1,793 research outputs found

    THE ROLE OF SIMULATION IN SUPPORTING LONGER-TERM LEARNING AND MENTORING WITH TECHNOLOGY

    Get PDF
    Mentoring is an important part of professional development and longer-term learning. The nature of longer-term mentoring contexts means that designing, developing, and testing adaptive learning sys-tems for use in this kind of context would be very costly as it would require substantial amounts of fi-nancial, human, and time resources. Simulation is a cheaper and quicker approach for evaluating the impact of various design and development decisions. Within the Artificial Intelligence in Education (AIED) research community, however, surprisingly little attention has been paid to how to design, de-velop, and use simulations in longer-term learning contexts. The central challenge is that adaptive learning system designers and educational practitioners have limited guidance on what steps to consider when designing simulations for supporting longer-term mentoring system design and development deci-sions. My research work takes as a starting point VanLehn et al.’s [1] introduction to applications of simulated students and Erickson et al.’s [2] suggested approach to creating simulated learning envi-ronments. My dissertation presents four research directions using a real-world longer-term mentoring context, a doctoral program, for illustrative purposes. The first direction outlines a framework for guid-ing system designers as to what factors to consider when building pedagogical simulations, fundamen-tally to answer the question: how can a system designer capture a representation of a target learning context in a pedagogical simulation model? To illustrate the feasibility of this framework, this disserta-tion describes how to build, the SimDoc model, a pedagogical model of a longer-term mentoring learn-ing environment – a doctoral program. The second direction builds on the first, and considers the issue of model fidelity, essentially to answer the question: how can a system designer determine a simulation model’s fidelity to the desired granularity level? This dissertation shows how data from a target learning environment, the research literature, and common sense are combined to achieve SimDoc’s medium fidelity model. The third research direction explores calibration and validation issues to answer the question: how many simulation runs does it take for a practitioner to have confidence in the simulation model’s output? This dissertation describes the steps taken to calibrate and validate the SimDoc model, so its output statistically matches data from the target doctoral program, the one at the university of Saskatchewan. The fourth direction is to demonstrate the applicability of the resulting pedagogical model. This dissertation presents two experiments using SimDoc to illustrate how to explore pedagogi-cal questions concerning personalization strategies and to determine the effectiveness of different men-toring strategies in a target learning context. Overall, this dissertation shows that simulation is an important tool in the AIED system design-ers’ toolkit as AIED moves towards designing, building, and evaluating AIED systems meant to support learners in longer-term learning and mentoring contexts. Simulation allows a system designer to exper-iment with various design and implementation decisions in a cost-effective and timely manner before committing to these decisions in the real world

    The Future of Adaptive Tutoring: Wrangling Complexity across Domains, Applications, and Platforms

    Get PDF
    The purpose of this panel is to discuss current directions in research and design of adaptive tutoring, and the need for a method to uniformly describe tutors within this growing field. Discussions will focus on the increasing complexity of individual tutors, as well as how tutors could be categorized through identification of relevant, constituent parts. A standardized taxonomy would provide the foundation for establishing a quantifiable metric of complexity, which could then be used to compare vastly distinct tutors to one another. Applications of such a metric also include evaluating tutor effectiveness with respect to learning outcomes, comparing capabilities / usability of different adaptive tutor authoring tools, and providing more accurate estimates of the time required to develop an hour of tutoring. Individual elements of tutoring to be discussed within the context of this framework include team tutoring, psychomotor tutoring, multi-platform architectures, personalized tutoring, and authoring complexity

    31th International Conference on Information Modelling and Knowledge Bases

    Get PDF
    Information modelling is becoming more and more important topic for researchers, designers, and users of information systems.The amount and complexity of information itself, the number of abstractionlevels of information, and the size of databases and knowledge bases arecontinuously growing. Conceptual modelling is one of the sub-areas ofinformation modelling. The aim of this conference is to bring together experts from different areas of computer science and other disciplines, who have a common interest in understanding and solving problems on information modelling and knowledge bases, as well as applying the results of research to practice. We also aim to recognize and study new areas on modelling and knowledge bases to which more attention should be paid. Therefore philosophy and logic, cognitive science, knowledge management, linguistics and management science are relevant areas, too. In the conference, there will be three categories of presentations, i.e. full papers, short papers and position papers

    Design of an E-learning system using semantic information and cloud computing technologies

    Get PDF
    Humanity is currently suffering from many difficult problems that threaten the life and survival of the human race. It is very easy for all mankind to be affected, directly or indirectly, by these problems. Education is a key solution for most of them. In our thesis we tried to make use of current technologies to enhance and ease the learning process. We have designed an e-learning system based on semantic information and cloud computing, in addition to many other technologies that contribute to improving the educational process and raising the level of students. The design was built after much research on useful technology, its types, and examples of actual systems that were previously discussed by other researchers. In addition to the proposed design, an algorithm was implemented to identify topics found in large textual educational resources. It was tested and proved to be efficient against other methods. The algorithm has the ability of extracting the main topics from textual learning resources, linking related resources and generating interactive dynamic knowledge graphs. This algorithm accurately and efficiently accomplishes those tasks even for bigger books. We used Wikipedia Miner, TextRank, and Gensim within our algorithm. Our algorithm‘s accuracy was evaluated against Gensim, largely improving its accuracy. Augmenting the system design with the implemented algorithm will produce many useful services for improving the learning process such as: identifying main topics of big textual learning resources automatically and connecting them to other well defined concepts from Wikipedia, enriching current learning resources with semantic information from external sources, providing student with browsable dynamic interactive knowledge graphs, and making use of learning groups to encourage students to share their learning experiences and feedback with other learners.Programa de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Luis Sánchez Fernández.- Secretario: Luis de la Fuente Valentín.- Vocal: Norberto Fernández Garcí

    Personalizing education with algorithmic course selection

    Get PDF
    The work presented in this thesis utilizes context-aware recommendation to facilitate personalized education and assist students in selecting courses (or in non-traditional curricula, topics or modules) that meet curricular requirements, leverage their skills and background, and are relevant to their interests. The original research contribution of this thesis is an algorithm that can generate a schedule of courses with consideration of a student\u27s profile, minimization of cost, and complete adherence to institution requirements. The research problem at hand - a constrained optimization problem with potentially conflicting objectives - is solved by first identifying a minimal sets of courses a student can take to graduate and then intelligently placing the selected courses into available semesters. The distinction between the proposed approach and related studies is in its simultaneous achievement of the following: guaranteed fulfillment of curricular requirements; applicability to both traditional and non-traditional curricula; and flexibility in nomenclature - semantics are extracted from syntax to allow the identification of relevant content, despite differences in course or topic titles from one institution to the next. The course selection algorithm presented is developed for the Pervasive Cyberinfrastructure for Personalized eLearning and Instructional Support (PERCEPOLIS), which can assist or supplement the degree planning actions of an academic advisor, with the assurance that recommended selections are always valid. With this algorithm, PERCEPOLIS can recommend the entire trajectory that a student could take to graduation, as opposed to just the next semester, and it does so with consideration of course or topic availability --Abstract, page iii
    • …
    corecore