are the same as those in the Section 6.4.1. Therefore, we just

redefine the action space for this model as such.

Action space

Let Xk denote the set of possible decision replenishment order decisions at location k

when the state of the process is i =(i1, i2, w1, w2). It follows that

Xk(i)= {wk} if wk > 0, Xk(i)={0} if wk =0 and ik + Qk > Mk

and Xk(i)={0, Wk} if wk = 0 and ik + Qk � Mk

Let wk

′
represent the decision taken regarding the replenishment order at location k, k = 1, 2.

For any given state i∈ I, wk

′
can take any value in the set Xk(i).
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Let I2 denote the holdout threshold at location 2. As before, the set of the transshipment

decision in state i is given by

D(i)= {1} if i1 > 0 or i2 � I2 andD(i) = {0} if i1 � 0 and i2 >I2, i∈ I (6.10)

Let d represent the decision with regard to the transshipment decision from location 2 to loc-

ation 1. For any given state i∈ I , d can take any value in the set D(i).

Definition 6.6. Under our assumptions, the action space in state i is given by

A(i) = {(w1

′
, w2

′
, d); w k

′ ∈Wk(i), d∈D(i) for k = 1, 2}

From the assumptions, we conclude that the action space A(i) is finite.

6.4.3 Numerical experiments

For the SMDP model with phase-type lead time, the computational overheads increase

exponentially with an increase in the number of phases. First, as for the model with expo-

nential lead time, we define Nk = − 80, and Mk = 70 for k = 1, 2 as the limit on backorders

and storage capacity in our numerical experiments. In Table 6.4, we compare the estimated

computing time6.1, the number of iterations and average total cost rate for different numbers

of phases and the same basic set of parameter values as in Section 6.3.3. Namely, we use

λ1 = 10, Q1 = 30, µ1 = 1, c1 = 20, h1 = 0.5, b̂1 = 10, b1 = 5, B1 = 500, t = 1, λ2 = 10, Q2 = 30, µ2 = 1,

c2 = 20, h2 = 0.5, b2̂ = 10, b2 = 5, B2 = 500. These results show significant increases in the com-

puting time when the number of phases increases from 1 to 8. For reasons of practical imple-

mentation, we choose to do our numerical experiments only for the situations where the

number of phases equals to 1 and 4 to assess the impact of the phase-type lead time.

Iter. No. Ph. No. Av. Total Cost Est. Computing Time
4016 1 46.47 2 mins
2472 2 39.17 6 mins
1964 3 36.78 10 mins
1734 4 35.58 17 mins
1652 5 34.84 26 mins
1656 6 34.34 42 mins
1706 7 33.97 65 mins
1790 8 33.69 97 mins

Table 6.4. Average total cost rate for optimal transshipment policy with different numbers of phases

6.1. The estimated computing time is the result from running on the desktop PC machine with Pentium

IV CPU 1.2G HZ, 256M memory
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As is Section 6.3.3, we do the sensitivity tests on the parameters b1 and b1̂. Hence, in

these experiments we vary b1 and b1̂ separately and observe the optimal average total cost

rate under a general transshipment policy. The average total cost rate and the number of

iterations for each value of b1 or b1̂ when the number of phases is equal to 4 are shown in

Table 6.5.

b1 b1̂ Iter. No. Av. Total Cost b1 b1̂ Iter. No. Av. Total Cost
1 10 1732 35.24 5 2 1734 35.34
3 10 1730 35.44 5 4 1734 35.41
5 10 1734 35.58 5 6 1734 35.48
7 10 1738 35.68 5 8 1734 35.53

Table 6.5. Average total cost rate for optimal transshipment policy with different values of b1 and b1̂

when number of phases = 4

b1̂=10 b1=5
I2 b1=1 b1=3 b1=5 b1=7 b1̂=2 b1̂=4 b1̂=6 b1̂=8
0 35.43 35.52 35.61* 35.69* 35.46 35.50 35.54 35.57
1 35.40 35.51 35.61 35.71 35.43 35.48 35.52 35.57*
2 35.37 35.51* 35.63 35.74 35.41 35.47* 35.52* 35.58
3 35.36 35.51 35.66 35.78 35.40* 35.47 35.54 35.60
4 35.36* 35.54 35.70 35.84 35.41 35.49 35.56 35.63
5 35.37 35.57 35.76 35.92 35.42 35.51 35.60 35.68
6 35.39 35.62 35.83 36.01 35.45 35.56 35.65 35.74
7 35.42 35.69 35.91 36.11 35.49 35.61 35.72 35.82
8 35.47 35.76 36.01 36.22 35.55 35.68 35.80 35.91
9 35.53 35.85 36.12 36.35 35.62 35.76 35.89 36.01
10 35.60 35.94 36.23 36.48 35.70 35.85 35.99 36.12
11 35.67 36.05 36.36 36.62 35.79 35.95 36.10 36.23
12 35.76 36.16 36.49 36.76 35.88 36.06 36.22 36.36
13 35.85 36.28 36.62 36.91 35.99 36.17 36.34 36.49
14 35.95 36.39 36.75 37.06 36.10 36.29 36.46 36.62
15 36.04 36.51 36.89 37.20 36.21 36.41 36.59 36.74
16 36.14 36.63 37.03 37.35 36.32 36.53 36.71 36.87
17 36.24 36.75 37.16 37.49 36.43 36.65 36.83 37.01
18 36.33 36.87 37.28 37.62 36.54 36.76 36.96 37.13
19 36.42 36.98 37.41 37.75 36.64 36.87 37.07 37.24
20 36.51 37.08 37.52 37.88 36.74 36.97 37.18 37.36

Table 6.6. Average total cost rate under the holdout transshipment policy with different holdout

thresholds and values of b1 and b1̂ when number of phases = 4

The results in Table 6.6 show that, when b1 = 1 and 3, the optimal holdout transshipment

policy is the partial pooling policy with holdout threshold I2 equal to 4 and 2 respectively.
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However, when b1 = 5 and 7, the optimal holdout transshipment policy is complete pooling.

The predicted improvements in the average total cost from the optimal holdout transship-

ment policy are 0.21%, 0.05%, 0.00% and 0.00% with respect to complete pooling (I2 = 0)

and 3.27%, 4.44%, 5.37% and 6.13% with respect to no pooling (I2 = M2) respectively. Fur-

ther, the difference between the average total cost rates under the optimal holdout transship-

ment policy and the optimal general transshipment policy is 0.32%, 0.18%, 0.10% and 0.03%

respectively.

Similarly, when b1̂ = 2, 4, 6, and 8, the optimal holdout transshipment policy is the partial

pooling policy with holdout threshold I2 equal to 3, 2, 2 and 1 respectively. The predicted

improvements in the average total cost from the optimal holdout transshipment policy are

0.16%, 0.09%, 0.04% and 0.02% with respect to complete pooling (I2 = 0) and 3.77%, 4.24%,

4.65% and 5.02% with respect to no pooling (I2 = M2) respectively. Further, the difference

between the average total cost rates under the optimal holdout transshipment policy and the

optimal general transshipment policy is 0.18%, 0.15%, 0.14% and 0.11% respectively.

Figures 6.15 and 6.16 show similar properties to those observed in Section 6.3. That is, at

location 1, when the expected stockout or backorder cost increases, under the holdout trans-

shipment policy, the optimal strategy is to lower the holdout threshold I2 at location 2 to

give more transshipment support. The evidence is clear from the movement of the optimal

holdout threshold in these two figures.

Compared to the results with exponential lead time, we found that the difference between

the average total cost rate under the general transshipment policy and the optimal average

total cost rate under the holdout transshipment policy is greater when there are more phases.

The optimal holdout transshipment policy is closer to complete pooling than in the case of

exponential lead time. This is apparent from the higher percentage differences between the

optimal partial pooling policy and the no pooling policy (I2 = M2) and the smaller per-

centage differences between the optimal partial pooling policy and the complete pooling

policy (I2 = 0).
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Figure 6.15. Average total cost rate for b1, b1̂ = 10 and 4 phases

Figure 6.16. Average total cost rate for b1̂, b1 = 5 and 4 phases

6.4.4 Optimal transshipment decisions

In this section, we investigate how optimal transshipment decisions depend on the state of

the replenishment order process. Due to the memory-less property of the exponential distri-

bution, the same transshipment decisions are taken when there is no outstanding order at
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location k as when there are Wk phases remaining in the lead time of an outstanding order

at location k. Hence, in this section, we only consider situations where there are outstanding

orders at both locations (i.e. 1 � wk � 4 for k = 1 and 2). We are also keen to know how the

optimal holdout transshipment policy compares to the optimal general transshipment policy.

Figures 6.17 to 6.20 plot the optimal decisions as a function of the inventory levels at the

two locations when b1 = 5 and b1̂ = 10. Each plot represents a different number of remaining

phases in the lead time of the outstanding order at location 2. Green colour represents the

decision to use transshipment to meet demand at location 1 and blue colour represents the

decision to meet demand at location 1 from local stock or by backorders. Considering the

limit of the storage capacity and the order quantity for all of numerical experiments, we only

draw the optimal decisions within a range where − 30� i1 � 30 and 0 � i2 � 30.

Figure 6.17. O p t im a l a c t i o n s w h e n b1 = 5, b1 = 1 0 , w1= 4 ,w2= 4 Figure 6.18. O p t im a l a c t i o n s w h en b1 = 5, b1 = 1 0 , w1= 4 ,w2= 3

Figure 6.19. O p t im a l a c t i o n s w h e n b1 = 5, b1 = 1 0 , w1= 4 ,w2= 2 Figure 6.20. O p t im a l a c t i o n s w h en b1 = 5, b1 = 1 0 , w1= 4 ,w2= 1

Figures 6.17 to 6.20 show the optimal transshipment policy when there are 4 phases

remaining in the lead time of the outstanding order at location 1. We see that complete

pooling is optimal unless there are 4 phases remaining in the lead time of the outstanding
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order at location 2. In this case (w2 = 4), there is some evidence of partial pooling when the

inventory level at location 2 is 1 or 2. However, if the inventory level at location 2 exceeds 2,

transshipment is always optimal. We conclude that, when the expected time to replenish-

ment at location 1 is large, the level of transshipment support provided by location 2 is relat-

ively high. Further the level of transshipment support provided by location 2 is non-

increasing as the expected time until replenishment at location 2 increases.

Figure 6.21. O p t im a l a c t i o n s w h e n b1 = 3, b1 = 1 0 , w1= 4 ,w2= 2 Figure 6.22. O p t im a l a c t i o n s w h en b1 = 3, b1 = 1 0 , w1= 3 ,w2= 2

Figure 6.23. O p t im a l a c t i o n s w h e n b1 = 3, b1 = 1 0 , w1= 2 ,w2= 2 Figure 6.24. O p t im a l a c t i o n s w h en b1 = 3, b1 = 1 0 , w1= 1 ,w2= 2

Similarly, Figures 6.21 to 6.24 plot the optimal transshipment policy when there are 2

phases remaining in the lead time of the outstanding order at location 2. Also in this case, b1

is lower which means there is less incentive for transshipment. We see that, as the number of

phases remaining in the lead time at location 1 decreases, location 2 provides less transship-

ment support. Complete pooling is optimal when w1 = 4 but, if there is one outstanding

backorder at location 1, location 2 will only transship in response to a stockout at location 1

when its inventory level is greater than 1, 2 and 4 for w1 = 3, 2 and 1 respectively. This sug-

gests the use of a dynamic holdout transshipment policy in which the threshold value

depends on the time until replenishment at location 1.
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Figure 6.25. O p t im a l a c t i o n s w h e n b1 = 5, b1 = 4, w1= 2 ,w2= 4 Figure 6.26. O p t im a l a c t io n s w h en b1 = 5, b1 = 4, w1= 2 ,w2= 3

Figure 6.27. O p t im a l a c t i o n s w h e n b1 = 5, b1 = 4, w1= 2 ,w2= 2 Figure 6.28. O p t im a l a c t io n s w h en b1 = 5, b1 = 4, w1= 2 ,w2= 1

Figure 6.29. Suggested thresholds for a dynamic holdout transshipment policy when b1=5 and b1̂=4

Additionally, Figures 6.25 and 6.28 plot the optimal transshipment policy when there are

2 phases remaining in the lead time of the outstanding order at location 1. Compared to the

example used in Figures 6.17 to 6.20, b1̂ is lower and consequently there is less incentive for

transshipment. The transshipment support provided by location 2 increases as the number of
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phases remaining in the lead time of the outstanding order at location 2 decreases. However,

in contrast to Figures 6.17 to 6.20, complete pooling is only optimal when there is one phase

remaining in the lead time. Transshipment is only optimal for all levels of inventory level at

location 1, when the inventory level at location 2 is greater than 2, 6 and 9 for w2 = 2, 3 and 4

respectively. This suggests the use of a dynamic holdout transshipment policy in which the

threshold depends on the time until replenishment at location 2.

We conclude that the difference between the average total cost rates for the optimal gen-

eral transshipment policy and the optimal holdout transshipment policy is most likely due to

the fact that the holdout threshold is fixed and cannot vary with the times to replenishment

at the locations. We propose a dynamic holdout transshipment policy with up to 16 different

threshold values each corresponding to a different combination of (w1,w2) where 1 � wk � 4.

The case wk = 0 is like wk =4 due to memory-less property of the exponential distribution. In

Section 6.4.3, we observed that, for exponential lead time, the threshold for the optimal hol-

dout transshipment policy was equal to the largest inventory level for which it is optimal for

location 2 to refuse a transshipment request. Extending this observation to the model with

phase-type lead time, we propose using this method to choose the threshold value for a given

state of the replenishment order process in a dynamic holdout transshipment policy.

Figure 6.29 plots the estimated threshold values for different states of the replenishment

order process when b1 = 5 and b1̂ = 4. Both the size and colour of bubbles represent the size

of the holdout threshold which is also shown by the numbers next to the bubbles. For

example, the red colour bubble in the middle represents the threshold value 3 while the two

green colour bubbles on the top represent the threshold value 9. The value of the threshold is

non-increasing in the time remaining in the lead time at location 1 and non-decreasing in the

time remaining in the lead time at location 2.

6.5 Conclusions

In this chapter, we have examined four SMDP models with exponential lead time and

phase-type lead time for the general and holdout transshipment policy. Numerical experi-

ments with the models demonstrate interesting properties of the optimal transshipment

decisions, although, compared to complete pooling and no pooling, the total cost savings

from selective transshipment in the examples we considered were not very significant.
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The numerical experiments for the SMDP model with exponential lead time show that

complete pooling is not the optimal transshipment policy. In all the examples we considered,

the optimal policy when the inventory level at location 1 is zero is one of partial pooling and

this gradually changes to complete pooling as the inventory level at location 1 decreases. The

optimal total cost rate with the holdout transshipment policy is very close to the optimal

total cost rate with the general transshipment policy. To approximate the fixed lead time

more effectively, we developed the SMDP model with phase-type lead time. Unlike with

exponential lead time, the optimal transshipment decisions depend on the state of the replen-

ishment order process. We observed that it is optimal for location 2 to provide more trans-

shipment support as the number of phases remaining in the lead time at location 2 decreases

and as the number of phases remaining in the lead time at location 1 increases. These are

intuitively appealing properties.

While, for the examples considered, the cost savings from optimal transshipment are less

with the phase-type lead time, there is a greater difference between the optimal cost rates of

the general transshipment and the holdout transshipment policy. We suggest that this is due

to the use of a fixed holdout threshold which does not depend on the times until replenish-

ment of the locations. We propose a dynamic holdout transshipment policy in which the

threshold is a function of the state of the replenishment order process. The policy is specified

by defining a threshold for each pair of value (w1,w2) satisfying 1 � wk � Wk. Determining an

optimal set of thresholds for such a policy would be computationally difficult due to the large

number of variables. However, we propose a method to estimate the set of threshold values

from the optimal general transshipment policy.

Compared to general transshipment policies, the proposed dynamic holdout transship-

ment policy is easy to implement and to explain. These properties make it an attractive

policy to use in practice. Further, we believe that the optimal cost rate for the proposed

dynamic holdout transshipment policy would be close to the optimal cost rate for the general

transshipment policy.

The thresholds in the dynamic holdout transshipment policy can be interpreted for a

fixed lead time as follows. Let t be the time until replenishment at location k. If (n − 1)Lk

Wk
<

t � nLk

Wk
, then use the threshold corresponding to wk = n. We believe this dynamic holdout

transshipment policy for fixed lead time would result in a lower average cost rate than the

optimal holdout transshipment policy considered in chapter 4 and 5.
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The modelling approach considered in this chapter offers benefits over the approximation

models of earlier chapters. Firstly, rather than modelling each location as an independent

location, we model the two-location system as a whole system. Hence, it is possible to cap-

ture all the interactions which occur between the two locations. Such an approach provides

us with a powerful tool to improve our modelling of a system with strong interactions.

Secondly, as we programme the decision policy, therefore we can monitor how the optimal

decision depends on the state of the process. Hence, we benefit from insights on optimal

transshipment decisions for the SMDP model. For example, the use of the SMDP model to

predict optimal holdout thresholds. These properties of the SMDP models prove SMDP

modelling to be an effective approach for our problem domain.

However, the SMDP modelling approach has its weaknesses. Firstly, we need a large

number of states and actions to model the problem especially in the case of phase-type lead

time. As a consequence of this, the solution method is computationally burdensome. It is

unlikely that the method could be extended to more than two locations due to the exponen-

tial increase in the number of states and actions. Secondly, the SMDP approach does not

provide explicit expressions for the average total cost rate and other performance measures

such as direct fill rate and backorder fill rate.

In summary, the SMDP modelling technique provides a method of examining general

transshipment policies for the two-location inventory system with unidirectional transship-

ment. In turn this has led to the development of a dynamic holdout transshipment policy

that is easy to implement yet potentially very efficient in terms of cost. However, we have to

pay significant computational prices.
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Glossary
SMDP: semi-Markov decision process
IID: independent and identically distributed
phase-type distribution: the sum of a fixed number of IID exponential random variables
1

µk
: the mean replenishment lead time at location k

ik: the inventory level at location k

τi(a): the expected time until the next decision epoch when decision a is chosen in state i
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Chapter 7
Summary & Discussion

7.1 Research overview

In the previous chapters, we investigate the general unidirectional transshipment policy to

the two-location inventory system by examining a variety of modelling approaches. Firstly,

we develop three approximation models. For each model, explicit expressions for a range of

performance measures are derived. We evaluate and compare these approximations with cor-

responding simulations for verification and numerical experiments.

Furthermore, two SMDP models are developed to get more accurate and deep insights of

the interactions between the locations in the system. We compare the general and holdout

transshipment policies and use the DP technique to predict the optimal holdout threshold by

analysing the optimal decision distributions.

The models all show that partial pooling can help to improve the whole system perfor-

mance measured, for example, by the average total cost. However, each modelling approach

has its own strength and weakness. Subsequently, we give a summary and discussion of each

modelling approach in our research as follows.

7.2 Research summary and discussion

7.2.1 Single-depot system

Prior to our series modelling on the two-location inventory control system, we begin our

study on the single-depot system as our decomposition modelling approach for the two-loca-

tion system is dependent on the single-depot system.
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At the first step, we define the steady-state distribution of inventory level for the single-

depot system in which an (R, Q) replenishment order policy is applied. We derive the func-

tion p(x) to be the probability that the inventory level is x at any time when the system is in

steady-state. Then we derive all performance measures of this single-depot system straight-

forwardly.

To verify our derivations of all performance measures, we compare results based on our

derivations with those from the single-depot simulation. This comparison shows that there is

a high degree of agreement between the expressions derived and simulation. Thus, we can

trust our analysis of the single-depot model and develop an approximation of the two-loca-

tion model based on this single-depot model.

In addition, we provide numerical experiments to search for the optimal average total cost

using an exhaustive search algorithm. These results suggest that the average total cost C(R,

Q) could be a convex function of Q.

7.2.2 Decomposition approach model with constant demand rates

This is our first analytic approximation model and it uses a decomposition approach. Rather

than handling the explicit holdout transshipment policy, we first consider the two-location

system in which the transshipment decision is made randomly by the transshipment agree-

ment probability, z. In other words, location 2 is more likely to deliver a transshipment in

response to a stockout at location 1 as the value of z increases.

We decompose the two-location system into two independent single-depot systems with

constant Poisson demand rates. Given the value of z between 0 and 1, the two locations have

independent, but modified demand rates. Based on these two modified demand rates, we for-

mulate each location as a single-depot system, and derive cost approximations and system

performance measures respectively.
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The merit of this kind of modelling is that it is very intuitive and proves a quick

approach to get a glimpse of the system performance. We perform numerical experiments on

the backorder costs at the two locations. Results demonstrate that those cost parameters are

important factors in determining the form of the optimal transshipment policy. The approxi-

mation model suggests that partial pooling is optimal for a number of the examples consid-

ered. Furthermore, estimates of holdout thresholds I2 which correspond to the optimal trans-

shipment agreement probability can be obtained. Hence, we can infer that the approximation

model could be applied to inform the holdout transshipment policy.

In order to convince us of the accuracy of our decomposition approximation model, we

check the test results against a simulation of the two-location system with holdout transship-

ment policy. Unfortunately, the simulation results are not consistent with the findings of the

approximation model. However, there is evidence of consistency between these simulation

results and the simulation of a two location system with random transshipment decisions.

From these numerical experiment results and analysis, we conclude that the decomposi-

tion approach model with the transshipment agreement probability does provide us with a

quick reference to understand the impact of the holdout transshipment policy on the two-

location inventory control system. The approximation using the modified demand rates

might explain the difference between the decomposition approach and the simulation of the

original system. Because of the intensive interactions between the two locations when the

unidirectional transshipment policy is employed, decomposition using constant demand rates

at the two locations is not enough to capture all moments.

7.2.3 Decomposition TAP model with non-constant demand rates

In order to establish an improved approximation model of the holdout transshipment policy

applied to the two-location inventory system, we developed a new decomposition model in

Chapter 5 with non-constant demand rates.
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In Chapter 4, we found that the transshipment agreement probability can be used to

reflect the holdout transshipment, however we need to approximate the demand process more

closely to improve the approximation accuracy. Therefore, our new approach acknowledges

that transshipment is only possible when location 1 has no stock and location 2 has some

stock, and focuses on each location over a cycle. We derive the mean cycle time and distribu-

tion of inventory level at the end of a cycle at each location. An iterative algorithm is devel-

oped to estimate the average total cost and other performance measures for a given trans-

shipment agreement probability.

To check the accuracy of our approximation, we compare the approximation expressions

against the simulation of a single location with non-constant demand rate. The verification

results demonstrate that our approximations for all terms show a high degree of consistency

with the simulation.

In order to investigate the optimal holdout transshipment policy for the two-location

system, we conduct numerical experiments on the stockout costs at the two locations. The

results show that the TAP model predicts that partial pooling could be the optimal trans-

shipment policy. However, those partial pooling policies predicted by the TAP model are

not consistent with the optimal policies suggested by the simulation of the original system

with the holdout transshipment policy.

Furthermore, we derive the optimal holdout threshold value at location 2 suggested by

the TAP model by searching on the value of I2. We compare this threshold value and

optimal threshold determined by simulation of the original system with holdout transship-

ment policy. The results show that TAP model correctly predicts the optimal holdout value

for some cases, however, there are some discrepancies between the predicted and optimal

thresholds for other cases.
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One advantage of this decomposition approach is the simple technique of modelling the

system during a single cycle. It becomes possible to capture more moments due to transship-

ment interactions and reflect these interactions by more accurately modified demand rates.

By this new approach, we are able to derive explicit expressions for a range of system perfor-

mance measures under the assumptions of the decomposition approach.

Another advantage of this modelling is the extendable framework. Because there are sim-

ilar derivations on the relevant cost approximations both for the TAP and the subsequent

HOT model, we derive three lemmas in Section 5.3 of Chapter 5 to avoid duplicating the

derivations. These three lemmas can be used commonly to derive the cost approximations for

any single-depot system where customer demand is modelled by Poisson demand process and

an (R, Q) replenishment order policy is employed.

The discrepancies between the numerical results of the TAP and simulation models could

be due to the lack of accuracy from the transshipment agreement probability. So far, we only

use the transshipment agreement probability to model the degree of transshipment from loca-

tion 2 to location 1. Hence, it is worth developing a new decomposition approximation

approach with an explicit holdout transshipment decision variable to replace the transship-

ment agreement probability.

7.2.4 Decomposition HOT model with non-constant demand rates

The holdout transshipment policy (HOT) model is our first approximation model which

handles the holdout transshipment policy explicitly. Evolving from the TAP model, we also

approximate all cost components during a cycle.
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The main difference compared to the TAP model is that the transshipment decision is

now dependent on the holdout threshold I2 instead of the transshipment agreement proba-

bility z. Therefore, we are able to more accurately approximate distributions of inventory

levels, demand rates and mean cycle times during the cycle. For the HOT model, we must

consider more scenarios depending on the relationship between inventory level and holdout

threshold at location 2. As before, explicit expressions for average total cost and other per-

formance measures are derived.

To check the accuracy of our approximation, we compare the approximation expressions

against the simulation of a single location with non-constant demand rate. The verification

results demonstrate that our approximations for all terms show a high degree of consistency

with the simulation.

We investigate the form of the optimal holdout transshipment policy by performing

numerical experiments on the stockout cost rates at the two locations. The results from some

cases show that the partial pooling policy could lead to significant cost savings compared to

the policies of complete pooling and no pooling. This suggests that the whole system perfor-

mance could be improved from the optimal holdout transshipment policy. In addition, we

also compare the results with simulation of the original system with holdout transshipment

policy. The results show that the HOT model often correctly predicts the optimal holdout

threshold for the examples considered. Further, for the cases where the holdout thresholds

predicted by the HOT model and determined by simulation are different, the average total

cost rate when the HOT model threshold is applied is close to the optimal total cost rate.

Hence, we conclude that the decomposition approach with explicit holdout transshipment

decision variable provides an effective modelling approach to reflect the transshipment inter-

actions between the two locations in the system.
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7.2.5 SMDP models with exponential lead time

The reason we choose the SMDP approach is due to the nature of dynamic programming.

The state and action space can be defined to capture all transshipment interactions between

the two locations in the system. For the two-location inventory control system, this approach

is appropriate and feasible because the transshipment interactions between the two locations

occur dynamically and the scale of the state and action spaces is reasonable for computation.

By applying the SMDP approach, the transshipment decisions can been reviewed with more

consideration than with the analytic approximation approaches.

In the first part of Chapter 6, we developed two SMDP models with exponential lead

time under the general and holdout transshipment policies. Instead of the assumption of

fixed lead time which we used in the TAP and HOT models, we assume the exponential

lead time. Under such assumption, the time until an order is delivered does not depend on

the time that has passed since the order was placed because of the memory-less property of

the exponential random variable.

These bespoke SMDP models are developed by defining the state space, action space,

transition structure and immediate cost. We then investigate the effect of the backorder and

stockout cost rates at location 1 on the optimal holdout threshold for a holdout transship-

ment policy. When these cost parameters are increasing, the optimal strategy for the system

is to lower the holdout threshold in order to give more transshipment support. We found

that the optimal average total cost rate under the holdout transshipment policy is very close

to that with the general transshipment policy.

We also take advantage of information from the optimal general transshipment policy

which can be determined from the DP approach. More interestingly, from plots of the

optimal policy, we observe similar features between the optimal holdout threshold values and

the optimal general transshipment policies. We conclude that the SMDP model is an effec-

tive approach to the two-location system with holdout transshipment policy under the

assumption of exponential lead time.
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7.2.6 SMDP models with phase-type lead time

Under the assumption of exponential lead time, the transshipment decision is not dependent

on whether any replenishment orders are outstanding due to the memory-less property of

exponential random variables. However, this assumption needs to be modified if we need a

model to approximate fixed lead time effectively. Hence, we develop another SMDP model

with phase-type lead time. The idea of phase-type lead time model is intuitive, rather than

assuming a single exponential lead time, we assume that the lead time as the sum of a

number of IID exponential random variables. As the number of phases increases, this phase-

type model of replenishment lead time more closely approximates the fixed replenishment

lead time. Accordingly, we redefine the state space, action space, transition structure and

immediate cost for the two-location system.

To compensate for the increased complexity due to the phase-type model, we restrict the

choice of order quantity at each location to a single value instead of allowing a set of possible

order quantities as in the SMDP model with exponential lead time. For computational rea-

sons, the limits on the number of outstanding backorders and the inventory level are

restricted and the largest number of phases is limited to 4 for all numerical experiments.

Again, we conduct the numerical experiments on the backorder and stockout cost rates at

location 1. Unlike with exponential lead time, the optimal transshipment decisions depend on

the state of the replenishment order process. From the numerical results of the SMDP

model with phase-type lead time, the most interesting property which we observe is that it is

optimal for location 2 to provide more transshipment supports as the number of phases

remaining in the lead time at location 2 decreases and as the number of phases remaining in

the lead time at location 1 increases. However, there is a greater difference between the

optimal cost rates of the general and holdout transshipment policies, which is most likely due

to the use of a fixed holdout threshold which does not depend on the times until replenish-

ment of the locations.
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Alternatively, we propose a dynamic holdout transshipment policy in which the threshold

is a function of the state of the replenishment order process. The policy is specified by

defining a holdout threshold which depends on the number of phases remaining in the lead

times of outstanding orders at the two locations. We propose a quick method to estimate the

set of threshold values from the optimal general transshipment policy. Compared to the gen-

eral transshipment policy, we suggest that dynamic holdout transshipment policy is easy to

implement and to explain. Further, we believe that the optimal cost rate for the proposed

dynamic holdout transshipment would be close to the optimal cost rate for the general trans-

shipment policy.

Therefore, we have more confidence that the SMDP model with phase-type lead time is

an effective approach to approximate the original inventory system with a fixed lead time.

The phase-type lead time assumption provides us another angle to develop deep insights of

system behaviours.

7.3 Further research

Our research work on the unidirectional holdout transshipment policy demonstrates partial

pooling features of the two-location system. Through a series of modelling approaches from

decomposition approximation models to the SMDP models, under some circumstances, our

numerical experiments show that holdout partial pooling could be the optimal cost policy.

Hence, holdout partial pooling can provide easily understood solutions for the system

without costing too much on the total system operation cost. That is a good option for the

inventory manager. Meanwhile, there are other subjects and directions we might explore in

our future research study.
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In chapter 6, we introduced a quick approach to derive the dynamic holdout threshold by

plotting the optimal transshipment decisions. However, we still consider a fixed holdout

transshipment policy in our SMDP models. Hence, it is worth to develop our SMDP

models by applying the dynamic holdout thresholds which are dependent on the times until

replenishment of the locations.

So far, we only review the two-location inventory control system with unidirectional

holdout transshipment policy. It is worthwhile to review three or more locations system in

our future research as multi-location inventory control system is more applicable to the real

problem domain. For systems with three or more locations, it is not appropriate to apply the

SMDP modelling technique because of the dramatic increases in the computational work-

load from the huge increases in the scale of the state and action spaces. However, we can

apply the decomposition modelling techniques from the TAP and HOT models to systems

with three or more locations.

In addition to the optimal total cost for the two-location system, it is also interesting to

study other system performance measures such as direct fill rate, backorder fill rate, trans-

shipment fill rate in the future. The relations between optimal total cost and other system

performance measures might provide us with more information on the impact from the given

holdout transshipment policy to the multi-location system.

In our models, we have assumed an unidirectional transshipment policy, which can be

relaxed to allow bidirectional transshipment in a multi-location system. There are other

assumptions which we might consider to review, for instance, the assumption which only

allows at most one outstanding replenishment order at each location, and the assumption

which only permit one item for each transshipment delivery. We also assume all demands

occur according to Poisson demand processes, which is very common in our research field.

However, it is interesting to consider other probability distributions, for example, geometric

random variable. If the new demand distribution is defined, the TAP and HOT models

need a fundamental review because we apply the Erlang distribution as the condition to

approximate the time period during which inventory level falls down.
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Appendix A
Simulation implementations

For further reference, we enclose the JAVA codes of our simulation models cooresponding to

the TAP and HOT models. Only main methods and classes are provided, the simulation

implementation of the single depot system and the rest of classes are omitted.

Short�term references

LAM: Poisson demand rate

C: order cost rate per each order

B: backorder cost rate

SO: stockout cost rate

H: holding cost per item per time unit

R,Q: values of Reorder position and order quantity.

IS: initial stock level

IT: initial time

nSim: simulation times

WT: warmup time

ET: end time

VT: valid time period

Tsd: next system demand arrival time

SL: stock level

SP: stock position

VDA: all valid demands

FR: direct fill rate

FRB: backorder fill rate

TC: average cost for the whole system

OC: average order cost

BC: average backorder cost

SOC: average stockout cost
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HC: average holding cost

A.1 Simulation implementation for the TAP model

/*

* Simulation for two-depot system with transshipment factor Z

* under (R,Q) replenishment policy

*/

import java.io.*;

import java.util.*;

public class simuTAP

{

public static final int IT1=0, LT1=1, IT2=0, LT2=1;

public static final double WT=500, ET=5000, VT=(ET-WT);

public static final int nSim=500;

public static void main(String [] args) throws IOException

{

initialise the parameter set;

// initialise the inventory stock both at two locations;

int IS1 = R1+Q1;

int IS2 = R2+Q2;

double LAM = LAM1+LAM2;

for (double z=1; z>=0; z=z-0.1)

{

//initialise the variable array for standard error;

double [] FR1 = new double [nSim];

double [] FRB1 = new double [nSim];

double [] TC1 = new double [nSim];

double [] OC1 = new double [nSim];

double [] SOC1 = new double [nSim];

double [] BC1 = new double [nSim];

double [] HC1 = new double [nSim];

double [] FR2 = new double [nSim];

double [] FRB2 = new double [nSim];

double [] TC2 = new double [nSim];

double [] OC2 = new double [nSim];

double [] SOC2 = new double [nSim];

double [] BC2 = new double [nSim];

double [] HC2 = new double [nSim];

double [] FRTR21= new double [nSim];

double [] TRC21 = new double [nSim];
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double [] TCALL = new double [nSim];

for (int j=0; j<nSim; j++)

{

/*

* counters for Order number, back order number

* and transshipment number

*/

double ON1=0, BON1=0, TRON21=0,

ON2=0, BON2=0;

double FR1_=0, FRB1_=0, FR2_=0, FRB2_=0, FRTR21_=0;

// Initialise two-depot system

Depot depot1 = new Depot();

Vector OO1 = depot1.OOS;

double SL1 = IS1;

double SP1 = IS1;

depot1.addST(IT1);

depot1.addSL(SL1);

Depot depot2 = new Depot();

Vector OO2 = depot2.OOS;

double SL2 = IS2;

double SP2 = IS2;

depot2.addST(IT2);

depot2.addSL(SL2);

Random rgn = new Random(new Integer(1500+100*j).longValue());

/*

* Tsd: next system arrival time

* VDA: all demands during the valid time period

*/

double Tsd = 0;

double VDA1= 0, VDA2= 0;

while (Tsd<ET)

{

Tsd = Tsd-Math.log(rgn.nextDouble())/LAM;

/*

* Check the outstanding orders

*/

while(!OO1.isEmpty())

{

double OOT1 = ((Double) OO1.firstElement()).doubleValue();
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if(Tsd < OOT1)

break;

else

{

SL1 = SL1 + Q1;

OO1.remove(OO1.firstElement());

depot1.addST(OOT1);

depot1.addSL(SL1);

continue;

}

}

while(!OO2.isEmpty())

{

double OOT2 = ((Double) OO2.firstElement()).doubleValue();

if(Tsd < OOT2)

break;

else

{

SL2 = SL2 + Q2;

OO2.remove(OO2.firstElement());

depot2.addST(OOT2);

depot2.addSL(SL2);

continue;

}

}

/*

* --------

* Depot 1

* --------

*/

if (rgn.nextDouble()<LAM1/LAM)

{

if (Tsd>=WT)

VDA1++;

// When stock level is above zero

if (SL1>0)

{

SL1 = SL1-1;

SP1 = SP1-1;

depot1.addST(Tsd);

depot1.addSL(SL1);

if (Tsd>=WT)

FR1_++;

if (SP1==R1)

{

// places the order

SP1 = SP1+Q1;

depot1.addOO((double)(Tsd+LT1));
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if (Tsd>=WT)

ON1++;

}

continue;

}

else // SL1<=0, transshipment is considered

{

/*

* when depot 2 has enough stock to transship

*/

if (rgn.nextDouble()<z)

{

SL2 = SL2-1;

SP2 = SP2-1;

depot2.addST(Tsd);

depot2.addSL(SL2);

depot1.addTrans((double)Tsd);

if (Tsd>=WT)

{

TRON21++;

FRTR21_++;

}

if(SP2==R2)

{

// depot 2 places the order

SP2 = SP2+Q2;

depot2.addOO((double)(Tsd+LT2));

if (Tsd>=WT)

ON2++;

}

continue;

}

/*

* no transshipment made, depot 1 places

* the backorder only

*/

else // no transshipment made

{

SL1 = SL1-1;

SP1 = SP1-1;

depot1.addST(Tsd);

depot1.addSL(SL1);

depot1.addBO((double)Tsd);

if (Tsd >= WT)
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{

BON1++;

FRB1_++;

}

if (SP1==R1)

{

// depot 1 places the order

SP1 = SP1+Q1;

depot1.addOO((double)(Tsd+LT1));

if (Tsd>=WT)

ON1++;

}

continue;

}

}

}

/*

* --------

* depot 2

* --------

*/

else

{

if (Tsd>=WT)

VDA2++;

if (SL2>0)

{

SL2 = SL2-1;

SP2 = SP2-1;

depot2.addST(Tsd);

depot2.addSL(SL2);

if (Tsd>=WT)

FR2_++;

if (SP2==R2)

{

// depot 2 places the order

SP2 = SP2+Q2;

depot2.addOO((double)(Tsd+LT2));

if(Tsd>=WT)

ON2++;

}

continue;

}

else // SL2<=0

{

SL2 = SL2-1;

SP2 = SP2-1;
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depot2.addST(Tsd);

depot2.addSL(SL2);

depot2.addBO((double)Tsd);

if (Tsd>=WT)

{

BON2++;

FRB2_++;

}

if (SP2==R2)

{

// depot 2 places the order

SP2 = SP2+Q2;

depot2.addOO((double)(Tsd+LT2));

if (Tsd>=WT)

ON2++;

}

continue;

}

}

}

double OC1_ = C1*ON1/VT;

double SOC1_ = SO1*BON1/VT;

double BC1_ = B1*Lib.ABL(depot1.STV,depot1.SLV, WT,ET);

double HC1_ = H1*Lib.AIL(depot1.STV,depot1.SLV,WT,ET);

double TRC21_ = TR21*TRON21/VT;

double TC1_ = OC1_+SOC1_+BC1_+HC1_;

double OC2_ = C2*ON2/VT;

double SOC2_ = SO2*BON2/VT;

double BC2_ = B2*Lib.ABL(depot2.STV,depot2.SLV, WT,ET);

double HC2_ = H2*Lib.AIL(depot2.STV,depot2.SLV,WT,ET);

double TC2_ = OC2_+SOC2_+BC2_+HC2_;

double TCALL_ = TC1_+TC2_+TRC21_;

Print result;

}

A.2 Simulation implementation for the HOT model

/*

* Simulation for two-depot system with holdout transshipment

* under (R,Q) replenishment policy

*/

import java.io.*;

import java.util.*;
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public class simuHOT

{

//Simulation parameters

public static final double WT = 5000, DT = 50000, RT = DT - WT;

//Variables to control simulation

static int nxtEvType;

static double nxtEvTime,tSE,tSD;

static Depot d1,d2;

public static final int nSim=500;

public static void main(String [] args) throws IOException

{

initialise the parameter sets;

int IS1 = ROP1+OQ1;

int IS2 = ROP2+OQ2;

double LAM = LAM1+LAM2, SPLIT = LAM1/LAM;

//Simulation parameters

double [] TC1 = new double [nSim];

double [] OC1 = new double [nSim];

double [] SOC1 = new double [nSim];

double [] BC1 = new double [nSim];

double [] HC1 = new double [nSim];

double [] TC2 = new double [nSim];

double [] OC2 = new double [nSim];

double [] SOC2 = new double [nSim];

double [] BC2 = new double [nSim];

double [] HC2 = new double [nSim];

double [] TRC21 = new double [nSim];

double [] TCALL = new double [nSim];

double [] FR1 = new double [nSim];

double [] FRB1 = new double [nSim];

double [] FR2 = new double [nSim];

double [] FRB2 = new double [nSim];

double [] FRTR21= new double [nSim];

Depot.tInf = 2*DT;

for (int HO2=1; HO2<=2*OQ2; HO2++)

{

//Initialise the simulation for a holdout value

//int HO = ROP2 + OQ2;

Random rgn = new Random(new Integer (1500).longValue());
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for (int j=0; j<nSim; j++)

{

//Initialise a simulation run for this holdout value

d1 = new Depot(OQ1, ROP1, IS1);

d2 = new Depot(OQ2, ROP2, IS2);

double cT = 0;

tSE = WT;

//Perform a simulation run

while (cT < DT)

{

tSD = cT - Math.log(rgn.nextDouble())/LAM;

nextEvent();

d1.areaAboveBelow(cT,nxtEvTime);

d2.areaAboveBelow(cT,nxtEvTime);

if (nxtEvType == 0)

if (tSE > WT)

{

//System.out.println("Run "+i+" over");

nxtEvTime = Depot.tInf;

}

else

{

//System.out.println("Warm-up "+i+" over");

d1.zeroAll();

d2.zeroAll();

tSE = DT;

}

else if (nxtEvType == 1)

{

d1.receiveOrder();

}

else if (nxtEvType == 2)

{

d2.receiveOrder();

}

else

{

if (rgn.nextDouble() < SPLIT)

{

if ((d1.sL < 1) && (d2.sL > HO2))

{

d2.removeItem(tSD);

d1.nTR = d1.nTR + 1;

}

else

{

d1.removeItem(tSD);

}

}

else

{

d2.removeItem(tSD);
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}

}

cT = nxtEvTime;

}

//Print out average performance measures

OC1[j] = C1*d1.nOO/RT;

HC1[j] = H1*d1.aHL/RT;

SOC1[j] = SO1*d1.nBO/RT;

BC1[j] = B1*d1.aBO/RT;

TRC21[j] = TR21*d1.nTR/RT;

OC2[j] = C2*d2.nOO/RT;

HC2[j] = H2*d2.aHL/RT;

SOC2[j] = SO2*d2.nBO/RT;

BC2[j] = B2*d2.aBO/RT;

TC1[j] = (C1*d1.nOO + SO1*d1.nBO + B1*d1.aBO + H1*d1.aHL + TR21*d1.nTR)/RT;

TC2[j] = (C2*d2.nOO + SO2*d2.nBO + B2*d2.aBO + H2*d2.aHL)/RT;

TCALL[j] = TC1[j]+TC2[j];

}

print the result;

}

public static void nextEvent()

{

if (tSE < tSD && tSE < d1.tOO && tSE < d2.tOO)

{

nxtEvType = 0;

nxtEvTime = tSE;

}

else if (d1.tOO < tSD && d1.tOO < d2.tOO)

{

nxtEvType = 1;

nxtEvTime = d1.tOO;

}

else if (d2.tOO < tSD)

{

nxtEvType = 2;

nxtEvTime = d2.tOO;

}

else

{

nxtEvType = 3;

nxtEvTime = tSD;

}

}

}
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Appendix B
Approximation implementations

For the references, we give the JAVA codes for the major classes and methods of the cost

approximations for the TAP model, HOT model and SMDP model with phased-type lead

time. The implementations for the single depot model and all rest of classes and methods are

omitted.

B.1 Approximation implementation for the TAP model

public class LocationTap1

{

double lam1, L1, c1, h1, so1, b1, tr21;

int r1, q1;

static final double TOL1 = 1E-16;

static final double TOL2 = 1E-14;

static final double accuracy = 1E-4;

static final int maxIntervals = 10000;

double lowerLimit=0, upperLimit;

double OC1, HC1, SOC1, BC1, TRC21, mct1;

public LocationTap1(double lam1_, int r1_, int q1_, double L1_,

double c1_, double h1_, double so1_, double b1_, double tr21_)

{

lam1 = lam1_;

r1 = r1_;

q1 = q1_;

L1 = L1_;

c1 = c1_;

h1 = h1_;

so1 = so1_;

b1 = b1_;

tr21 = tr21_;

upperLimit = L1;

}

/**********************************************************************************

**********************************************************************************

* Standard basic library function to computer fac, lead time demand

distribution

* and probability distribution of X1(R1)

**********************************************************************************
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**********************************************************************************

*/

public double PX1R1(double alpha, double z, int j)

{

double result = 0;

if (j>=1 && j<=r1)

result = Math.pow(lam1*L1,r1-j)*Math.exp(-lam1*L1)/Lib.fac(r1-j);

else if (j<=0)

{

/*

* declare a integral function and initialise the parameter set

*/

double lam1New = lam1*(1-alpha*z);

PX1R1 f = new PX1R1();

f.lam1 = lam1;

f.r1 = r1;

f.alpha = alpha;

f.z = z;

f.L1 = L1;

f.j = j;

double coefficient = Math.pow(lam1,r1)*Math.pow(lam1New,-j)

*Math.exp(-lam1New*L1)/(Lib.fac(r1-1)*Lib.fac(-j));

result = coefficient*Integration.trapezium(f,

lowerLimit,upperLimit,accuracy,maxIntervals);

}

return result;

}

/***********************************************

***********************************************

* Computation of E[X1(R1)], E[X1(R1)~2]

***********************************************

***********************************************

*/

public double EX1R1(double alpha, double z)

{

int j = r1;

double summ = j*PX1R1(alpha,z,j);

double oldSumm;

do

{

oldSumm = summ;

j--;

summ = summ+j*PX1R1(alpha,z,j);

} while ( Math.abs(summ-oldSumm)> TOL1 || Math.abs(PX1R1(alpha,z,j))> TOL2);

return summ;

}

public double EX1R1S(double alpha, double z)
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{

int j = r1;

double summ = j*j*PX1R1(alpha,z,j);

double oldSumm;

do

{

oldSumm = summ;

j--;

summ = summ+j*j*PX1R1(alpha,z,j);

} while ( Math.abs(summ-oldSumm)> TOL1 || Math.abs(PX1R1(alpha,z,j))> TOL2);

return summ;

}

public double beta(double alpha, double z)

{

SigmaSumBetaTap SS1 = new SigmaSumBetaTap();

SS1.lam1 = lam1;

SS1.r1 = r1;

SS1.L1 = L1;

double ssbta = SigmaSum.sumInfP(SS1,r1);

double ssbtb = SigmaSum.sumInfP(SS1,r1+1);

double nominator = L1*ssbta-r1*ssbtb/lam1;

double denominator = (q1-r1)/lam1+EX1R1(alpha,z)/lam1+L1;

return nominator/denominator;

}

/***************************************************************

***************************************************************

* Cost Evaluation Part

***************************************************************

***************************************************************

*/

public double CostEval1(double alpha, double beta, double z)

{

double ex1r1 = EX1R1(alpha,z);

double ex1r1s = EX1R1S(alpha,z);

// Mean Cycle Time at depot 1

mct1 = (q1-r1+ex1r1)/lam1+L1;

/*

* Order Cost Evaluation

*/

OC1 = c1/mct1;

/*

* Holding Cost Evaluation

* HC1a stands for the holding cost during the pre lead time

* HC1b stands for the holding cost during the lead time

*/

double HC1a = (q1*q1+q1-r1*r1-r1+(2*q1+1)*ex1r1+ex1r1s)/(2*lam1);

double HC1b = L1*r1*Lib.F(r1-1,lam1*L1)
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-lam1*L1*L1*Lib.F(r1-2,lam1*L1)/2

+r1*(r1+1)*Lib.Fbar(r1,lam1*L1)/(2*lam1);

HC1 = h1*(HC1a+HC1b)/mct1;

/*

* Backorder Cost Evaluation

*/

StockOut1 stockout1 = new StockOut1();

stockout1.alpha = alpha;

stockout1.z = z;

SOC1 = so1*SigmaSum.sumInfP1(stockout1, 1, this)/mct1;

/*

* backorder cost for depot 1

*/

BackOrder1 backorder1 = new BackOrder1();

backorder1.lam1 = lam1;

backorder1.L1 = L1;

backorder1.r1 = r1;

double coefficient = b1*Math.pow(lam1,r1+1)*(1-alpha*z)/(2*Lib.fac(r1-1));

BC1 = coefficient*Integration.trapezium(backorder1,

lowerLimit,upperLimit,accuracy,maxIntervals)/mct1;

TRC21 = z*tr21*lam1*alpha*beta;

return (OC1+HC1+SOC1+BC1);

}

}

/*

* Cost evaluation for TAP model at location 2

*/

import java.io.*;

import java.util.*;

public class LocationTap2

{

double lam1, lam2, L2, c2, h2, so2, b2;

int r2, q2;

static final double TOL1 = 1E-16;

static final double TOL2 = 1E-14;

static final double accuracy = 1E-4;

static final int maxIntervals = 10000;

double lowerLimit=0, upperLimit;

double OC2, HC2, SOC2, BC2, mct2;

public LocationTap2(double lam1_, double lam2_, int r2_, int q2_, double L2_,

double c2_, double h2_, double so2_, double b2_)

{

lam1 = lam1_;

lam2 = lam2_;
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r2 = r2_;

q2 = q2_;

L2 = L2_;

c2 = c2_;

h2 = h2_;

so2 = so2_;

b2 = b2_;

upperLimit = L2;

}

/**********************************************************************************

**********************************************************************************

* Standard basic library function to compute lead time demand distribution

* and probability distribution of X2(R2)

**********************************************************************************

**********************************************************************************

*/

public double PX2R2(double beta, double z, int j)

{

double result = 0;

double lam2New = lam2+lam1*z*beta;

if (j>=1 && j<=r2)

{

result = Math.pow(L2*lam2New,r2-j)*Math.exp(-lam2New*L2)/Lib.fac(r2-j);

}

else if (j<=0)

{

/*

* declare a integral function and initialise the parameter set

*/

PX2R2 f = new PX2R2();

f.lam1 = lam1;

f.r2 = r2;

f.beta = beta;

f.z = z;

f.L2 = L2;

f.j = j;

double coefficient = Math.pow(lam2New,r2)*Math.pow(lam2,-j)

*Math.exp(-lam2*L2)/(Lib.fac(r2-1)*Lib.fac(-j));

result = coefficient*Integration.trapezium(f,

lowerLimit,upperLimit,accuracy,maxIntervals);

}

return result;

}

/***********************************************

***********************************************

* Computation of E[X2(R2)], E[X2(R2)~2]

***********************************************

***********************************************

*/
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public double EX2R2(double beta, double z)

{

int j = r2;

double summ = j*PX2R2(beta,z,j);

double oldSumm;

do

{

oldSumm = summ;

j--;

summ = summ+j*PX2R2(beta,z,j);

} while ( Math.abs(summ-oldSumm)> TOL1 || Math.abs(PX2R2(beta,z,j)) > TOL2);

return summ;

}

public double EX2R2S(double beta, double z)

{

int j = r2;

double summ = j*j*PX2R2(beta,z,j);

double oldSumm;

do

{

oldSumm = summ;

j--;

summ = summ+j*j*PX2R2(beta,z,j);

} while ( Math.abs(summ-oldSumm)> TOL1 || Math.abs(PX2R2(beta,z,j)) > TOL2);

return summ;

}

public double alpha(double beta, double z)

{

double lam2New = lam2+lam1*z*beta;

SigmaSumAlphaTap SS1 = new SigmaSumAlphaTap();

SS1.L2 = L2;

SS1.lam2New = lam2New;

double ssata = SigmaSum.sumInfP(SS1,r2);

double ssatb = SigmaSum.sumInfP(SS1,r2+1);

double nominator = Math.exp(-lam2New*L2)*(L2*ssata-r2*ssatb/lam2New);

mct2 = (q2-r2+EX2R2(beta,z))/lam2New+L2;;

return 1-nominator/mct2;

}

/***************************************************************

***************************************************************

* Cost Evaluation Part

***************************************************************

***************************************************************

*/

public double CostEval2(double alpha, double beta, double z)

{

double lam2New = lam2+lam1*z*beta;
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double ex2r2 = EX2R2(beta,z);

double ex2r2s = EX2R2S(beta,z);

// Mean cycle time at depot 2

mct2 = (q2-r2+ex2r2)/lam2New+L2;

/*

* Order Cost Evaluation

*/

OC2 = c2/mct2;

/*

* Holding Cost Evaluation

*/

double HC20 = (q2*q2+q2-r2*r2-r2+(2*q2+1)*ex2r2+ex2r2s)/(2*lam2New);

double HC21 = L2*r2*Lib.F(r2-1,lam2New*L2)

-lam2New*L2*L2*Lib.F(r2-2,lam2New*L2)/2

+r2*(r2+1)*Lib.Fbar(r2,lam2New*L2)/(2*lam2New);

HC2 = h2*(HC20+HC21)/mct2;

/*

* Stockout cost for depot 2

*/

StockOut2 stockout2 = new StockOut2();

stockout2.beta = beta;

stockout2.z = z;

SOC2 = so2*SigmaSum.sumInfP2(stockout2, 1, this)/mct2;

/*

* Backorder cost for depot 2

*/

BackOrder2 backorder2 = new BackOrder2();

backorder2.L2 = L2;

backorder2.r2 = r2;

backorder2.lam2New = lam2New;

double coefficient = b2*Math.pow(lam2New,r2)*lam2/(2*Lib.fac(r2-1));

BC2 = coefficient*Integration.trapezium(backorder2,

lowerLimit,upperLimit,accuracy,maxIntervals)/mct2;

return (OC2+HC2+SOC2+BC2);

}

}
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B.2 Approximation implementation for the HOT model

public class LocationHot1

{

double lam1, L1, c1, h1, so1, b1, tr21;

int r1, q1;

static final double TOL1 = 1E-16;

static final double TOL2 = 1E-16;

static final double accuracy = 1E-6;

static final int maxIntervals = 10000;

double lowerLimit, upperLimit;

double OC1, HC1, SOC1, BC1, TRC21;

public LocationHot1(double lam1_, int r1_, int q1_, double L1_, double c1_,

double h1_, double so1_, double b1_, double tr21_)

{

lam1 = lam1_;

r1 = r1_;

q1 = q1_;

L1 = L1_;

c1 = c1_;

h1 = h1_;

so1 = so1_;

b1 = b1_;

tr21 = tr21_;

lowerLimit = 0;

upperLimit = L1;

}

/**********************************************************************************

**********************************************************************************

* Standard basic library function to computer fac, lead time demand

distribution

* and probability distribution of X1(R1)

**********************************************************************************

**********************************************************************************

*/

public double PX1R1(double omega, int j)

{

double result = 0;

double lam1New = lam1*(1-omega);

if (j>=1 && j<=r1)

result = Math.pow(lam1*L1,r1-j)*Math.exp(-lam1*L1)/Lib.fac(r1-j);

else if (j<=0)

{

/*

* declare a integral function and initialise the parameter set

*/
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PX1R1 f = new PX1R1();

f.lam1 = lam1;

f.r1 = r1;

f.omega = omega;

f.L1 = L1;

f.j = j;

double coefficient = Math.pow(lam1,r1)*Math.pow(lam1New,-j)

*Math.exp(-lam1New*L1)/(Lib.fac(r1-1)*Lib.fac(-j));

result = coefficient*Integration.trapezium(f,

lowerLimit,upperLimit,accuracy,maxIntervals);

}

return result;

}

/***********************************************

***********************************************

* Computation of E[X1(R1)], E[X1(R1)~2]

***********************************************

***********************************************

*/

public double EX1R1(double omega)

{

int j = r1;

double summ = j*PX1R1(omega,j);

double oldSumm;

do

{

oldSumm = summ;

j--;

summ = summ+j*PX1R1(omega,j);

} while ( Math.abs(summ-oldSumm)> TOL1 || Math.abs(PX1R1(omega,j))> TOL2);

return summ;

}

public double EX1R1S(double omega)

{

int j = r1;

double summ = j*j*PX1R1(omega,j);

double oldSumm;

do

{

oldSumm = summ;

j--;

summ = summ+j*j*PX1R1(omega,j);

} while ( Math.abs(summ-oldSumm)> TOL1 || Math.abs(PX1R1(omega,j))> TOL2);

return summ;

}

public double theta(double omega)

{

// caculate the theta

double nominator = L1*Lib.Fbar(r1-1,lam1*L1)-r1*Lib.Fbar(r1,lam1*L1)/lam1;
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double mct1 = (q1-r1+EX1R1(omega))/lam1+L1;

return nominator/mct1;

}

/***************************************************************

***************************************************************

* Cost Evaluation Part

***************************************************************

***************************************************************

*/

public double CostEval1(double omega, double theta)

{

double ex1r1 = EX1R1(omega);

double ex1r1s = EX1R1S(omega);

double mct1 = (q1-r1+ex1r1)/lam1+L1;

/*

* Order Cost Evaluation

*/

OC1 = c1/mct1;

/*

* Holding Cost Evaluation

*/

double HC1a = (q1*q1+q1-r1*r1-r1+(2*q1+1)*ex1r1+ex1r1s)/(2*lam1);

double HC1b = L1*r1*Lib.F(r1-1,lam1*L1)

-lam1*L1*L1*Lib.F(r1-2,lam1*L1)/2

+r1*(r1+1)*Lib.Fbar(r1,lam1*L1)/(2*lam1);

HC1 = h1*(HC1a+HC1b)/mct1;

/*

* Stock Cost Evaluation

*/

StockOut1 stockout1 = new StockOut1();

stockout1.omega = omega;

SOC1 = so1*SigmaSum.sumInfP1(stockout1, 1, this)/mct1;

/*

* backorder cost for depot 1

*/

BackOrder1 backorder1 = new BackOrder1();

backorder1.lam1 = lam1;

backorder1.L1 = L1;

backorder1.r1 = r1;

double coefficient = Math.pow(lam1,r1+1)*(1-omega)/(2*Lib.fac(r1-1));

BC1 = b1*coefficient*Integration.trapezium(backorder1,

lowerLimit,upperLimit,accuracy,maxIntervals)/mct1;

TRC21 = tr21*lam1*omega*theta;
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return OC1+HC1+SOC1+BC1;

}

}

public class LocationHot2

{

double lam1, lam2, L2, c2, h2, so2, b2;

int r2, q2;

static final double TOL1 = 1E-16, TOL2 = 1E-16, TOL3 = 1E-16;

static final double accuracy = 1E-6;

static final int maxIntervals = 10000;

double lowerLimit, upperLimit;

double OC2, HC2, SOC2, BC2;

public LocationHot2(double lam1_, double lam2_, int r2_, int q2_, double L2_,

double c2_, double h2_, double so2_, double b2_)

{

lam1 = lam1_;

lam2 = lam2_;

r2 = r2_;

q2 = q2_;

L2 = L2_;

c2 = c2_;

h2 = h2_;

so2 = so2_;

b2 = b2_;

lowerLimit = 0;

upperLimit = L2;

}

/**********************************************************************************

**********************************************************************************

* Standard basic library function to compute lead time demand distribution

* and probability distribution of X2(R2)

**********************************************************************************

**********************************************************************************

*/

public double PX2R2(double theta, int I2, int j)

{

double result = 0;

double lam2New = lam2+lam1*theta;

if (r2>I2)

{

if (j>I2)

result = Math.pow(lam2New*L2,r2-j)*Math.exp(-lam2New*L2)/Lib.fac(r2-j);

else

{

/*

* declare a integral function and initialise the parameter set

*/
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PX2R2 fx2r2 = new PX2R2();

fx2r2.lam1 = lam1;

fx2r2.theta = theta;

fx2r2.r2 = r2;

fx2r2.I2 = I2;

fx2r2.L2 = L2;

fx2r2.j = j;

double coeffPX2R2 = Math.pow(lam2New,r2-I2)*Math.pow(lam2,I2-j)

*Math.exp(-lam2*L2)/(Lib.fac(r2-I2-1)*Lib.fac(I2-j));

result = coeffPX2R2*Integration.trapezium(fx2r2,

lowerLimit,upperLimit,accuracy,maxIntervals);

}

}

else if (r2==I2)

result = Math.pow(L2*lam2,r2-j)*Math.exp(-lam2*L2)/Lib.fac(r2-j);

else if (r2<I2)

result = Math.pow(L2*lam2,r2-j)*Math.exp(-lam2*L2)/Lib.fac(r2-j);

return result;

}

/***********************************************

***********************************************

* Computation of E[X2(R2)], E[X2(R2)~2]

***********************************************

***********************************************

*/

public double EX2R2(double theta, int I2)

{

int j = r2;

double summ = j*PX2R2(theta,I2,j);

double oldSumm;

do

{

oldSumm = summ;

j--;

summ = summ+j*PX2R2(theta,I2,j);

} while ( Math.abs(summ-oldSumm)> TOL1 || Math.abs(PX2R2(theta,I2,j)) >TOL2);

return summ;

}

public double EX2R2S(double theta, int I2)

{

int j = r2;

double summ = j*j*PX2R2(theta,I2,j);

double oldSumm;

do

{

oldSumm = summ;

j--;

summ = summ+j*j*PX2R2(theta,I2,j);

} while ( Math.abs(summ-oldSumm)> TOL1 || Math.abs(PX2R2(theta,I2,j)) >TOL2);
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return summ;

}

public double EMINI2(double theta, int I2)

{

int j = r2;

double summ = PX2R2(theta,I2,j)*Math.min(I2,q2+j);

double oldSumm;

do

{

oldSumm = summ;

j--;

summ = summ+PX2R2(theta,I2,j)*Math.min(I2,q2+j);

} while ( Math.abs(summ-oldSumm)> TOL3 ||

Math.abs(PX2R2(theta,I2,j)*Math.min(I2,q2+j))> TOL3);

return summ;

}

public double EMINI2S(double theta, int I2)

{

int j = r2;

double summ = PX2R2(theta,I2,j)*Math.min(I2,q2+j)*Math.min(I2,q2+j);

double oldSumm;

do

{

oldSumm = summ;

j--;

summ = summ+PX2R2(theta,I2,j)*Math.min(I2,q2+j)*Math.min(I2,q2+j);

} while ( Math.abs(summ-oldSumm)> TOL3 ||

Math.abs(PX2R2(theta,I2,j)*Math.min(I2,q2+j)*Math.min(I2,q2+j))>

TOL3);

return summ;

}

public double omega(double theta, int I2)

{

double mt = 0, mct2= 0, result = 0;

double lam2New = lam2+lam1*theta;

double ex2r2 = EX2R2(theta,I2);

double eminI2 = EMINI2(theta,I2);

if (r2>I2)

{

mt = L2*Lib.Fbar(r2-I2-1,lam2New*L2)-(r2-I2)*Lib.Fbar(r2-

I2,lam2New*L2)/lam2New;

mct2 = (q2-r2+ex2r2)/lam2New+L2;

result = 1-mt/mct2;

}

else if (r2 == I2)

{

mct2 = (q2-r2+ex2r2)/lam2New+L2;

result = 1-L2/mct2;

}
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else if (r2<I2)

{

mt = (q2+ex2r2-eminI2)/lam2New;

mct2 = (q2+ex2r2-eminI2)/lam2New+(eminI2-r2)/lam2+L2;

result = mt/mct2;

}

return result;

}

public double phi(double theta, int I2)

{

// caculate the phi

double mt=0, mct2=0, result=0;

double lam2New = lam2+lam1*theta;

double ex2r2 = EX2R2(theta,I2);

double eminI2 = EMINI2(theta,I2);

if (r2>I2)

{

IntegralPhi intPHI = new IntegralPhi();

intPHI.I2 = I2;

intPHI.L2 = L2;

intPHI.r2 = r2;

intPHI.lam2 = lam2;

intPHI.lam2New = lam2New;

double coefficient1 = Math.pow(lam2New,r2-I2)/Lib.fac(r2-I2-1);

mt = coefficient1*Integration.trapezium(intPHI,

lowerLimit,upperLimit,accuracy,maxIntervals);

mct2 = (q2-r2+ex2r2)/lam2New+L2;

result = 1-mt/mct2;

}

else if (r2==I2)

{

mt = L2*Lib.Fbar(r2-1,lam2*L2)-r2*Lib.Fbar(r2,lam2*L2)/lam2;

mct2 = (q2-r2+ex2r2)/lam2New+L2;

result = 1-mt/mct2;

}

else if (r2<I2)

{

mt = L2*Lib.Fbar(r2-1,lam2*L2)

-r2*Lib.Fbar(r2,lam2*L2)/lam2;

mct2 = (q2+ex2r2-eminI2)/lam2New+(eminI2-r2)/lam2+L2;

result = 1- mt/mct2;

}

return result;

}

/***************************************************************

***************************************************************

* Cost Evaluation Part

***************************************************************
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***************************************************************

*/

public double CostEval2(double theta, int I2)

{

double mct2 = 0;

double lam2New = lam2+lam1*theta;

double ex2r2 = EX2R2(theta,I2);

double ex2r2s = EX2R2S(theta,I2);

double eminI2 = EMINI2(theta,I2);

double eminI2s = EMINI2S(theta,I2);

if (r2>I2)

{

//Mean cycle time at depot 2

mct2 = (q2-r2+ex2r2)/lam2New+L2;

/*

* Order Cost Evaluation

*/

OC2 = c2/mct2;

/*

* Holding Cost Evaluation

*/

IntegralHLD intGHLD = new IntegralHLD();

intGHLD.I2 = I2;

intGHLD.L2 = L2;

intGHLD.r2 = r2;

intGHLD.lam2 = lam2;

intGHLD.lam2New = lam2New;

double HC2a = (q2*q2+q2-r2*r2-r2+(2*q2+1)*ex2r2+ex2r2s)/(2*lam2New);

double HC2b = L2*r2*Lib.F(r2-I2-1,lam2New*L2)

-lam2New*L2*L2*Lib.F(r2-I2-2,lam2New*L2)/2

+(r2+I2+1)*(r2-I2)*Lib.Fbar(r2-

I2,lam2New*L2)/(2*lam2New);

double coefficient1 = Math.pow(lam2New,r2-I2)/Lib.fac(r2-I2-1);

double HC2c = coefficient1*Integration.trapezium(intGHLD,

lowerLimit,upperLimit,accuracy,maxIntervals);

HC2 = h2*(HC2a+HC2b+HC2c)/mct2;

/*

* Stock Cost Evaluation

*/

StockOut2 stockout2 = new StockOut2();

stockout2.theta = theta;

stockout2.I2 = I2;

SOC2 = so2*SigmaSum.sumInfP2(stockout2, 1, this)/mct2;

/*
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* Backorder Cost Evaluation

*/

BackOrder2 backorder2 = new BackOrder2();

backorder2.lam2New = lam2New;

backorder2.lam2 = lam2;

backorder2.I2 = I2;

backorder2.L2 = L2;

backorder2.r2 = r2;

double coefficient2 = Math.pow(lam2New,r2-I2)/Lib.fac(r2-I2-1);

BC2 = b2*coefficient2*Integration.trapezium(backorder2,

lowerLimit,upperLimit,accuracy,maxIntervals)/mct2;

}

else if (r2==I2)

{

mct2 = (q2-r2+ex2r2)/lam2New+L2;

/*

* Order Cost Evaluation

*/

OC2 = c2/mct2;

/*

* Holding Cost Evaluation

*/

double HC2a = (q2*q2+q2-r2*r2-r2+(2*q2+1)*ex2r2+ex2r2s)/(2*lam2New);

double HC2b = L2*r2*Lib.F(r2-1,lam2*L2)

-lam2*L2*L2*Lib.F(r2-2,lam2*L2)/2

+r2*(r2+1)*Lib.Fbar(r2,lam2*L2)/(2*lam2);

HC2 = h2*(HC2a+HC2b)/mct2;

/*

* Stock Cost Evaluation

*/

StockOut2 stockout2 = new StockOut2();

stockout2.theta = theta;

stockout2.I2 = I2;

SOC2 = so2*SigmaSum.sumInfP2(stockout2, 1, this)/mct2;

/*

* Backorder Cost Evaluation

*/

BC2 = b2*(lam2*L2*L2*Lib.Fbar(r2-1,lam2*L2)/2-L2*r2*Lib.Fbar(r2,lam2*L2)+

r2*(r2+1)*Lib.Fbar(r2+1,lam2*L2)/(2*lam2))/mct2;

}

else if (r2<I2)

{

mct2 = (q2+ex2r2-eminI2)/lam2New+(eminI2-r2)/lam2+L2;
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/*

* Order Cost Evaluation

*/

OC2 = c2/mct2;

/*

* Holding Cost Evaluation

*/

double HC2a = (q2*q2+q2+(2*q2+1)*ex2r2+ex2r2s)/(2*lam2New)

+(lam2New-lam2)*(eminI2s+eminI2)/(2*lam2*lam2New)

-(r2*r2+r2)/(2*lam2);

double HC2b = L2*r2*Lib.F(r2-1,lam2*L2)

-lam2*L2*L2*Lib.F(r2-2,lam2*L2)/2

+r2*(r2+1)*Lib.Fbar(r2,lam2*L2)/(2*lam2);

HC2 = h2*(HC2a+HC2b)/mct2;

/*

* Stock Cost Evaluation

*/

StockOut2 stockout2 = new StockOut2();

stockout2.theta = theta;

stockout2.I2 = I2;

SOC2 = so2*SigmaSum.sumInfP2(stockout2, 1, this)/mct2;

/*

* Backorder Cost Evaluation

*/

BC2 = b2*(lam2*L2*L2*Lib.Fbar(r2-1,lam2*L2)/2

-L2*r2*Lib.Fbar(r2,lam2*L2)

+r2*(r2+1)*Lib.Fbar(r2+1,lam2*L2)/(2*lam2))/mct2;

}

return OC2+HC2+SOC2+BC2;

}

}

B.3 Approximation implementation for the SMDP model
with phase-type lead time

/*

* Main function of MDP model with holdout phased lead time

*/

import java.io.*;

import java.util.*;
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public class mdplt

{

int N1, N2, M1, M2;

int Q1, Q2, nPh, HO2, nlter;

double lam1, lam2, c1, c2, b1, b2, h1, h2, mu1, mu2, bHat1, bHat2, B1, B2, T,

g, tau;

PrintWriter out;

boolean printOptAction, printOptCost;

State st;

Action optAction;

double pDem1, pDel1, pDem2, pDel2;

double mn,mx;

double lpr;

double Tol;

public mlpFLib(

double mu1_, double lam1_, double c1_, double h1_, double b1_, double B1_,

double bHat1_, int n1_, int m1_, int Q1_,

double mu2_, double lam2_, double c2_, double h2_, double b2_, double B2_,

double bHat2_, int n2_, int m2_, int Q2_,

int nPh_, double T_, State st_, int HO2_, PrintWriter OUT, boolean

printOptAction, boolean printOptCost)

{

lam1 = lam1_;

lam2 = lam2_;

mu1 = mu1_;

mu2 = mu2_;

c1 = c1_;

c2 = c2_;

h1 = h1_;

h2 = h2_;

b1 = b1_;

b2 = b2_;

bHat1 = bHat1_;

bHat2 = bHat2_;

B1 = B1_;

B2 = B2_;

N1 = n1_;

N2 = n2_;

M1 = m1_;

M2 = m2_;

Q1 = Q1_;

Q2 = Q2_;

nPh = nPh_;

T = T_;

HO2 = HO2_;

st = st_;

out = OUT;

lpr = 1E10;

Tol = 1E-3;

}

public void transformData()

{
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//Scale rate of lead time events to allow number of phases

mu1 = mu1*nPh;

mu2 = mu2*nPh;

// tau is mean time between events in regular MDP

tau = 1/(lam1+mu1+lam2+mu2);

/*

*scale holding cost rate and back order holding cost rate to allow for

*mean time between events

*/

h1 = h1*tau;

bHat1 = bHat1*tau;

h2 = h2*tau;

bHat2 = bHat2*tau;

//pDem is probability next event is a demand at the location

pDem1 = lam1*tau;

pDem2 = lam2*tau;

//pDem is probability next event is a delivery at the location

pDel1 = mu1*tau;

pDel2 = mu2*tau;

}

public static void initV(double[] v)

{

for (int i=0; i<v.length; i++)

v[i] = 0;

}

public double iteration(double[] vOld, double[] vNew)

{

/* Initialise st to allow enumeration of the state space and i

* to reference the value functions

*/

st.resetState();

int i = -1;

//Initialise calcultion of maximum and minimum change in value function

double mnDiff = lpr;

double mxDiff = -lpr;

//Consider each state in turn

while (st.nextState())

{
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i = i+1;

//Initialise calculation of value of this state at this iteration

vNew[i]=lpr;

/*Holding cost depends only on i1 and i2 so can be calculated and stored

*until arrival of the next state without consideration of actions

*/

double hCst = 0;

if (st.i1>0)

hCst = hCst+st.i1*h1;

else

hCst = hCst-st.i1*bHat1;

if (st.i2>0)

hCst = hCst+st.i2*h2;

else

hCst = hCst-st.i2*bHat2;

//Initialise a action to allow numberation of the action space for this state

Action a = new Action(st, HO2, Q1, Q2, M1, M2, N1);

a.resetAction();

//Consider each action in turn

while (a.nextAction())

{

//acCst, the cost of this action, can be initialised to hCst

double acCst = hCst;

/*

* for all available actions, all the possibilities and conditions

* have been checked

* nNull is the pointer to the next state when the inventory levels

* do not change and no order events occur

*/

int nNull = i;

//Update acCst and nNull if this action places an order at location 1

if(a.ph1>st.ph1)

{

nNull = nNull+st.ph2Hsh;

acCst = acCst+c1;

}

//Update acCst and nNull if this action places an order at location 2

if (a.ph2>st.ph2)
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{

nNull = nNull+1;

acCst = acCst+c2;

}

/*nFi is the pointer of the next state when an item is

*removed from location i

*/

int nF2 = nNull - st.ph1Hsh;

int nF1 = nNull - st.i2Hsh;

//Next event is demand at location 1 which results in transshipment

if (a.d==0)

acCst = acCst+pDem1*(T+vOld[nF2]);

//More backorders than possible at location 1

else if (st.i1==st.i1Mn)

acCst = acCst+pDem1*(B1+vOld[nNull]);

//Stockout at location 1

else if (st.i1<=0)

acCst = acCst+pDem1*(b1+vOld[nF1]);

//Supply from location 1

else

acCst = acCst+pDem1*vOld[nF1];

/* Next event is demand at location 2 which results in more

* backorders than possible at location 2

*/

if (st.i2==st.i2Mn)

acCst = acCst+pDem2*(B2+vOld[nNull]);

//Stockout from location 2

else if (st.i2<=0)

acCst = acCst+pDem2*(b2+vOld[nF2]);

//Supply from location 2

else

acCst = acCst+pDem2*vOld[nF2];

/*Next event is an order event at location 1 which results in:

*Delivery of Q1 items

*/

if (a.ph1==nPh)

{
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int nO1 = nNull-nPh*st.ph2Hsh+Math.min(Q1,M1-st.i1)*st.i2Hsh;

acCst = acCst+pDel1*vOld[nO1];

}

//End of next phase of lead time

else if (a.ph1>0)

acCst = acCst+pDel1*vOld[nNull+st.ph2Hsh];

else //Fictitious decision epoch

acCst = acCst+pDel1*vOld[nNull];

/*Next event is an order event at location 2 wihich results in:

*Delivery of Q2 items

*/

if (a.ph2==nPh)

{

int nO2 = nNull-nPh+Math.min(Q2,M2-st.i2)*st.ph1Hsh;

acCst = acCst+pDel2*vOld[nO2];

}

//End of next phase of lead time

else if (a.ph2>0)

acCst = acCst+pDel2*vOld[nNull+1];

else //Ficitious decision epoch

acCst = acCst+pDel2*vOld[nNull];

//Compare acCst with minimum cost for this state calculated to date

if (acCst<vNew[i])

{

vNew[i] = acCst;

optAction = a;

}

}

/*

* Print out the optimal actions when depot 1 runs out the stock

* and depot 2 has any stock meanwhile neither of depot 1 nor depot 2

* has the outstanding orders

*/

if (st.i1<=0 && st.i2>0 && st.ph1 == 0 && st.ph2 == 0 && printOptAction ==

true)

{

out.print("State (,"+st.i1+","+st.i2+","+st.ph1+","+st.ph2+",),");

out.println("OPT Action (,"+optAction.ph1 +","+optAction.ph2

+","+optAction.d +",)");

}

/*

*Compare the difference in value for this state with maximum and minimum

difference

*/

double diff = vNew[i]-vOld[i];
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if (diff>mxDiff)

mxDiff = diff;

if (diff<mnDiff)

mnDiff = diff;

}

//Update g and return latest error

g = (mxDiff+mnDiff)/(2*tau);

return (mxDiff-mnDiff)/mnDiff;

}

public void valueIteration()

{

double[] v1 = new double[st.i1Hsh];

double[] v2 = new double[st.i1Hsh];

initV(v1);

//initialise the iteration count and the error value

nlter = 0;

double erVal = lpr;

//Perform value iteration until the error no longer above the tolerance

while (erVal>Tol)

{

//At odd iterations calculate v2 from values in v1

nlter++;

erVal = iteration(v1,v2);

/*

if (nlter>=1734)

{

printOptAction = true;

printOptCost = false;

}

*/

//At even iterations calculate v1 from values in v2

nlter++;

erVal = iteration(v2,v1);

}

return;

}

}
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