1,398 research outputs found

    Temporal Spatial Decomposition and Fusion Network for Time Series Forecasting

    Full text link
    Feature engineering is required to obtain better results for time series forecasting, and decomposition is a crucial one. One decomposition approach often cannot be used for numerous forecasting tasks since the standard time series decomposition lacks flexibility and robustness. Traditional feature selection relies heavily on preexisting domain knowledge, has no generic methodology, and requires a lot of labor. However, most time series prediction models based on deep learning typically suffer from interpretability issue, so the "black box" results lead to a lack of confidence. To deal with the above issues forms the motivation of the thesis. In the paper we propose TSDFNet as a neural network with self-decomposition mechanism and an attentive feature fusion mechanism, It abandons feature engineering as a preprocessing convention and creatively integrates it as an internal module with the deep model. The self-decomposition mechanism empowers TSDFNet with extensible and adaptive decomposition capabilities for any time series, users can choose their own basis functions to decompose the sequence into temporal and generalized spatial dimensions. Attentive feature fusion mechanism has the ability to capture the importance of external variables and the causality with target variables. It can automatically suppress the unimportant features while enhancing the effective ones, so that users do not have to struggle with feature selection. Moreover, TSDFNet is easy to look into the "black box" of the deep neural network by feature visualization and analyze the prediction results. We demonstrate performance improvements over existing widely accepted models on more than a dozen datasets, and three experiments showcase the interpretability of TSDFNet.Comment: 10 page

    New Levels of Language Processing Complexity and Organization Revealed by Granger Causation

    Get PDF
    Granger causation analysis of high spatiotemporal resolution reconstructions of brain activation offers a new window on the dynamic interactions between brain areas that support language processing. Premised on the observation that causes both precede and uniquely predict their effects, this approach provides an intuitive, model-free means of identifying directed causal interactions in the brain. It requires the analysis of all non-redundant potentially interacting signals, and has shown that even “early” processes such as speech perception involve interactions of many areas in a strikingly large network that extends well beyond traditional left hemisphere perisylvian cortex that play out over hundreds of milliseconds. In this paper we describe this technique and review several general findings that reframe the way we think about language processing and brain function in general. These include the extent and complexity of language processing networks, the central role of interactive processing dynamics, the role of processing hubs where the input from many distinct brain regions are integrated, and the degree to which task requirements and stimulus properties influence processing dynamics and inform our understanding of “language-specific” localized processes

    Lightweight, Pre-trained Transformers for Remote Sensing Timeseries

    Full text link
    Machine learning algorithms for parsing remote sensing data have a wide range of societally relevant applications, but labels used to train these algorithms can be difficult or impossible to acquire. This challenge has spurred research into self-supervised learning for remote sensing data aiming to unlock the use of machine learning in geographies or application domains where labelled datasets are small. Current self-supervised learning approaches for remote sensing data draw significant inspiration from techniques applied to natural images. However, remote sensing data has important differences from natural images -- for example, the temporal dimension is critical for many tasks and data is collected from many complementary sensors. We show that designing models and self-supervised training techniques specifically for remote sensing data results in both smaller and more performant models. We introduce the Pretrained Remote Sensing Transformer (Presto), a transformer-based model pre-trained on remote sensing pixel-timeseries data. Presto excels at a wide variety of globally distributed remote sensing tasks and outperforms much larger models. Presto can be used for transfer learning or as a feature extractor for simple models, enabling efficient deployment at scale

    DDMT: Denoising Diffusion Mask Transformer Models for Multivariate Time Series Anomaly Detection

    Full text link
    Anomaly detection in multivariate time series has emerged as a crucial challenge in time series research, with significant research implications in various fields such as fraud detection, fault diagnosis, and system state estimation. Reconstruction-based models have shown promising potential in recent years for detecting anomalies in time series data. However, due to the rapid increase in data scale and dimensionality, the issues of noise and Weak Identity Mapping (WIM) during time series reconstruction have become increasingly pronounced. To address this, we introduce a novel Adaptive Dynamic Neighbor Mask (ADNM) mechanism and integrate it with the Transformer and Denoising Diffusion Model, creating a new framework for multivariate time series anomaly detection, named Denoising Diffusion Mask Transformer (DDMT). The ADNM module is introduced to mitigate information leakage between input and output features during data reconstruction, thereby alleviating the problem of WIM during reconstruction. The Denoising Diffusion Transformer (DDT) employs the Transformer as an internal neural network structure for Denoising Diffusion Model. It learns the stepwise generation process of time series data to model the probability distribution of the data, capturing normal data patterns and progressively restoring time series data by removing noise, resulting in a clear recovery of anomalies. To the best of our knowledge, this is the first model that combines Denoising Diffusion Model and the Transformer for multivariate time series anomaly detection. Experimental evaluations were conducted on five publicly available multivariate time series anomaly detection datasets. The results demonstrate that the model effectively identifies anomalies in time series data, achieving state-of-the-art performance in anomaly detection.Comment: 16 pages, 9 figure

    Hierarchical Bayesian Modeling of Manipulation Sequences from Bimodal Input

    Get PDF
    Barchunova A, Moringen J, Haschke R, Ritter H. Hierarchical Bayesian Modeling of Manipulation Sequences from Bimodal Input. Presented at the Proceedings of the 11th International Conference on Cognitive Modeling, Berlin

    MedLens: Improve mortality prediction via medical signs selecting and regression interpolation

    Full text link
    Monitoring the health status of patients and predicting mortality in advance is vital for providing patients with timely care and treatment. Massive medical signs in electronic health records (EHR) are fitted into advanced machine learning models to make predictions. However, the data-quality problem of original clinical signs is less discussed in the literature. Based on an in-depth measurement of the missing rate and correlation score across various medical signs and a large amount of patient hospital admission records, we discovered the comprehensive missing rate is extremely high, and a large number of useless signs could hurt the performance of prediction models. Then we concluded that only improving data-quality could improve the baseline accuracy of different prediction algorithms. We designed MEDLENS, with an automatic vital medical signs selection approach via statistics and a flexible interpolation approach for high missing rate time series. After augmenting the data-quality of original medical signs, MEDLENS applies ensemble classifiers to boost the accuracy and reduce the computation overhead at the same time. It achieves a very high accuracy performance of 0.96% AUC-ROC and 0.81% AUC-PR, which exceeds the previous benchmark

    Towards On-Board Panoptic Segmentation of Multispectral Satellite Images

    Full text link
    With tremendous advancements in low-power embedded computing devices and remote sensing instruments, the traditional satellite image processing pipeline which includes an expensive data transfer step prior to processing data on the ground is being replaced by on-board processing of captured data. This paradigm shift enables critical and time-sensitive analytic intelligence to be acquired in a timely manner on-board the satellite itself. However, at present, the on-board processing of multi-spectral satellite images is limited to classification and segmentation tasks. Extending this processing to its next logical level, in this paper we propose a lightweight pipeline for on-board panoptic segmentation of multi-spectral satellite images. Panoptic segmentation offers major economic and environmental insights, ranging from yield estimation from agricultural lands to intelligence for complex military applications. Nevertheless, the on-board intelligence extraction raises several challenges due to the loss of temporal observations and the need to generate predictions from a single image sample. To address this challenge, we propose a multimodal teacher network based on a cross-modality attention-based fusion strategy to improve the segmentation accuracy by exploiting data from multiple modes. We also propose an online knowledge distillation framework to transfer the knowledge learned by this multi-modal teacher network to a uni-modal student which receives only a single frame input, and is more appropriate for an on-board environment. We benchmark our approach against existing state-of-the-art panoptic segmentation models using the PASTIS multi-spectral panoptic segmentation dataset considering an on-board processing setting. Our evaluations demonstrate a substantial increase in accuracy metrics compared to the existing state-of-the-art models

    Learning the Joint Representation of Heterogeneous Temporal Events for Clinical Endpoint Prediction

    Full text link
    The availability of a large amount of electronic health records (EHR) provides huge opportunities to improve health care service by mining these data. One important application is clinical endpoint prediction, which aims to predict whether a disease, a symptom or an abnormal lab test will happen in the future according to patients' history records. This paper develops deep learning techniques for clinical endpoint prediction, which are effective in many practical applications. However, the problem is very challenging since patients' history records contain multiple heterogeneous temporal events such as lab tests, diagnosis, and drug administrations. The visiting patterns of different types of events vary significantly, and there exist complex nonlinear relationships between different events. In this paper, we propose a novel model for learning the joint representation of heterogeneous temporal events. The model adds a new gate to control the visiting rates of different events which effectively models the irregular patterns of different events and their nonlinear correlations. Experiment results with real-world clinical data on the tasks of predicting death and abnormal lab tests prove the effectiveness of our proposed approach over competitive baselines.Comment: 8 pages, this paper has been accepted by AAAI 201

    Forecasting Stock Time-Series using Data Approximation and Pattern Sequence Similarity

    Get PDF
    Time series analysis is the process of building a model using statistical techniques to represent characteristics of time series data. Processing and forecasting huge time series data is a challenging task. This paper presents Approximation and Prediction of Stock Time-series data (APST), which is a two step approach to predict the direction of change of stock price indices. First, performs data approximation by using the technique called Multilevel Segment Mean (MSM). In second phase, prediction is performed for the approximated data using Euclidian distance and Nearest-Neighbour technique. The computational cost of data approximation is O(n ni) and computational cost of prediction task is O(m |NN|). Thus, the accuracy and the time required for prediction in the proposed method is comparatively efficient than the existing Label Based Forecasting (LBF) method [1].Comment: 11 page
    corecore