722 research outputs found

    Specification of high-level application programming interfaces (SemSorGrid4Env)

    No full text
    This document defines an Application Tier for the SemsorGrid4Env project. Within the Application Tier we distinguish between Web Applications - which provide a User Interface atop a more traditional Service Oriented Architecture - and Mashups which are driven by a REST API and a Resource Oriented Architecture. A pragmatic boundary is set to enable initial development of Web Applications and Mashups; as the project progresses an evaluation and comparison of the two paradigms may lead to a reassessment of where each can be applied within the project, with the experience gained providing a basis for general guidelines and best practice. Both Web Applications and Mashups are designed and delivered through an iterative user-centric process; requirements generated by the project case studies are a key element of this approach

    Semantically Resolving Type Mismatches in Scientific Workflows

    No full text
    Scientists are increasingly utilizing Grids to manage large data sets and execute scientific experiments on distributed resources. Scientific workflows are used as means for modeling and enacting scientific experiments. Windows Workflow Foundation (WF) is a major component of Microsoft’s .NET technology which offers lightweight support for long-running workflows. It provides a comfortable graphical and programmatic environment for the development of extended BPEL-style workflows. WF’s visual features ease the syntactic composition of Web services into scientific workflows but do nothing to assure that information passed between services has consistent semantic types or representations or that deviant flows, errors and compensations are handled meaningfully. In this paper we introduce SAWSDL-compliant annotations for WF and use them with a semantic reasoner to guarantee semantic type correctness in scientific workflows. Examples from bioinformatics are presented

    Semantically defined Analytics for Industrial Equipment Diagnostics

    Get PDF
    In this age of digitalization, industries everywhere accumulate massive amount of data such that it has become the lifeblood of the global economy. This data may come from various heterogeneous systems, equipment, components, sensors, systems and applications in many varieties (diversity of sources), velocities (high rate of changes) and volumes (sheer data size). Despite significant advances in the ability to collect, store, manage and filter data, the real value lies in the analytics. Raw data is meaningless, unless it is properly processed to actionable (business) insights. Those that know how to harness data effectively, have a decisive competitive advantage, through raising performance by making faster and smart decisions, improving short and long-term strategic planning, offering more user-centric products and services and fostering innovation. Two distinct paradigms in practice can be discerned within the field of analytics: semantic-driven (deductive) and data-driven (inductive). The first emphasizes logic as a way of representing the domain knowledge encoded in rules or ontologies and are often carefully curated and maintained. However, these models are often highly complex, and require intensive knowledge processing capabilities. Data-driven analytics employ machine learning (ML) to directly learn a model from the data with minimal human intervention. However, these models are tuned to trained data and context, making it difficult to adapt. Industries today that want to create value from data must master these paradigms in combination. However, there is great need in data analytics to seamlessly combine semantic-driven and data-driven processing techniques in an efficient and scalable architecture that allows extracting actionable insights from an extreme variety of data. In this thesis, we address these needs by providing: • A unified representation of domain-specific and analytical semantics, in form of ontology models called TechOnto Ontology Stack. It is highly expressive, platform-independent formalism to capture conceptual semantics of industrial systems such as technical system hierarchies, component partonomies etc and its analytical functional semantics. • A new ontology language Semantically defined Analytical Language (SAL) on top of the ontology model that extends existing DatalogMTL (a Horn fragment of Metric Temporal Logic) with analytical functions as first class citizens. • A method to generate semantic workflows using our SAL language. It helps in authoring, reusing and maintaining complex analytical tasks and workflows in an abstract fashion. • A multi-layer architecture that fuses knowledge- and data-driven analytics into a federated and distributed solution. To our knowledge, the work in this thesis is one of the first works to introduce and investigate the use of the semantically defined analytics in an ontology-based data access setting for industrial analytical applications. The reason behind focusing our work and evaluation on industrial data is due to (i) the adoption of semantic technology by the industries in general, and (ii) the common need in literature and in practice to allow domain expertise to drive the data analytics on semantically interoperable sources, while still harnessing the power of analytics to enable real-time data insights. Given the evaluation results of three use-case studies, our approach surpass state-of-the-art approaches for most application scenarios.Im Zeitalter der Digitalisierung sammeln die Industrien überall massive Daten-mengen, die zum Lebenselixier der Weltwirtschaft geworden sind. Diese Daten können aus verschiedenen heterogenen Systemen, Geräten, Komponenten, Sensoren, Systemen und Anwendungen in vielen Varianten (Vielfalt der Quellen), Geschwindigkeiten (hohe Änderungsrate) und Volumina (reine Datengröße) stammen. Trotz erheblicher Fortschritte in der Fähigkeit, Daten zu sammeln, zu speichern, zu verwalten und zu filtern, liegt der eigentliche Wert in der Analytik. Rohdaten sind bedeutungslos, es sei denn, sie werden ordnungsgemäß zu verwertbaren (Geschäfts-)Erkenntnissen verarbeitet. Wer weiß, wie man Daten effektiv nutzt, hat einen entscheidenden Wettbewerbsvorteil, indem er die Leistung steigert, indem er schnellere und intelligentere Entscheidungen trifft, die kurz- und langfristige strategische Planung verbessert, mehr benutzerorientierte Produkte und Dienstleistungen anbietet und Innovationen fördert. In der Praxis lassen sich im Bereich der Analytik zwei unterschiedliche Paradigmen unterscheiden: semantisch (deduktiv) und Daten getrieben (induktiv). Die erste betont die Logik als eine Möglichkeit, das in Regeln oder Ontologien kodierte Domänen-wissen darzustellen, und wird oft sorgfältig kuratiert und gepflegt. Diese Modelle sind jedoch oft sehr komplex und erfordern eine intensive Wissensverarbeitung. Datengesteuerte Analysen verwenden maschinelles Lernen (ML), um mit minimalem menschlichen Eingriff direkt ein Modell aus den Daten zu lernen. Diese Modelle sind jedoch auf trainierte Daten und Kontext abgestimmt, was die Anpassung erschwert. Branchen, die heute Wert aus Daten schaffen wollen, müssen diese Paradigmen in Kombination meistern. Es besteht jedoch ein großer Bedarf in der Daten-analytik, semantisch und datengesteuerte Verarbeitungstechniken nahtlos in einer effizienten und skalierbaren Architektur zu kombinieren, die es ermöglicht, aus einer extremen Datenvielfalt verwertbare Erkenntnisse zu gewinnen. In dieser Arbeit, die wir auf diese Bedürfnisse durch die Bereitstellung: • Eine einheitliche Darstellung der Domänen-spezifischen und analytischen Semantik in Form von Ontologie Modellen, genannt TechOnto Ontology Stack. Es ist ein hoch-expressiver, plattformunabhängiger Formalismus, die konzeptionelle Semantik industrieller Systeme wie technischer Systemhierarchien, Komponenten-partonomien usw. und deren analytische funktionale Semantik zu erfassen. • Eine neue Ontologie-Sprache Semantically defined Analytical Language (SAL) auf Basis des Ontologie-Modells das bestehende DatalogMTL (ein Horn fragment der metrischen temporären Logik) um analytische Funktionen als erstklassige Bürger erweitert. • Eine Methode zur Erzeugung semantischer workflows mit unserer SAL-Sprache. Es hilft bei der Erstellung, Wiederverwendung und Wartung komplexer analytischer Aufgaben und workflows auf abstrakte Weise. • Eine mehrschichtige Architektur, die Wissens- und datengesteuerte Analysen zu einer föderierten und verteilten Lösung verschmilzt. Nach unserem Wissen, die Arbeit in dieser Arbeit ist eines der ersten Werke zur Einführung und Untersuchung der Verwendung der semantisch definierten Analytik in einer Ontologie-basierten Datenzugriff Einstellung für industrielle analytische Anwendungen. Der Grund für die Fokussierung unserer Arbeit und Evaluierung auf industrielle Daten ist auf (i) die Übernahme semantischer Technologien durch die Industrie im Allgemeinen und (ii) den gemeinsamen Bedarf in der Literatur und in der Praxis zurückzuführen, der es der Fachkompetenz ermöglicht, die Datenanalyse auf semantisch inter-operablen Quellen voranzutreiben, und nutzen gleichzeitig die Leistungsfähigkeit der Analytik, um Echtzeit-Daten-einblicke zu ermöglichen. Aufgrund der Evaluierungsergebnisse von drei Anwendungsfällen Übertritt unser Ansatz für die meisten Anwendungsszenarien Modernste Ansätze

    DRIVER Technology Watch Report

    Get PDF
    This report is part of the Discovery Workpackage (WP4) and is the third report out of four deliverables. The objective of this report is to give an overview of the latest technical developments in the world of digital repositories, digital libraries and beyond, in order to serve as theoretical and practical input for the technical DRIVER developments, especially those focused on enhanced publications. This report consists of two main parts, one part focuses on interoperability standards for enhanced publications, the other part consists of three subchapters, which give a landscape picture of current and surfacing technologies and communities crucial to DRIVER. These three subchapters contain the GRID, CRIS and LTP communities and technologies. Every chapter contains a theoretical explanation, followed by case studies and the outcomes and opportunities for DRIVER in this field

    Algorithm-aided Information Design: Hybrid Design approach on the edge of associative methodologies in AEC

    Get PDF
    Dissertação de mestrado em European Master in Building Information ModellingLast three decades have brought colossal progress to design methodologies within the common pursuit toward a seamless fusion between digital and physical worlds and augmenting it with the of computation power and network coverage. For this historically short period, two generations of methodologies and tools have emerged: Additive generation and parametric Associative generation of CAD. Currently, designers worldwide engaged in new forms of design exploration. From this race, two prominent methodologies have developed from Associative Design approach – Object-Oriented Design (OOD) and Algorithm-Aided Design (AAD). The primary research objective is to investigate, examine, and push boundaries between OOD and AAD for new design space determination, where advantages of both design methods are fused to produce a new generation methodology which is called in the present study AID (Algorithm-aided Information Design). The study methodology is structured into two flows. In the first flow, existing CAD methodologies are investigated, and the conceptual framework is extracted based on the state of art analysis, then analysed data is synthesized into the subject proposal. In the second flow, tools and workflows are elaborated and examined on practice to confirm the subject proposal. In compliance, the content of the research consists of two theoretical and practical parts. In the first theoretical part, a literature review is conducted, and assumptions are made to speculate about AID methodology, its tools, possible advantages and drawbacks. Next, case studies are performed according to sequential stages of digital design through the lens of practical AID methodology implementation. Case studies are covering such design aspects as model & documentation generation, design automation, interoperability, manufacturing control, performance analysis and optimization. Ultimately, a set of test projects is developed with the AID methodology applied. After the practical part, research returns to the theory where analytical information is gathered based on the literature review, conceptual framework, and experimental practice reports. In summary, the study synthesizes AID methodology as part of Hybrid Design, which enables creative use of tools and elaborating of agile design systems integrating additive and associative methodologies of Digital Design. In general, the study is based on agile methods and cyclic research development mixed between practice and theory to achieve a comprehensive vision of the subject.Last three decades have brought colossal progress to design methodologies within the common pursuit toward a seamless fusion between digital and physical worlds and augmenting it with the of computation power and network coverage. For this historically short period, two generations of methodologies and tools have emerged: Additive generation and parametric Associative generation of CAD. Currently, designers worldwide engaged in new forms of design exploration. From this race, two prominent methodologies have developed from Associative Design approach – Object-Oriented Design (OOD) and Algorithm-Aided Design (AAD). The primary research objective is to investigate, examine, and push boundaries between OOD and AAD for new design space determination, where advantages of both design methods are fused to produce a new generation methodology which is called in the present study AID (Algorithm-aided Information Design). The study methodology is structured into two flows. In the first flow, existing CAD methodologies are investigated, and the conceptual framework is extracted based on the state of art analysis, then analysed data is synthesized into the subject proposal. In the second flow, tools and workflows are elaborated and examined on practice to confirm the subject proposal. In compliance, the content of the research consists of two theoretical and practical parts. In the first theoretical part, a literature review is conducted, and assumptions are made to speculate about AID methodology, its tools, possible advantages and drawbacks. Next, case studies are performed according to sequential stages of digital design through the lens of practical AID methodology implementation. Case studies are covering such design aspects as model & documentation generation, design automation, interoperability, manufacturing control, performance analysis and optimization. Ultimately, a set of test projects is developed with the AID methodology applied. After the practical part, research returns to the theory where analytical information is gathered based on the literature review, conceptual framework, and experimental practice reports. In summary, the study synthesizes AID methodology as part of Hybrid Design, which enables creative use of tools and elaborating of agile design systems integrating additive and associative methodologies of Digital Design. In general, the study is based on agile methods and cyclic research development mixed between practice and theory to achieve a comprehensive vision of the subject

    Glueing grids and clouds together: A service-oriented approach

    Get PDF
    Scientific communities are actively developing services to exploit the capabilities of service-oriented distributed systems. This exploitation requires services to be specified and developed for a range of activities such as management and scheduling of workflows and provenance capture and management. Most of these services are designed and developed for a particular community of scientific users. The constraints imposed by architectures, interfaces or platforms can restrict or even prohibit the free interchange of services between disparate scientific communities. Using the notion of 'Platform as a Service' (PaaS), we propose an architectural approach that addresses these limitations so that users can make use of a wider range of services without being concerned about the development of cross-platform middleware, wrappers or any need for bespoke applications. The proposed architecture shields the details of heterogeneous Grid/Cloud infrastructure within a brokering environment, thus enabling users to concentrate on the specification of higher level services. Copyright © 2012 Inderscience Enterprises Ltd
    • …
    corecore