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ABSTRACT  

Mentoring is an important part of professional development and longer-term learning. The nature of long-

er-term mentoring contexts means that designing, developing, and testing adaptive learning systems for 

use in this kind of context would be very costly as it would require substantial amounts of financial, hu-

man, and time resources. Simulation is a cheaper and quicker approach for evaluating the impact of vari-

ous design and development decisions. Within the Artificial Intelligence in Education (AIED) research 

community, however, surprisingly little attention has been paid to how to design, develop, and use simu-

lations in longer-term learning contexts. The central challenge is that adaptive learning system designers 

and educational practitioners have limited guidance on what steps to consider when designing simula-

tions for supporting longer-term mentoring system design and development decisions.  

My research work takes as a starting point VanLehn et al.’s [1] introduction to applications of sim-

ulated students and Erickson et al.’s  [2] suggested approach to creating simulated learning environments. 

My dissertation presents four research directions using a real-world longer-term mentoring context, a doc-

toral program, for illustrative purposes. The first direction outlines a framework for guiding system de-

signers as to what factors to consider when building pedagogical simulations, fundamentally to answer 

the question: how can a system designer capture a representation of a target learning context in a peda-

gogical simulation model? To illustrate the feasibility of this framework, this dissertation describes how 

to build, the SimDoc model, a pedagogical model of a longer-term mentoring learning environment – a 

doctoral program. The second direction builds on the first, and considers the issue of model fidelity, es-

sentially to answer the question: how can a system designer determine a simulation model’s fidelity to the 

desired granularity level? This dissertation shows how data from a target learning environment, the re-

search literature, and common sense are combined to achieve SimDoc’s medium fidelity model. The third 

research direction explores calibration and validation issues to answer the question: how many simulation 

runs does it take for a practitioner to have confidence in the simulation model’s output? This dissertation 

describes the steps taken to calibrate and validate the SimDoc model, so its output statistically matches 

data from the target doctoral program, the one at the university of Saskatchewan. The fourth direction is 

to demonstrate the applicability of the resulting pedagogical model. This dissertation presents two exper-

iments using SimDoc to illustrate how to explore pedagogical questions concerning personalization strat-

egies and to determine the effectiveness of different mentoring strategies in a target learning context.  

Overall, this dissertation shows that simulation is an important tool in the AIED system designers’ 

toolkit as AIED moves towards designing, building, and evaluating AIED systems meant to support 

learners in longer-term learning and mentoring contexts. Simulation allows a system designer to experi-

ment with various design and implementation decisions in a cost-effective and timely manner before 

committing to these decisions in the real world.  
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IMPORTANT TERMS 

In this section, I present definitions of fundamental terms I use throughout this dissertation. A 

learner is a person who attempts to obtain new knowledge or skill by studying or learning from a 

teacher1. A student refers to a person registered formally in a learning institution for the purposes 

of pursuing a course of study2. In this dissertation, I use the terms learner and student inter-

changeably and in a more specific way to mean a person registered formally in a doctoral pro-

gram. Doctoral students often experience learning difficulties that may slow their progress and 

elongate their time-to-completion – the elapsed time between students’ enrollment and gradua-

tion dates [3]. Taking a long time to complete a degree program negatively affects the comple-

tion rate, that is, the ratio of the number of students who complete a degree program divided by 

the total number of students who enrolled during the same degree program at the same admission 

period [4]. Furthermore, slow time to completion because of learning hindrances increases the 

attrition rate, which, refers to the number of students who drop out of a program as compared to 

the total number of students who were enrolled over a specific period.  

I use the term system to refer to a group of dynamic or passive elements, interconnected 

together to form a complex whole. For example, in this dissertation, a doctoral program is a sys-

tem that is made up of dynamic elements (e.g., students, supervisors, and other stakeholders) and 

passive and abstract elements, such as courses and departments. A model is a simplified repre-

sentation of an element within a system or a representation of the whole system. Simulation is 

the imitation through computation of aspects of a natural system’s functionality and behavior. A 

conceptual model is a representation of a system to be modeled and simulated; it is comprised of 

a static description of the composition of a system the model represents [5]. A computational 

model refers to a coded (computer program) version of the conceptual model that is executable 

and can run on a single or a network of computers to reproduce key behaviors of a system under 

study. I use the term model fidelity to refer to the degree or measure of exactness or similarity a 

model has to the natural system or phenomenon it represents [6]. Verification is the processes of 

determining the accuracy of a computational model to a relevant conceptual model and that the 

resulting model has no programmatic errors [7]. Calibration is the process of adjusting numeri-

cal modeling parameters in the computational model for the purpose of improving the match be-

                                                 
1 http://www.learnersdictionary.com/definition/learner last accessed on February 12, 2019. Note, in AIED a teacher 

could either refer to a human or a teaching (learning) support system.  
2 http://www.thefreedictionary.com/student last accessed on February 12, 2019 
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tween simulation output and dataset from the real-world system [8]. I use the term baseline mod-

el to refer to a calibrated simulation model whose parameters have been tuned such that the out-

put of the model is statistically similar to that of the real-world system. Validation involves 

checking that a computational model’s output and behavior are consistent with the data output 

and behavior of the system requirements under study [9]. Therefore, a valid model is a model 

whose output and behavior are significantly like the output of the real system the model is based 

on. 

SimDoc refers to my model of a doctoral program. SimDoc is a simulated doctoral pro-

gram environment with simulated students, supervisors, classes, and research groups represented 

as agents. An agent is a software program designed to represent (act as, play the role of) an ele-

ment or entity of interest within a domain of interest. An agent model refers to the attributes and 

behaviors captured in the agent about an entity. The notion of an ‘agent’ in computer science in-

dicates an entity that has some degree of intelligence and the capacity to perform actions auton-

omously. Similar to how Schroeder, Adesope, and Gilbert [10] define an agent, in this disserta-

tion, I use the term pedagogical agent to refer to a computer-based avatar employed in an AIED 

system’s interface to support learning. 
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CHAPTER 1 

INTRODUCTION 

Humans have always developed tools to extend their capabilities to solve different types of prob-

lems they faced. Today, computer technologies are used to support and extend almost all human 

capabilities to solve challenges in many walks of life including but not limited to education, 

communication and transportation, sports and games, business, medicine, building and construc-

tion, and social networking. As a result, pervasive and ubiquitous computing technologies are 

evident in almost every aspect of our lives. These technologies support the collection of data, the 

storage of data, and the processing of the collected data to support decision making. In the con-

text of education, computer technologies were not the first machines to be used to support learn-

ing. Other technologies, such as instructional radio in the 1920s and instructional television in 

the 1950s [11] were early attempts to use machines to aid learning. Since the 1950s, the use and 

influence of computer technologies in education have gradually increased [11].  

So, what motivated the building and use of educational computer systems? There are at 

least two main reasons: practical and research motives [12]–[14]. In practical terms, using com-

puters to support learning offers an opportunity to overcome social and economic challenges as-

sociated with human tutoring. For example, while individualized human tutoring is very effective 

[15] and thus it would be ideal to replicate its effectiveness in many learning contexts, it is very 

costly to hire the right number of human tutors. In this regard, a strong advantage of educational 

computer systems is the possibility of developing many systems that provide and replicate indi-

vidualized tutoring that is responsive to learners’ individual needs on a par with excellent human 

tutors [14]. Another motivation for educational computer systems is to provide environments that 

are more motivating than traditional educational systems, like educational computer games or 

learning environments with exciting computer bells and whistles. As far as research is con-

cerned, the intersection of three different disciplines including computer science, cognitive sci-

ence, and education [12] forms the core of educational support systems research. This intersec-

tion provides a test-bed for exploring the nature of knowledge and how that knowledge is being 

learned in different learning contexts and domains. This contributes to the understanding of 

learning theories [14]. 
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The use of technology to enhance learning has resulted in the emergence of advanced 

learning technology (ALT) research fields including Artificial Intelligence in Education (AIED). 

AIED aims to advance “rigorous research and development of interactive and adaptive learning 

environments for learners of all ages, across all domains”3. Advances in this research area have 

led to the development of various adaptive learning systems that are helping thousands of learn-

ers in numerous learning contexts and domains [16], [17]. It is important to note, however, that 

most research in these contexts has focused on learning in domain-specific situations taking 

place over relatively short-time frames often with experiments done in a laboratory setting [18]. 

Usually, the focus is on certain well-defined domain subject matter, such as mathematics [19], 

[20], physics, computer literacy, and more [21], [22], whose concepts gradually build on one an-

other and have fairly structured and constrained tasks that learners perform [23]. 

Recently, though, there has been some effort directed towards modeling and exploring 

longer-time real-world learning environments [24]–[26]. Mentoring [27], personalization [25], 

[28], and self-directed learning [29]–[33] are vital parts of professional development and longer-

term learning. The key is the one-to-one relationships between learners and their mentors which 

dictates how the support is given in different styles in accordance with learners’ learning styles 

and preferred support styles [34], [35].  

1.1 Problem Statement 

As AIED advances into new areas, such as longer-term mentoring contexts, evaluation of 

developed learning systems and learners’ learning experiences are critical for ascertaining the 

success and effectiveness of systems [36], [37] [36], [38]. The nature of longer-term mentoring 

contexts means that testing of these AIED systems would be very costly as it would require sub-

stantial amounts of financial, human, and time resources. Simulation is a cheaper and quicker 

approach for evaluating the impact of various design and development decisions. However, there 

is very little research on how to design, develop and use simulations in longer-term learning con-

texts. 

The central challenge is that AIED system designers and educational practitioners have 

limited guidance on what steps to consider when designing simulations for supporting longer-

                                                 
3 http://ijaied.org/about/ last accessed on February 12, 2019 
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term mentoring system design and development decisions. The fundamental research question 

underlying my research is: 

How does a system designer design, implement, calibrate and validate a simulation to ex-

plore adaptive and personalized learning approaches for supporting learners in longer-

term mentoring contexts? 

My more specific research questions are: 

Q1.How can a system designer capture a representation of a target longer-term learning 

environment in a pedagogical simulation model? To answer this question, I specifically 

explore how to create a representation of a doctoral program as a pedagogical simula-

tion model. 

Q2.How can a system designer inform the resulting pedagogical simulation model to 

achieve fidelity to a desired level of granularity? Specifically, how does a system de-

signer get and incorporate available data to inform the fidelity of the simulated doctoral 

pedagogical simulation model? 

Q3.How can a system designer know for certain that they have adequately calibrated and 

validated a simulation model in order to trust its output? Specifically, how many simula-

tion runs does it take for a practitioner to have confidence in the simulated doctoral 

model’s output?  

Q4.How does a system designer use the resulting simulation model to ask pedagogical 

questions concerning the learning environment? Specifically, I explore how different 

combinations of personalization characteristics in a doctoral program affect learning 

outcomes as measured by completion rates, attrition rates, and time-to-completion?  

1.2 Solution Approach 

Simulation enables rapid comparison among the various adaptive and personalization strategies 

to determine the most effective ones without incurring large costs in terms of financial, time, and 

human resources. In addition, simulation enables the answering of hypothetical, ‘what-if’, ques-

tions. Using simulation allows for the testing and understanding of the possible impact of various 

adaptive and personalization measures on a doctoral program before embarking on building an 

actual system to experiment with real learners. Three central challenges in the design of peda-

gogical simulations are deciding on key attributes of the target learning domain to model, finding 
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data to inform the simulation model’s fidelity, and determining the best methods to use to vali-

date the simulation model. To this end, my research aims to depict the whole process of design, 

implementation, calibration, validation, and use of a simulation model for empirical evaluation 

of various adaptive and personalized support strategies in a longer-term mentoring context using 

a doctoral program as a case study.  

Here is an overview of how I have addressed the concerns of questions raised in section 1.1.  

Q1.I have answered this question by building a simulation model of a doctoral program 

(the SimDoc model) represented as an agent model simulation. In addition, I have used 

an equation informed by Item Response Theory in modeling and representing learners’ 

knowledge states. Its attributes are derived from a real-world target learning environ-

ment, the University of Saskatchewan (UofS) doctoral program. The process of building 

the SimDoc model depicts a case study of how to build a simulation for any longer-term 

mentoring context. This includes an illustration of both the software and knowledge en-

gineering approaches used in designing, modeling, and developing the SimDoc model.  

Q2.I have answered this question by demonstrating three ways of informing the SimDoc 

simulation model to have it produce learning outcomes that match the UofS dataset. The 

three approaches are using reverse engineering techniques on available data about the 

target environment, the UofS dataset; drawing from data in the research literature about 

the target environment; deducing important information from ‘common sense’ assump-

tions (that must be validated by requiring that a full simulation that incorporates such 

‘common sense’ assumptions matches actual behavior in the target domain).  

Q3.I have answered the concerns of this third question by creating an algorithm that deter-

mines the number of runs necessary to generate stable outputs with appropriate variabil-

ity using one-way analysis of variance (ANOVA). Essentially, the approach is to run the 

simulation iteratively, and after each run, the collected simulation outputs generated to 

date are compared against real-world data using Chi-Square, Levene, and ANOVA test-

ing methods.  

Q4.I have answered the concerns of this fourth question by building a version of the Sim-

Doc model whose features can be parameterized to allow exploration of personalization 

issues of interest and compute metrics such as the differences in completion rates, attri-

tion rates, and time-to-completion. I have created metrics representing supervisor style 
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by looking at the literature on supervisory style. Similarly, I found metrics representing 

learning style by looking at the literature on an allied capability of students. I have run 

simulations exploring the effects (on the three identified learning metrics) of various al-

gorithms for matching supervisor types against learner types. And, finally, I have run 

simulations to explore the effects (on the three identified learning outcomes) of varying 

the number of learners being supervised by each supervisor. 

1.3 Contributions  

The central contribution of my research is the demonstration of how to build, calibrate and vali-

date, and use a simulation model of a longer-term learning environment to explore various peda-

gogical issues, including asking hypothetical, ‘what-if’, pedagogical questions. The research 

makes several contributions to advanced learning technology research and most specifically to 

artificial intelligence in education (AIED). In my research I have: 

• Presented a seven-step framework adopted from [193] for guiding the design and model-

ing of simulation models. Through a case study based on a doctoral program, I have 

shown how AIED and other advanced learning technology (ALT) researchers can use it 

to guide the building, informing, and validating of a pedagogical simulation model for 

exploring different research issues in longer-term learning and mentoring environments. 

● Identified a pedagogical use of simulation not explored very much in AIED or other ALT 

communities: how simulation could be used to explore various hypothetical, ‘what-if’, 

pedagogical questions related to understanding issues in longer-term learning and men-

toring environments.  

● Developed a medium fidelity simulation model, a rarely investigated level of fidelity. 

● Illustrated how to inform a simulation model by showing how to combine data from di-

verse sources related to phenomena of interest. 

● Demonstrated how to calibrate a simulation model using a baseline dataset gathered from 

the target learning environment. 

● Showed how to validate a simulation model by providing a pseudo-algorithm that can be 

used to determine how many replications of a simulation run to perform in order to be 

confident in the results produced by the simulation.  
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● Showed how to develop an experimental program to explore specific AIED and advanced 

learning technology research questions through simulation.  

● Illustrated the importance of using simulation in exploring various learning domains 

where data is not readily available, particularly self-directed, and longer-term learning 

scenarios. Simulation allows exploration of such domains while also enabling deeper in-

sight into learner models and learning contexts. 

1.4 Dissertation Organization 

The remainder of this thesis is organized as follows: In Chapter 2, I discuss related work focus-

ing on AIED, longer-term learning, and simulation. In Chapter 3, I introduce a seven-step 

framework for building a pedagogical simulation and demonstrate how I have used it to guide 

the creation of the SimDoc model. I next describe SimDoc’s conceptual model, enumerating its 

core components and assumptions. In Chapter 4, I outline how I calibrated and validated the 

SimDoc model. In Chapter 5, I detail the pedagogical research questions I explored, explaining 

in more detail the various hypotheses I examined using the SimDoc model. In Chapter 6, I con-

clude my dissertation by discussing some of the strengths and limitations of simulation, reiterat-

ing my contributions, and looking at possible future research directions.  
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CHAPTER 2 

RELATED WORK 

This chapter provides a brief description of three main foundational areas for this dissertation 

research: advanced learning technology research, focused mainly on AIED research; longer-term 

learning with its challenges and solutions; and the use of simulation within AIED research. The 

literature discussed in this chapter concerns research that has already been done that I deem re-

lated to my research. The concepts discussed are not directly used to specifically inform aspects 

of the model I created but rather to provide context for my research. Therefore, I will not be 

pointing out how research discussed here compares and contrasts with my own research. Specific 

literature that my research critically relies on and that I used to inform specific aspects of my re-

search are discussed in relevant sections of the thesis as the need arises. 

2.1 Educational Computer Systems Research 

Among the first computer systems to be used to support learning and instruction is PLATO. 

PLATO was a Computer Assisted Instruction (CAI) centralized mainframe system that was cre-

ated in 1959 at the University of Illinois [39]. It was designed to offer individualized instruction 

via terminals to the students [40]. PLATO was among the pioneering early drill-and-practice 

computer systems used in educational settings in the 1950s through to the 1960s [11]. Due to the 

rise of popularity of CAI and advancement in technology, many other educational systems were 

developed in the early 1970s including TICCIT [41], SOPHIE [42] and SCHOLAR [43]. These 

systems are historically regarded as landmark educational systems as far as Artificial Intelligence 

in Education (AIED) and Intelligent Tutoring Systems (ITS) research is concerned. TICCIT, a 

learner-controlled system, had functionalities that were more complex and beyond drill-and-

practice systems. TICCIT enabled students to choose their learning strategy component, to de-

cide on when to start or stop, and when to navigate to a previous topic. 

SCHOLAR and SOPHIE are early examples of educational systems that incorporated arti-

ficial intelligence (AI) techniques. In an educational context, AI is concerned with developing 

computer systems that support the goals of education, that is to 1) acquire and store knowledge, 

2) understand the knowledge, and 3) effectively use the knowledge gained to solve problems and 

accomplish tasks [44]. The SCHOLAR system [43] was among the first CAI systems developed 
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based on AI techniques. As such SCHOLAR extended CAI capabilities with the ability to emu-

late human teachers by offering one-on-one personalized geography tutoring sessions based on 

Socratic dialogue. The SOPHIE system [42] illustrated how students could learn in an environ-

ment that simulated the real-world. Learners could interact with this simulated environment 

while problem-solving. SOPHIE provided learners with advice as they navigated through their 

learning tasks. In the SOPHIE system [42], a very detailed representation of an electric circuit 

from a simple resistor to a complex circuit of complete power supply was modeled to represent 

the domain knowledge. SOPHIE also modeled diagnostic tactics that allowed it to react to stu-

dents’ misconceptions. 

AI techniques are used to develop intelligent tutoring systems that augment learning by 

helping teachers and learners to maximize learning with the available information [45]. The main 

goal of any intelligent tutoring system is to provide a platform that allows for interactions with a 

learner while delivering personalized learning content and feedback. The term Intelligent Tutor-

ing System (ITS) was coined by Sleeman and Brown [46]. ITSs were first developed in the 

1970s and 1980s and were sometimes referred to as Intelligent Computer Aided Instruction 

(ICAI) systems [11]. At first, the inclusion and use of the term ‘Intelligent’ was not universally 

accepted leading to some researchers opting for names such as ‘Knowledge-Based Tutoring Sys-

tems’ and others choosing ‘Adaptive Tutoring Systems’. Over time, most researchers were con-

tent with using the phrase ‘Intelligent Tutoring Systems’ and its acronym ‘ITSs’.  

An ITS is an advanced computer-based instructional system that is designed to have char-

acteristics and skills found in human tutors such as the ability to observe students’ learning pro-

gress, answer questions, and provide relevant feedback and support based on students’ miscon-

ceptions and learning paths. All these features were made possible with the incorporation of AI 

techniques. As a result, early ITSs showed some great promise. However, these ITSs still had 

challenges that were unresolved including concerns over the delivery of effective instruction. As 

a response to this challenge, Peachey and McCalla [47] proposed an instructional planning 

framework that was subsequently adopted by practitioners and incorporated in several ITSs. This 

framework was later augmented in the PEPE system [48], [49] to support content planning in-

volving making decisions on what content to teach and in what order as well as delivery planning 

which determined how to present the content. 
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Early forms of ITSs could be grouped into three clusters: curriculum sequencing systems, 

interactive problem-solving support systems, and systems that intelligently analyze student solu-

tions [50]. These early ITSs were mostly based on cognitive and expert systems principles and 

therefore were able to help students learn by either answering or asking questions relevant to 

students’ learning tasks [22]. An ITS would achieve its goals by finding misconceptions in each 

student's knowledge. It would then teach each student according to their knowledge status fol-

lowing a specified set of pedagogical rules [51]. Therefore, it has always been necessary to cre-

ate models that captured both students’ and the domain’s knowledge state to facilitate adaptive 

instruction [52], [53]. Knowledge acquired about a learner is useful in understanding that learner 

and in recommending personalized learning resources to that learner. To effectively perform its 

objective, a traditional ITS contains four core components that support its functionality. These 

four components are (1) the domain knowledge module, (2) the student model, (3) the pedagogi-

cal module, and (4) the user interface that facilitates communications between the ITS and hu-

man users. 

Since the early 1980s, several research communities have sprung up to pursue research into 

different aspects concerning the use and development of these educational computer systems. 

Some of these communities include Learning Sciences (LS), Computer Supported Collaborative 

Learning (CSCL), Educational Data Mining (EDM), Learning Analytics, Technology Enhanced 

Learning (TEL), Advanced Learning Technology (ALT), Massive Open Online Courses 

(MOOCs), Artificial Intelligence in Education (AIED), Intelligent Tutoring Systems (ITS) 

among others. These research communities cover a wide spectrum of ideas and concepts con-

cerning the use of computer technology to aid learning. Note that there is an overlap in the kind 

of research undertaken by these communities. The main difference is in the level of research 

depth each community gives to a certain topic(s) of interest. 

AIED has three key features that define its nature: openness to new research ideas and are-

as, willingness to ask hard questions, and keenness to conduct research that is focused on the 

learner first [54]. The first attribute of AIED is the openness to new research ideas and interdis-

ciplinary themes. This aspect of AIED is very essential because it contributes to the evolution 

and importance of AIED research [54]–[56]. It is common to find researchers who publish in 

AIED also publishing in other ALT communities and related technical areas such as User Model-

ing, Adaptation, and Personalization (UMAP) and Intelligent User Interfaces (IUI). The second 
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characteristic of AIED research is the willingness to ask hard and deep research questions aimed 

at providing a precise computational description of what could otherwise be unclear as it pertains 

to learning [55]–[57]. The third property of AIED is the keenness to focus on the learner-first 

approach to research with personalization at the center of it [54]. As a result, the personalization 

of learning environments has been one of AIED’s most important research goals. Studies attest 

that personalization improves learners’ attainment of learning goals [34].  

One of the earliest threads of research that is central to the success of personalization is 

modeling – the modeling of all key elements in a learning environment [18], [56], [57]. Personal-

ization requires attentive modeling of learning stakeholders (learner, mentors), learning resources 

(learning objects), and the learning environment. Santos, Kravcik, and Boticario [18] provide a 

more detailed outline of the various dimensions affecting support for personalization in learning 

systems; their work focused on research published between the years 2011 and 2016. These di-

mensions include application scope, interaction and technological devices, and educational do-

mains. In a succinct preamble to the IJAIED 25th Anniversary Issue focusing on AIED research 

directions for the subsequent 25 years edited by Lane, McCalla, Looi, and Bull [54], it is clear 

that modeling as a research thread will still be part of AIED future research with an ongoing fo-

cus on personalization [58]. Continuous advances in AIED research have led to the development 

of AIED systems aimed at supporting learning among thousands of learners in numerous learn-

ing contexts and domains. 

Even with such great success, there is room for improvement. Thus far, most AIED re-

search has focused on learning in domain-specific scenarios with well-defined domain subject 

matter, such as mathematics [19], [20], physics, computer literacy, etc. [21], [22]. In such do-

mains, concepts gradually build on one another and have fairly structured and constrained tasks 

that learners perform [23]. Recently, though, there has been some effort towards modeling and 

exploring longer-time real-world learning environments [24]–[26]. Mentoring [27], personaliza-

tion [25], [28], and self-directed learning [29]–[33] are important issues in professional devel-

opment and longer-term learning. From here on, I will use the term AIED system to generally 

refer to any kind of technology to support learning in any learning context and domain unless I 

want to refer to a specific kind of learning system, such as an intelligent tutoring system. 
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2.2 Longer-term Learning: Barriers and Solutions 

Longer-term learning tasks can happen in many formal settings that are tailored to take place 

during the early stages of life where individuals are enrolled in a formal learning institution to 

pursue education with the aim of obtaining both knowledge and certification [59], [60]. Longer-

term learning can also exist in other settings beyond the formal (school) ones, in non-formal con-

texts. In such contexts, individuals partake in learning on demand with less structure than formal 

learning settings and can attain professional skills with or without certification [61], [62]. Learn-

ing can happen informally in every area of human life where individuals engage in unstructured 

learning, planned or unplanned experiential learning, that helps them gain knowledge and skills 

for day-to-day tasks [63]. The need to support longer-term learning is very important as it ena-

bles individuals to achieve a sense of self-development, and desired skills. 

Support for the recognition and promotion of longer-term learning has been ongoing for 

some time. Early on, Cropley [62] advocated for an academic system that formally recognizes 

longer-term learning as a part of learning. According to Cropley [62] and Bagnall [64], longer-

term learning is purposeful learning that happens throughout a person’s life involving all the 

three domains (formal, non-formal and informal) leading to an individual’s development in every 

aspect of their life [65]. As such, longer-term learning is not constrained by learning settings or 

restricted to any age group; it is an opportunity for learners to take advantage of the available 

resources to achieve longer-term goals. Moreover, it encompasses learning that takes place 

throughout life that is meant to improve learners’ knowledge, skills, competence, and sense of 

enjoyment [66]. Other scholars have synonymized longer-term learning with continuing educa-

tion [67], adult learning [68], and higher education including both undergraduate and graduate 

studies [69]–[71]. Further, there is a plethora of literature on longer-term learning, especially 

dealing with learning after a person enters the workforce [72] that is focused mostly on non-

formal learning. 

Support for the importance of longer-term learning is not universal. Some researchers have 

differing opinions concerning longer-term learning viewing it as a form of control, compulsion, 

and a way of diverging systemic failure to individuals. They claim the involvement of govern-

ment agencies in efforts to encourage participation in longer-term learning among citizens cre-

ates a new form of moral authoritarianism [73] and social control [74]. Tight [75] postulates that 
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the perceived notion of longer-term learning as an extension of a career without which some 

people’s careers may stall makes longer-term learning a compulsion rather than an opportunity to 

grow. According to Coffield [76], some central tenets of longer-term learning are flawed as they 

aim at diverting the failure of systemic policies from the system to individuals. The extent to 

which these opposing views have shaped research depends partly on the sentiments of the au-

thors. 

While some might argue against supporting longer-term learning, their arguments are 

weak. If you are worried about unwanted government control, it is important to consider the 

government’s responsibility in preparing its citizens to be competitive in the ever-changing glob-

al workplace. The emergence of globalization and advances in technology have led to changes in 

the nature of innovative tasks [77]. Further, the opposition might contend that citizens are under 

compulsion to participate in longer-term learning. However, rapid information and knowledge 

evolution within many domains mean mastery of context-specific information will continue to be 

a challenging, but necessary, objective for individuals [78]. Research has shown that longer-term 

learning has the potential to enhance social cohesion by providing individuals of communities 

the same opportunities to learn, be informed, be able to form networks of peers and experts and 

be able to solve life’s challenges[64], [68], [78]. This social view is seen by the EU-Commission 

and the OECD as a means to enable people fighting social exclusion caused by the rise of global-

ization, missing out on early education, and overcoming the disappearance of low-skilled jobs 

[65], [79], [80]. Finally, there is a humanitarian motivation supported by UNESCO that longer-

term learning can affect personal life satisfaction by empowering people, as well as influencing 

job satisfaction, communal participation and personal health and well-being [64], [65], [81]. 

Clearly, there are many reasons why individuals should participate in longer-term learning that 

are motivated by a variety of economic, social, and personal satisfaction reasons. 

This concept of longer-term learning is evidently not new; however, what is relatively new 

is the need for educational systems that support longer-term learning in all formal, non-formal, 

and informal settings. Educational systems not only provide and maintain knowledge but also 

prepare and urge individuals to update their knowledge and skills. The emergence of longer-term 

learning as a new research topic for AIED [82] underscores this need. AIED research covers 

learning happening in formal settings, for example, classrooms as well as learning happening in 
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non-formal contexts, such as workplaces, and has the potential to offer personalized, flexible, 

and effective longer-term learning experiences [45].  

The success of longer-term learning lies in the identification of its challenges and solutions 

to these challenges. Longworth [83] highlights major movements in the nature of education in 

the last two centuries and identifies the actions that need to be taken in order to fully realize them 

(see Table 2-1).  

Table 2-1 Major Educational Movements in the Last Two Centuries (based on Figure 6.1 from 

[83]) 

  

The first of these actions is to find and deal with barriers to learning. The second one is to 

develop a strategy that supports longer-term learning. So, what are some of the barriers to long-

er-term learning? The one size fits all concept mostly used in formal learning settings is not per-

ceived to prepare individuals for longer-term learning as it often leads to poor learning culture as 

revealed in a Glasgow City survey [83]. Further, because formal learning domains are created to 

address the educational needs of the masses, individual students’ learning styles and the need to 

address individual needs are often ignored [84]. In addition, lack of financial resources at both 

societal and individual levels is a big barrier to participation in longer-term learning [85]. Lack 

of finances negatively affects people’s ability to travel to educational centers and/or buy facilities 

that would enable them to study at home. It is crucial to develop solutions to address the barriers 

to longer-term learning which include lack of personalization, time, and access to learning re-

sources. 

The time to use technology to support longer-term learning is ripe. The ubiquitous nature 

of technology means there is a great opportunity to study the role of technology in supporting 

longer-term learning more than ever before [86]. Dorf [87] claims that applying technology to 

education provides an opportunity to realize both longer-term learning, on one hand, and chances 
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of experiencing social consequences, on the other. In yet another study, Stahl [88] has argued for 

the need for computers to support longer-term learning in a collaborative learning environment 

for both design tasks and sharing of information. In addition, Sharples in [89] postulates that 

mobile phones already have the capacity to support longer-term learning by enabling learners to 

access learning material from any location at the same time facilitating communication between 

learners and their peers or their instructors (mentors). There is no question technology can sup-

port learners of all ages to participate in the longer-term learning process and acquire knowledge 

that would be needed in various contexts. The impact of technology on longer-term learning has 

been an area of research since the 1960s although not within AIED research. Most AIED re-

search and most educational institutes’ use of technology to support learning have focused on 

short learning episodes [85]. In the next section, I briefly discuss some of the research directions 

that have recently emerged as researchers attempt to use technology to support longer-term 

learning and mitigate challenges experienced by longer-term learners. 

2.2.1 Accessibility and Open Educational Resources 

A portion of the population does not attend higher education institutions because of lack of 

funds. Other times individuals make personal choices not to participate in higher education be-

cause they feel there are not made for it. Open Education Resources (OER) is a timely develop-

ment in the last two decades that helps decrease the financial and accessibility barriers [85]. OER 

initiatives have seen learning institutions such as MIT publish learning resources for free. The 

concepts of Massive Open Online Courses (MOOCs) are related to OER; however, MOOCs are 

mostly concerned with knowledge transmission while OER is concerned with networked learn-

ing. Learners who decide on different learning paths need support to identify different yet ful-

filling learning paths. Lifelong Learning in London for ALL (L4All) [86] is a web-based system 

developed to support such longer-term learners in exploring and planning both career and educa-

tional choices. The target learners are at least 16 years old and have not attended a higher educa-

tion institution after their high school education and live around London in the UK. The support 

mechanism is based on the concept of allowing learners to create learning paths of linked learn-

ing content (text and/or images) as a basis for future learning opportunities as well as a record of 

learning. The possibility of sharing the resulting learning paths with peers forms an important 
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integrated social feature in the system that creates an opportunity as well as supports collabora-

tive longer-term learning. 

Another challenge that longer-term learners face is the need to be in the right place, not just 

physically but also online. Depending on the learning domain, there are probably plenty of learn-

ing resources already available on the Internet thanks to OER and MOOC initiatives, as well as 

other stakeholders that keep generating more learning content on a continual basis. The main 

challenge learners face is being aware of where to look and having the capabilities to access 

available and relevant learning resources that would meet their needs. In an effort to address 

these challenges, Sharples in [89] proposes an architecture for developing mobile technology for 

supporting longer-term learning. Sharples used this framework to guide his work in identifying 

the design requirements for the software, the hardware, and the user interface for a handheld de-

vice, HandLeR. HandLeR is designed to play the role of a mentor with the following objectives: 

support learners in the capacity of a learning companion; support learning by playing the role of 

a case and concept map archive to suggest the best learning paths and organization of learning 

resources; and support learners acting as a communication device. HandLeR is designed to be 

portable, individual and adaptable, available, and persistent.  

Longer-term learners also face the barrier of accessing relevant learning resources in a 

timely manner. Searching for learning material on the Internet has become an integral part of 

longer-term learners’ to-do-lists in their quest to acquire knowledge. The main goal of the 

CROKODIL project is to support longer-term learners in their search for on-the-job learning ma-

terials, more specifically, on collaborative learning endeavors based on learning material availa-

ble on the Internet [90]. CROKODIL utilizes semantic tagging of learning material and social 

networking features to encourage collaborative learning among longer-term learners. Social net-

works allow learners to collaborate easily by facilitating interactions where individuals can ask 

questions, participate in discussions, and recommend and/or share learning resources. Therefore, 

social networks not only support communication but also provide avenues for flexible collabora-

tive learning. However, there are challenges associated with this kind of learning that stem from 

a poor organization of the learning materials. Often, available learning materials are not struc-

tured or created following a recognized standard and therefore there is a need to assess the quali-

ty of the learning materials. The goal of the CROKODIL project is to support learners to over-

come these challenges.  
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2.2.2 Personalization and Open Learner Models 

Adaptation and personalization require tailoring of learning content or system behavior based on 

a learner’s personal characteristics captured in a learner model. Learner modeling is at the center 

of the adaptation and personalization of educational systems [57]. Since longer-term learners of-

ten change their learning goals, location, environments, and learning technologies, modeling and 

recognizing all relevant learner activities into a unified learner model while considering the dif-

ferent contexts is the main challenge. Consider a typical day of a longer-term learner named 

John.  

John starts his day by reading news articles on his smartphone while having breakfast, as 

he commutes to work, he reads work-related articles on his tablet, later at work he partici-

pates in project discussions taking notes on a work tablet, and in the evening, he joins an 

online class offering guitar lessons, a long-held hobby on his home computer. 

These short learning episodes depict longer-term learning. Longer-term learners are often 

actively learning in different learning contexts where resources are not known at the design time 

but, there is constant change in both the learning resource and context. To successfully adapt the 

vast amounts of learning materials that are readily available in different repositories including 

the Internet to support longer-term learners, it is critical that information found in different per-

vasive and ubiquitous devices about a target learner is transformed into a longer-term learner 

model [91], [92]. Kay [92] proposes an approach for linking and aggregating learner models 

from different learning contexts into a longer-term open learner model. For example, a longer-

term learner model of John would aggregate all learner models about John found in different in-

dependent and domain-specific (learning) systems John has used. The idea of a longer-term open 

learner model is not only helpful in supporting personalization for both short-term and longer-

term learning goals but also for transparency and scrutiny. Learning content can be adapted to a 

learner based on his/her prior knowledge, interests, preference, and learning goals. When consid-

ering short-term learning goals, contextual and environmental information could carry more 

weight in the decision making on what resources to recommend to the learner. A longer-term 

learner model can be reused to facilitate memory augmentation through external memory [93]. 

The concept of an open learner model addresses the adaptation barrier in longer-term learning 

and gives longer-term learners the ability to take control by scrutinizing the representation of 

their knowledge state in the open learner model. 
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Supporting longer-term learners to plan and determine their future learning paths is im-

portant. A similarity concept base on searching for ‘people like me’ is used in the MyPlan pro-

ject [94], [95] to extend the functionality of the L4All system by determining personalized learn-

ing paths to recommend to a target longer-term learner. The idea is based on a learner-driven 

three-level process of determining ‘people like me (target learner)’. At the first stage, a learner 

chooses the features out of their profile to be matched. At the second stage, the learner specifies 

what part of the historical timeline to consider. Finally, the learner chooses the similarity meas-

ure to use based on a provided classification. After these filters have been applied, the system 

provides a ranked list of candidate timelines from which the learner can make a final decision. 

Beyond supporting longer-term learners to identify learning paths that are relevant to their learn-

ing goals, it important to support learners in providing flexible learning paths that take into ac-

count planning and costs [59].  

Apart from empowering longer-term learners to search for their learning resources as done 

in the MyPlan project, a recommender system can be used. Numerous educational recommender 

systems have been used to support learners in finding novel learning resources, finding peer 

learners, and finding relevant learning paths [96]. Unlike in a commercial transaction where a 

recommendation is often an event that happens once, rarely does learning happen just once; in-

stead, learning happens over time as learners attain different levels of competency. Therefore, 

educational recommenders not only have to consider learners’ learning goals but also learners’ 

prior knowledge and learning tasks. 

The Learning Networks project supports longer-term learners by connecting distributed 

learners in highly flexible and learner-centric learning networks [97]. A learning network incor-

porates many learning resources and different learning activities offered by different stakehold-

ers with the ability to contribute to the learning resource pool either by editing, deleting, evaluat-

ing, or creating new learning resources. Longer-term learners benefit from accessing readily 

available, updated, and evaluated learning resources. Further, learners get to participate in a vir-

tual community of learners where collaboration is made possible. 

2.2.3 Student Modeling within AIED Research 

Modeling of a precise representation of a student’s knowledge state has long been an essential 

goal of AIED systems research [98]. This representation of a student’s current knowledge state 
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was early on referred to as a ‘student model’ but since 2000s the term learner model has been 

more widely used4. Among the pioneering student modeling methods are doing model tracing 

[98], constructing a library of misconceptions called bug libraries [99], representing knowledge 

using techniques such as Bayesian networks and fuzzy set modeling [13], [99], and constraint-

based modeling [100] just to list a few of the techniques. These student modeling approaches di-

agnose students’ knowledge states through inference about how students use AIED systems. 

Self [101] proposed the concept of involving students in the student modeling process. 

This approach to student modeling led to the emergence of the concept of Open Learner Model-

ling (OLM) [102]. Generally, OLM is about opening up the learner model to the student it repre-

sents for scrutiny with various degrees of access restrictions that may or may not allow access to 

learner models of peers [103]. There are several advantages of allowing students to access their 

learner models including correcting misdiagnosis of knowledge states, helping learners under-

stand and reflect on their learning, and supporting effective help-seeking and collaboration espe-

cially after examining models of peers [102]–[104].  

In 2003 Dimitrova [104] introduced a framework for supporting Interactive Open Learner 

Modelling (IOLM), an architecture that allowed students to inspect, discuss, and potentially alter 

their learner models while collaborating with an AIED system. Evaluation studies have revealed 

that involving students in learner modeling leads to high-quality learner models and improved 

student learning. Another framework designed to help explain, compare and assess OLMs is Stu-

dent Models that Invite the Learner In (SMILI) introduced by Bull and Kay [105]. Adaptation in 

AIED systems, which relies on correct learner models, is important in fostering effective, effi-

cient, and satisfactory learning [105]. Effective modeling approaches continue to be a crucial 

part of AIED system development; in fact, in a succinct preamble to the IJAIED 25th Anniver-

sary Issue in 2016 focusing on AIED research directions for the subsequent 25 years, Lane et al. 

[54] make it clear that modeling as a research thread will still be part of AIED future research 

with more focus on personalization, a sentiment also reflected and supported by Baker in [58]. 

Model tracing and its generalization knowledge tracing have been among the most widely 

used approaches to student modeling in the development of AIED systems. A key feature to both 

                                                 
4 In this dissertation I am using the terms student modeling and learner modeling indistinguishably from one anoth-

er. In the AIED research field the term "student" modeling was commonly used starting with Self's seminal paper in 

1974 [241]; but in the 2000s learner modeling became preferred because the word "learner" implied a broader idea 

of learning than just being a student in a course. 
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model and knowledge tracing is the need to capture detailed information on the required steps for 

a student to generate a solution for a given problem [98]. While model and knowledge tracing 

has been successfully used in many AIED systems, the need for a model that faithfully imitates 

details of student problem-solving has been a drawback. Another downside relates to the compu-

tation power required to analyze recorded student actions against a detailed student model. Fur-

ther, model and knowledge tracing approaches are costly to develop as it requires extensive 

modeling of student misconceptions. Nevertheless, depending on the complexity of the problem 

space, model and knowledge tracing can provide targeted and appropriate feedback [106].  

In an effort to overcome the challenges of needing a very specific formal knowledge repre-

sentation such as that underlying model and knowledge tracing approaches, Ohlsson [100] pro-

posed the idea of using constraint-based modeling (CBM). CBM theory aims to use abstraction 

to overcome the over-specificity of the student models. CBM captures the state of a student’s 

knowledge in the form of constraints s/he violates or not while solving a given learning chal-

lenge [100]. Violations of constraints indicate a lack of adequate knowledge by a student on a 

specific topic. CBM has been used in numerous AIED systems including the first constraint-

based tutor, the SQL-Tutor developed in the late 1990s [99]. The SQL-Tutor is used for tutoring 

SQL, the database query language. Empirical tests of the SQL-Tutor reveal that students find it 

easy to use the tutor and that in a controlled study, students who used SQL-Tutor outperformed 

those who did not use the tutor [99], [107]. In a comparative study with model-tracing, Koda-

ganallur and Weitz [106] concluded that CBM is best suited to an information-rich problem do-

main. 

2.2.4 Evaluation and Simulation 

In the early 1990s Self [52] emphasized the importance of evaluation as part of the AIED system 

development process. The evaluation contexts and evaluation approaches are crucial considera-

tions in the development of AIED systems to support longer-term learning. Depending on the 

circumstances, an AIED system designer can decide to perform either or both of the following 

two forms of AIED system evaluation: formative and summative [52], [108]. Formative evalua-

tion is the process of examining the architecture and behavior of an AIED system being devel-

oped to detect potential problems (using, for example, pilot testing or expert-based assessment) 

to help guide any required modifications. Because of the complexity of an AIED system, forma-
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tive evaluation helps in the assessment of various AIED system components including a domain 

knowledge component, teaching elements, a communication module, a student model, and learn-

ing and control components. Summative evaluation, on the other hand, is a rigorous assessment 

process that is performed to support formal claims about the educational benefits or behavior of a 

completely developed AIED system. 

Empirical evaluation is necessary to examine the effectiveness of an AIED system on 

students. Among the measures that can be evaluated are an AIED system’s affective impact (mo-

tivating or uninspiring) and its educational effectiveness (retention, completion rate, learning 

times, skills transfer) [38], [108]. Greer and Mark in [108] highlight and describe some of the 

popular ITS evaluation methods used in the early 1990s that are still in use, such as the use of 

learning curves, kappa scores, simulated students. In [38] they present relatively new approaches 

that include the use of crowdsourcing, educational data mining, and propensity score matching. 

In brief:  

• Learning curves plot students’ number of mistakes against their estimated knowledge 

level [109].  

• Kappa score is often used in a situation where human experts are involved in evaluating 

an AIED system. Kappa score measures the rate of agreement among the participating 

experts [110].  

• Software systems in the form of simulated learners can be designed and developed to 

mimic student behavior and therefore be used for evaluation purposes. Simulated learners 

can be used to study various pedagogical issues including evaluating theory, experiment-

ing with a teaching approach, and validating AIED systems [1].  

• Crowdsourcing takes advantage of the wisdom of the crowd concept where through in-

centives a high number of evaluation participants can be attracted [111].  

• Educational data mining involves the utilization of machine learning techniques to identi-

fy meaningful patterns from large often fine-grained data sets to make sense of student 

activities [112].  

• Propensity scores aim at removing selection bias during the participant recruitment pro-

cess. Participants with comparable attribute values are placed in the same treatment 

groups. The results of similar students are then used for the evaluation process [113].  
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Although the importance of evaluation of AIED systems was identified and advocated 

from the early 1990s [52], [108], there was minimal attention given to it at that time as more re-

search focus was on developing the actual AIED systems and their components [108]. This is 

confirmed by the findings of Roll and Wylie [114] (published in 2016) who analyzed 47 papers 

published in the AIED journal in the years (1994, 2004, 2014). Roll and Wylie chose these pa-

pers to represent AIED’s early, mid, and latest (as of 2016) research foci and trends respectively. 

Roll and Wylie show that only 5% of papers published in the year 1994 included evaluation in 

their description choosing more to focus on domain and learner modeling. In contrast, in 2004 

the percentage of published papers including a system description and evaluation had jumped to 

62% and further increased to 71% in the year 2014. Another interesting trend reflected in the 

Roll and Wylie analysis is that with more publications including empirical evaluations, there 

seems to have been a shift towards STEM (Science Technology Engineering Maths) domains. 

As shown above, several learning system evaluation methods are provided in the literature, 

but the diversity of these approaches gives rise to another challenge that the literature does not 

address. There is no clear guidance for system designers on which approach to use when consid-

ering a longer-term learning domain. Further, most of these evaluation methods are empirical 

which does not allow generalization and often excludes factors that might affect the end results 

[37]. When considering which evaluation methods to use, two factors need to be well-thought-

out. The first is to consider the focus of the evaluation: is it on the whole system or on a compo-

nent of the learning system [52]? The second consideration is the type of evaluation to run: is it 

an experimental evaluation requiring systemic variation of variables or an exploratory study re-

quiring a deep understanding of interacting factors [37]? 

The complex nature of AIED systems means that the process of developing and evaluating 

AIED systems is costly [115], [116]. This cost comes in different forms. For example, the devel-

opment of a cognitive tutor was costly because it required deep cognitive modeling of skills and 

bugs, which takes a lot of time and many iterations of system building [116]. Other factors that 

contribute to the cost of developing AIED systems include the need to consider intercultural di-

mensions of potential users (learners), their privacy concerns, the need to support the collabora-

tion of thousands of learners, and the need to explore diverse learning contexts [117]. Further, it 

is costly to run a closely controlled classroom and other real-world experiments [118]. Other 
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learning goals might require learners to use the system for a longer time, probably months, in 

order to gather a reliable dataset for evaluation [119]. 

Generally, AIED systems are evaluated with randomized studies; however, these evalua-

tions are costly and time consuming often requiring experimental designs that require approvals 

by Ethics boards and recruiting and paying of study participants [37], [120]. When considering 

longer-term learning domains, the nature of the learning environment means that the financial 

cost would be much higher, and it would be almost impossible to use human subjects because it 

would require too much time. In addition, there are feature design decisions that have to be 

made, for example, deciding to include forgetfulness in the open learner model [92], [121]. This 

is crucial for representing accurate knowledge of a learner as knowledge and skills decay over 

time especially because learning in this context happens longer-term, measured in years. Moreo-

ver, as I illustrated earlier using John’s learning scenario, longer-term learning happens episodi-

cally and in multi-institutional settings. Most evaluation settings do not recreate these important 

phenomena [85].  

Given these evaluation challenges, it is desirable to advocate for a cheaper, faster, and flex-

ible evaluation approach for validating and evaluating design and development decisions under-

lying an AIED system for supporting longer-term learning. A promising approach is the use of 

simulation, simulating important features of the learning environment. Analogous to the use of 

wind tunnels to evaluate the aerodynamics of various airplane components [52], [122], simula-

tion provides an opportunity to experiment with various hypothetical, ‘what-if’, design decisions 

and learner decisions in a more cost-effective and faster approach than using human learners.  

2.3 Use of Simulation within AIED Research 

In the mid-1990s VanLehn, Ohlsson, and Nason [1] asserted that technological advances had 

made it possible to create simulated agents that could exhibit human-like behavior. Therefore, a 

novel idea of using artificial learners (agent technology) either as co-learners, learning compan-

ions, or collaborators was introduced to improve learning [123], [124]. The development of sim-

ulated learning environments and simulated learners as agents within AIED systems can be 

traced back to the creation of intelligent tutoring systems in the early 1970s [35]. In their pio-

neering article on the use of simulated agents within AIED research, Kurt VanLehn, Stellan 

Ohlsson and Rod Nason [1] identified three main uses of simulation in learning environments. 
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These uses are (i) to provide an environment for human teachers to practice their teaching ap-

proaches; (ii) to provide an environment for testing different pedagogical instructional design 

efforts; (iii) to provide simulated learners who can act as companions for human learners.  

The third of these uses have had, by a wide margin, greater follow-up research in the inter-

ceding years. There have been numerous simulation systems where simulated humans can play 

an explicit part in the learning environment, for instance as learning companions [125], or as 

pedagogical agents [124], or as teachable agents [126], [127], or even as mentors [128]. Another 

example is Vizcaíno’s [129] proposed simulated student architecture designed for a collaborative 

environment with the aim of assisting human learners to avoid situations that would lead to less 

learning while collaborating with other human learners. Vassileva, McCalla, and Greer [130] 

provide a succinct review on the impact of the PHelpS system, a system that was based in part on 

using personalized companion agents to help students to select a helper. There has been research 

on animated interface agents, knowledge-based learning environments, visual embodiment, and 

dialogue systems in the early 1990s that spearheaded the change in the functionality of intelligent 

tutoring systems by enabling the introduction of pedagogical agents [131][132]. These agents 

can connect and interact with human students.  

Similarly, the first use has also received substantial research work where simulated learners 

interact with human teachers or mentors. The goal is to provide humans the opportunity to gain 

valuable training by teaching a simulated learner, for example, the tutor-able physics student 

[133] and SimStudent [134]. SimStudent5 is a customizable computational model that enables 

research in three major research directions: theory building – examining factors that affect learn-

ing by observing how SimStudent simulated as a student learns [135]; intelligent authoring – 

SimStudent helps improve Cognitive Tutoring Systems by modeling the cognitive skills from 

examples [134]; and teachable peer agent – SimStudent can play the role of a peer learner. As 

such, SimStudent allows human tutors to learn by teaching it [118], [136].  

In contrast, it is surprising that the second role has not only received the least follow-up re-

search among the three roles, but it took a while before research on the use of simulation to test 

systems design issues started to gather traction. Champaign in [137] used a very simple abstrac-

tion of learners and learning objects, a low-fidelity simulation, to design a peer-based ITS aimed 

at helping simulated learners by suggesting appropriate learning objects. These suggestions are 

                                                 
5 http://www.simstudent.org/ last accessed on February 12, 2019 
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based on those learners’ past performances and the performances of like-minded peers, personal-

ized allocation of learning objects and matching students’ needs with beneficial annotations on 

learning objects. Similarly, Frost and McCalla [138] utilized simple learner agents to examine 

the impact of peers on learning. They compared the learning outcomes in a situation where there 

are two types of peer effects: 1) a learner reacts negatively to the success of their peers, 2) a 

learner responds positively to the success of their peers. Dorça in [34] showed how to use simu-

lation to test three approaches for detecting learners’ learning styles more efficiently while sav-

ing on time, financial, and human resources. Another ‘second use’ project is Erickson et al. [2] 

who modeled a specific learning architecture with simulated learners and learning objects. As-

pects of this simulation were informed with data gathered in two different and unrelated empiri-

cal studies about human behavior. 

2.3.1 Current Uses of Simulation 

With the introduction of pedagogical agents in the late 1980s and early 1990s [139], the possible 

pedagogical strategies of adaptive learning systems became even more complex and at times 

even involved reversed roles such as having human learners take on the role of tutors and com-

puter applications taking on the role of students [140]. The initial goal of using learning compan-

ions was to make AIED systems more interactive and potentially to make them more impactful 

as learning tools [124]. 

There are two popular types of AIED systems based on agent technology discussed in the 

literature: conversational pedagogical agent systems and learning by teaching systems that use 

conversational agents and teachable agents respectively [35]. As the names suggest, conversa-

tional agents are systems that can converse with human learners and teachable agents are arti-

facts that human learners can teach to complete their learning tasks. Simulated pedagogical 

agents are used to serve a variety of pedagogical purposes in AIED systems including producing 

realistic simulations; promoting engagement; improving students’ learning and performance; fa-

cilitating help-seeking; providing learning companionship; and adapting to learners’ sociocultur-

al needs. 

Simulated learning environments and pedagogical agents are increasingly used within 

game-based learning environments and intelligent tutoring systems. However, research results 

suggest that learning benefits resulting from the use of these teachable and conversation agents 
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vary based on agent characteristics (e.g., facial representation and gender) and learner features 

(e.g., demographic background and prior knowledge) [118], [136]. Conversational agents are 

useful in engaging students and providing a sense of learning companionship as well as facilitat-

ing personalized tutoring in different learning domains. Some conversational agents are designed 

with the ability to monitor learners’ learning gains based on the responses provided by the learn-

ers. Teachable agents not only give learners an opportunity to learn by teaching but also give re-

searchers a platform to explore various learning theories. Simulated game-based learning envi-

ronments enable learners to learn by immersion, experimenting with virtual environments and its 

features without fear of making catastrophic mistakes. 

The quality of a student model that an AIED system uses to make its adaptive decisions af-

fects the effectiveness of that AIED system [119]. In an effort to create effective student models, 

SimStudent is used to develop expert models representing students’ cognitive skills in problem-

solving tasks [134]. In another study, Dorça [34] showed how to use simulation to test three ap-

proaches for detecting learners’ learning styles more efficiently while saving on time, financial, 

and human resources. Another issue is evaluating systems targeted at a special education popula-

tion, where in addition to a lack of sufficient study participants, there is the difficulty of meeting 

the ethics requirements associated with studying students with special needs [141].  

2.3.2 Potential Use of Simulation 

There are at least two challenges associated with the AIED system development process. First, 

during the design and prototyping stage, it is not often possible to design for all anticipated stu-

dent misconceptions. These misconceptions occur when students are interacting with an AIED 

system. To fully evaluate the results of such misunderstandings at the initial stages of an AIED 

system development process is difficult because of the high financial cost and length of time re-

quired [51]. Secondly, while AIED systems are meant to provide personalized instruction to stu-

dents, the kind of individualization provided by AIED systems is primarily performance-based. 

As a result, it is not easy for a human learner to establish any form of relationship with an AIED 

system [142].  

As AIED research trends towards supporting learners in longer-term learning contexts, 

these challenges are magnified. Longer-term learning consists of potentially many learning epi-

sodes from different domains, so understanding the longer-term impact of a system design deci-
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sion is crucial. In addition, personalized social interactions and recommendations of learning re-

sources are important to achieving longer-term learning goals. Use of simulation and simulated 

learners for validating such systems is a promising alternative. There has been little use of simu-

lation, however, in the education domain, with the goal of informing educational system design-

ers about how to create environments that support learners and teachers. 

Simulation gives a researcher the ability to conduct experiments and shed light on real sys-

tems that are otherwise impractical to investigate because of the nature of the environment or the 

length of the investigation in real time that is required [34], [129], [143]. Simulation can be used 

to replicate a real-world situation by modeling the target domain’s key characteristics and behav-

ior over a span of time. Simulation has been considered as an important decision support tool 

since the 1950s and has been used in numerous areas including healthcare, the military, crowd 

behavior, and market or customer behavior [144]–[147]. It is the primary tenet of this disserta-

tion that the time has now come for simulation to be used much more in educational domains, 

and in particular to become a key element used by the developers of advanced learning technolo-

gy to help in the design and testing of their systems. 

2.4 Summary 

AIED research into the use of technology to support learners of all ages and across all domains 

has led to the development of various AIED systems that are helping thousands of learners in 

numerous learning contexts and domains. As a result, many learners have had enhanced learning 

experiences. It is important to note, however, that over time, the ambitious approach to address 

learning challenges in an increasingly large number of domains in different contexts exposes 

AIED research to at least two challenges.  

First, most AIED research has focused on learning in domain-specific scenarios taking 

place over relatively short-time frames or experiments done in a laboratory setting. Usually, the 

focus is on a certain well-defined subject matter, such as mathematics, physics, computer litera-

cy, and other similar domains whose concepts gradually build on one another and have struc-

tured and constrained tasks that learners perform. Focusing primarily on these kinds of learning 

contexts limits the positive impact of learning technologies from reaching a wider population of 

learners who might want to engage in longer-term learning. Second, as AIED ventures into new 

learning domains, there is a need for a deep understanding of learning system design challenges 
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especially concerning learner modeling and evaluating the potential impact of using technology. 

Evaluation is critical for ascertaining the success and effectiveness of systems. However, when a 

new domain is first being explored, for example, an ill-defined domain, or in a longer-term learn-

ing context, the minimal research focus AIED has placed on such environments means that there 

is inadequate knowledge as to what approaches to use for evaluating such AIED systems. Fur-

ther, the nature of these learning environments means that designing, developing, and testing an 

AIED system would be very costly as it would require substantial amounts of financial, human, 

and time resources.  

Recently, more and more researchers have started to tackle these challenges. Technological 

advances over the last decade have contributed to the development of better systems and enabled 

the deployment of these systems in large-scale contexts, for example, the deployment of 

MOOCs. Moreover, as I discussed in the longer-term learning section above, there have been 

some efforts towards modeling and exploring longer-duration real-world learning environments. 

As more AIED systems are developed to support learners engaged in longer-term learning, it is 

desirable to advocate for a cheaper and faster approach for validating and evaluating the design 

and development decisions underlying an AIED system. Indeed, a cheaper and promising ap-

proach for exploring research issues in such dynamic domains is using simulation.  

Simulation model fidelity is an issue that arises when using simulation to study real-world 

phenomena. Different researchers have demonstrated that it is possible to use different levels of 

model fidelity to gain insight into various pedagogical research issues within educational tech-

nology research. For example, while Champaign [148] used a very low fidelity model, Matsuda 

et al. [118] used a model with high cognitive fidelity to reach compelling conclusions about the 

use of ITSs to personalize student learning experiences. Erickson et al. [2] also demonstrated that 

it is possible to use a medium simulation model fidelity to uncover interesting results. Pedagogi-

cal simulation models can be based on real [118] or fictitious [2], [148], [149] learning environ-

ments. In choosing the appropriate fidelity of the simulation model it is important to consider 

both the objectives of the study and the research questions a researcher hopes to explore. 
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CHAPTER 3 

CREATING SIMDOC: MODELING A SIMULATED DOCTORAL PROGRAM  

In this chapter I introduce SimDoc, a simulated learning environment meant to capture aspects of 

a university doctoral program. First, I present a discussion on mentorship and mentoring systems. 

Next, I give an overview of the doctoral program as an example of a learning environment with 

largely self-directed learners who are active over the longer term (usually years) and are men-

tored by supervisors. I then show how I modeled a doctoral program demonstrating how an 

AIED system designer can model learning environments s/he wishes to explore. In particular, I 

describe the basic simulation model architecture and its agent models (representing students and 

supervisors). I conclude this chapter with a demonstration of how I use a combination of availa-

ble target environment data, data from the literature, and ‘common sense’ assumptions to inform 

the simulation model.  

3.1 Mentorship and Mentoring Systems  

Mentorship is a deliberate process where more knowledgeable and often mature individuals in a 

specific field or profession encourage and teach novice individuals how to acquire relevant 

knowledge and develop appropriate skills [150]. Mentoring exists in all walks of life. For exam-

ple, the relationship between Ph.D. students and their academic supervisors [151], or the rela-

tionship between apprentices and master craftsmen, can be considered as instances of longer-

term mentoring relationships. Short-term mentoring relationships include cases such as the peer 

review process where there exists a relationship between authors of scholarly work and review-

ers [152] or the relationship that exists amongst students who help each other out or collaborate 

(peer mentorship) in a project or course [153], [154].  

Minor [155] argues that group peer-mentoring is the most cost-effective approach because 

it takes advantage of perceived trust among peers and willingness to receive feedback from indi-

viduals considered to be at the same level of knowledge. However, for an effective peer mentor-

ing process, there is a need for a more knowledgeable and experienced individual in the mix and 

formal structures can be useful [153]. For example, in a learning institution, the participation of 

both faculty and students is paramount for the success of group peer mentoring. Other factors 

that affect the quality of the mentoring relationship and hence the effectiveness of mentoring in-
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clude differences in expectation, miscommunication, lack of appreciation of each party’s circum-

stances, and trust [156]. These are not dissimilar to factors affecting doctoral supervision, espe-

cially where trust and communication (through feedback on written drafts and other issues) be-

tween doctoral students and their supervisors is important [157], [158]. 

Mentoring can take different forms including one-to-one, one-to-many, many-to-one, peer 

group, and many-to-many [159]. In addition, mentoring can either be classified as informal or 

formal [160]. Friendships and professional acquaintances form the basis of informal mentoring 

where a more knowledgeable (expert) individual agrees with no formal arrangement to mentor a 

novice; hence, there is self-selection of mentors and mentees [161]. This spontaneous kind of 

arrangement is longer-term and is based on an extension of an existing relationship between two 

individuals. Further, the goals and outcomes of the mentoring process are not time-bound. On the 

other hand, formal mentoring relationships are established in the context of an organization in a 

matchup between a mentor (expert) and a novice [160], [161]. In addition, most formal mentor-

ing relationships are short-term, often lasting less than a year (although some formal mentoring 

relationships can last many years, as in doctoral supervision). As such, objectives and outcomes 

are specified and are time-bound. Another difference between formal and informal mentoring 

has to do with effectiveness. According to [160], [161], informal mentoring is much more effec-

tive than formal mentoring because novices receive greater benefits and overall satisfaction in an 

informal relationship. Some of the reasons for this phenomenon include lack of self-motivation 

and the short-term nature of the formal mentoring relationship [161]. Therefore, it is important 

for professional organizations to incorporate aspects of informal mentoring into their formal 

mentoring processes. 

Several systems have been developed that support mentoring including [162]–[164]. Ade-

woyin and Vassileva in [162] introduce a mentorship framework for serving short-term mentor-

ing that exists between peer reviewers (mentors) and scholarly authors (mentees). myPAL [163] 

is a virtual mentor serving in a longer-term mentorship scenario – a 5-year medical undergradu-

ate course. The structure of the program is based more on professional values found in clinical 

settings and less on a course-based curriculum. Therefore, in such contexts, it is important to fo-

cus on aspects geared towards fostering learners to achieve and complete major milestones as 

opposed to fine-grained course-work level curriculum details. This is also true for my work on 

the supervisor-student mentoring relationship in a doctoral program. AutoMentor [164] is a web-
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based ecological mentoring game that supports students learning about urban planning and how 

to handle various stakeholders interested in and competing for land use. The goal of AutoMentor 

is to mentor students to respond to inquiries in a professional manner. 

3.2 Understanding the Doctoral Program 

Doctoral programs are complex and dynamic social environments made up of many heterogene-

ous stakeholders: students, faculty, administrators, and government, who interconnect in a myri-

ad of ways. These connections matter to these stakeholders and affect how they act and react, 

therefore impacting how the whole doctoral learning environment operates. In addition, they 

each also have different roles, for example, government acts as a funding body, faculty members 

act as supervisors and/or instructors, and students as learners but also sometimes as tutors and 

teachers too.  

Doctoral supervision like most other supervision in formal and informal settings is widely 

viewed as a unidirectional endeavor where the supervisor actively passes knowledge to a super-

visee. However, the supervisory process actually provides an opportunity for the supervisor and 

supervisee to learn from each other [165]. As such, supervision forms the basis for reciprocal 

learning. Just as in other professional development where training to acquire relevant skills takes 

years, doctoral supervision is an example of a mentoring process in a formal setting that happens 

over a relatively long period of time. 

Attrition rates, completion rates, and time-to-completion are important factors influencing 

the perception and experience of a doctoral program by interested stakeholders [3], [166]. Long 

time-to-completion and high attrition rates are costly financially to the funding bodies and the 

learning institutions and costly, timewise, to the individuals involved: student(s) and supervi-

sor(s). Research on doctoral program attrition and time-to-completion indicates that over time 

both the attrition rates and time-to-completion have continued to increase. On average, the attri-

tion rate is currently reported to be between 50% and 60% [166]–[168]. Literature shows that 

various factors have an influence on doctoral attrition rates, completion rates, and time-to-

completion. These factors include: learner’s gender, nationality, ethnicity, age, marital status, 

time management skills, writing strategy, supervisory style, availability and size of funding, dis-

cipline of study, and sense of learning community [3], [151], [166], [169]–[178].  
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Almost three decades ago Baird [179] explored the effect of the discipline of study on 

time-to-degree and showed that the average time-to-completion amongst doctoral students varied 

across different disciplines. Most recent research [175], [180], [181] agrees with Baird’s finding 

that the discipline of study impacts doctoral students’ time-to-completion and attrition rates. 

While these studies, [175], [179]–[181], focused on discipline features such as social integration, 

a disciplines’ job prospects, funding opportunities, supervision ratio and support, others such as 

[182], [183] focused on the factors affecting doctoral students’ persistence at various stages of 

their doctoral degree. 

Studies, [166], [182], [183], have shown that attrition mostly occurs when students have 

finished their coursework, during the years of study when students are working on their thesis 

research and when isolation is a prevalent phenomenon. Others, [184]–[186], have asserted that 

it is not the stage at which the student is at, but rather the lack of both academic and social inte-

gration that affects doctoral students’ decisions to either persist with their studies or not to per-

sist. 

Supervisory style is another factor that affects doctoral students and their propensity to per-

sist to completion that has received substantial research focus, [151], [158], [169], [177], [178], 

[183], [187], [188]. Heath [178] attributes most of the doctoral students’ success or lack thereof 

on the supervisor-student relationship. His research indicates that, even though in most Ph.D. 

programs a doctoral student is supervised by 1 or 2 supervisor(s), the number of supervisors in-

volved with a student makes no difference in that student’s satisfaction regarding the doctoral 

program experience. Nevertheless, a supervisor can have far-reaching impact on a doctoral stu-

dent’s progress towards their doctoral degree because s/he plays a crucial role in supervising, 

guiding, supporting (financial & otherwise), bringing appropriate expertise to the table, fostering 

a student’s learning skills, and assessing the student [177], [178], [189]. 

Gatfield analyzed 60 items found in the literature associated with supervisor-student rela-

tionships and Ph.D. completion to identify four supervisory styles. These four styles are Laissez-

Faire, Pastoral, Directorial, and Contractual. See Figure 3-1 for a short outline of supervisor 

traits for each supervisory style as identified by Gatfield. These descriptors suggest a preferred 

mode of supervision style by a supervisor and not a fixed form of operation. Supervisors may 

often be required to adapt their supervisory styles based on the needs of students they are inter-

acting with and the stage of progress of the students.  
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Supervisor exhibits the following traits

• Non-directive 

• Less personal interaction/support

Supervisor exhibits the following traits

• Directive & task focused

• More personal interaction/support

Supervisor exhibits the following traits

• Non-directive 

• More personal interaction/support

Supervisor exhibits the following traits

• Directive & task focused 

• Adequate personal interaction/support

 

Figure 3-1. The Four Supervisory Styles and Associated Supervisor Traits Based on Supervisory 

Management Grid [151]. 

Another factor that is related to supervision that affects the progress of doctoral students is 

the frequency of meetings that occur between doctoral supervisors and their doctoral students. 

Regular supervisor-student meetings have been shown to play major roles in the satisfaction of 

students leading to successful completion of the program [177], [178], [190], [191]. The fre-

quency and the setting for supervisor-student meetings is a balancing act between creating a 

sense of community and providing individualized one-on-one interaction. For some students in-

teractions that take place in a group-setting create a sense of community and therefore alleviate 

feelings of isolation, while other doctoral students desire to work independently and require per-

sonalized feedback instead [190].  
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Although several individual and institutional factors have been shown to affect a doctoral 

student’s decision to persist or drop out, research on doctoral students, such as [172], [173], pro-

vides only a few recommendations on how institutions can help students overcome the challeng-

es that might lead to long time-to-completion or the desire eventually to drop out. Even with 

these findings, there is still much to learn especially in a scenario where an adaptive AIED sys-

tem is introduced. To explore and gain insight into how such adaptation and personalization af-

fects students’ progress through their doctoral program, it is important to address at least four 

major challenges. 

First, because of the nature of the doctoral program, it is difficult to determine what per-

sonalization data, learning environment data, and learner data, to collect and use for supporting 

an AIED system’s design and personalization decisions [143]. Second, in a doctoral program, 

learning goals are achieved over longer-term periods. Hence, it is difficult to quickly evaluate the 

impact of a design decision. Third, where such personal data are collected, there are privacy con-

cerns over who gets to access what subset of the data and how such data are distributed [117], 

[130], [192]. Finally, educational data mining and learning analytics techniques used for evalua-

tion currently do not allow researchers and system designers to manipulate existing data such 

that various hypothetical, ‘what-if’, research questions could easily be asked for purposes of 

gaining insights into new personalized learning strategies, or new learning systems design deci-

sions [38].  

3.3 Using Simulation to Understand a Longer-Term Mentoring Environment 

As I have mentioned earlier in section 2.2.4, there are two types of system evaluation: formative 

and summative. A system designer performs a formative evaluation early on during the system 

design and development process. It is performed to identify and correct design and development 

issues including misconceptions about the potential impact of the designed system. By contrast, 

summative evaluation is performed when the system development has been completed. It is 

aimed at providing evidence that formally supports the behavior and effects of using the imple-

mented system.  

Designing and developing systems to support longer-term mentoring is tasking and it takes 

a long time to evaluate them. The designers not only need to know what system features to de-

velop, but also must understand the learning context in which the system will be used. The ques-
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tion then is how can longer-term mentoring system designers explore and test the impact of vari-

ous system design decisions and components in an effective and timely manner? I illustrate how 

this is possible using the SimDoc model: a complete simulated doctoral environment with both 

mentors and mentees. Such simulation allows a system designer to evaluate many features and 

their impact in a reasonable time frame without subjecting human mentors and mentees to unfa-

vorable conditions.  

In a doctoral program, attrition rates, completion rates, and time-to-completion are im-

portant factors that impact students’ learning experiences and satisfaction [3]. High attrition rates 

and lengthy time-to-degree are costly to both the learning institutions and students. Studies show 

that among those factors that affect time-to-degree and attrition rates are supervisory style and a 

sense that progress is being made in learning [151], features analogous to peer mentoring and 

expert-novice mentoring. Developing a mentoring system to support learning in a doctoral pro-

gram requires an understanding of its functionalities and its stakeholder behaviors.  

So, in my explorations of the doctoral program, I am concerned especially with the effects 

of various policies on time-to-degree and attrition rates. Specifically, I am interested in exploring 

the following hypothetical, ‘what-if’, questions:  

Q1. How effective would each of the four (4) supervisory styles identified by Gatfield [151] 

and categorized based on desired meeting frequency be among students with the four dif-

ferent desired meeting frequency levels based on Heath’s [178] distribution?  

Q2. How effective would each of the four (4) supervisory styles identified by Gatfield [151] 

and categorized based on desired meeting frequency be among students grouped by the 

three different levels of latent effort6?  

3.4 Modeling a Simulated Doctoral Program: the SimDoc Model 

In this section, I demonstrate the steps I took to model SimDoc, a model of a doctoral program. 

3.4.1 A Seven-Step Modeling Framework 

I use a seven-step framework depicted in Figure 3-2 to guide the SimDoc modeling process. The 

framework is adapted from a social science seven-step architecture for conducting simulation 

                                                 
6 A numeric simulation model attribute that indicate how much a student is willing to work on their doctoral work. 



35 

 

studies described by Law [193]. Having such a framework is helpful in building valid simulation 

models, which in turn a researcher can use to conduct pedagogical simulation studies. It is im-

portant to note that iteration within the seven steps is necessary. In the next section, I briefly dis-

cuss what happens in each step and how this framework differs from that presented by Law.  

 

 

Figure 3-2. A Seven-Step Framework for Building a Valid Pedagogical Simulation Model 
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Step 1. Identify and Formulate a Research Problem 

A researcher/designer can use simulation to explore pedagogical research issues without incur-

ring the high expenses often needed to perform human-based studies. To do this successfully, a 

researcher/system designer must have clear and specific research questions concerning the phe-

nomenon s/he is interested in exploring. Further, a designer should have preliminary designs of 

expected experiments s/he is interested in studying. This is one sub-step in my framework that is 

different from Law’s approach [194]. According to Law’s architecture, the experimental design 

comes later in the 6th step. I believe this sub-step best serves the designer and the model building 

process if performed early on because it helps guide the next two steps: formulation of a concep-

tual model and data collection. In addition, it helps the designer to think critically about the re-

search problem s/he is interested in exploring.  

Step 2. Formulate a Conceptual Model 

One of the keys to creating an appropriate simulation model is the understanding of how the or-

ganizational structure of the target learning context contributes to how various stakeholders be-

have. This step involves describing an abstract model of the target learning environment. In addi-

tion, where applicable, a designer can incorporate insights found in the literature concerning as-

pects of interest in the target learning environment to strengthen the conceptual model and im-

prove its validity. It is essential in this step to make sure the conceptual model’s assumptions are 

valid before moving on.  

Step 3. Identify Sources of Data to Inform the Model 

The third step involves identifying, collecting, and analyzing raw data about the target learning 

environment to inform the various model assumptions and system behavior. A designer should 

try to get access to data about the target learning environment and its stakeholders. A designer 

can then use data from the literature to fill the gaps where raw data are missing. Both sets of data 

are helpful in informing model parameters, key assumptions, and algorithms, that form the theo-

retical foundation for the model. It is important to establish that the assumptions of the experi-

ments designed in step 1 can be credibly informed. Otherwise, a revision of step 1 is necessary. 
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Step 4. Implement the Simulation Model  

After formulating a conceptual model, a designer can then program the simulation model using 

simulation software of choice. It is important that the model is built incrementally, and that the 

designer calibrate and verify each programmed component of the model against the conceptual 

model. 

Step 5. Validate the Implemented Simulation Model 

Where there is existing data about the target learning environment, to ensure that it is valid a de-

signer can compare the simulation model’s output with comparable real-world data collected in 

step 3. In circumstances where real data do not exist, a designer must judge the validity of the 

model output preferably with help from a panel of experts in the target context and domain. To 

achieve the desired output, a designer might have to iterate between steps 4 and 5 more than 

once. With a valid model implemented, a designer can then move to the next steps, conducting 

and analyzing experiments and finally reporting on insights discovered.  

Step 6 & 7. Experimentation and Publishing of Results 

After validating a simulation model, a researcher can then use the model to explore various is-

sues and to test various hypothetical, ‘what-if’, research questions of interest. These two steps 

are important phases that are useful in reporting the insights gained using the resulting simulation 

model. Another feature that differentiate this framework from that of Law is using the insight 

from the simulation results to explore ways of improving the simulation model. 

3.4.2 SimDoc’s Conceptual Model: Key Components and Assumptions 

In this section, I present a practical example of steps 2, 3, and 4 being used to guide the devel-

opment of the SimDoc model. I have already identified the research questions of interest (step 1) 

in section 3.3 and will illustrate the validation of the model (step 5) in the next chapter before 

demonstrating steps 6 & 7 in chapter 5. Step 2 is about developing SimDoc’s conceptual model. 

This conceptual model includes agents and their attributes, and the behavior and evaluation func-

tions needed to model a simulated doctoral program. I have designed SimDoc’s conceptual mod-

el to have five key components: agents, normative rules, dialogic rules, events, and scenes based 

on features for building an electronic institution proposed by Esteva et al. [195]. See Figure 3-3 



38 

 

for a depiction of SimDoc’s conceptual model. I model SimDoc’s entities following the agent-

based modeling (ABM) [196] technique (and see Figure 3-4, later in the section, for a depiction 

of SimDoc’s conceptual model as implemented in the AnyLogicTM programming platform7). Use 

of ABM is applicable because it enables me to model entities of interest as agents with various 

characteristics. Note that I use the term learner model when discussing what attributes, I modeled 

at a conceptual level, and the term learner agent when discussing the agent that instantiates this 

model within SimDoc. 

 

 

Figure 3-3. SimDoc’s Conceptual Framework - Its Three Element Types, and their Interaction 

Patterns 

Agent Models  

I use the notion of agents to represent stakeholders. As stated earlier, different stakeholders 

play several roles in the doctoral program learning environment. The concept of a role is funda-

mental in understanding and modeling the activities taking place in a given learning environ-

                                                 
7 I implemented SimDoc model in AnyLogicTM, a Java-based platform for modeling and simulation. 

https://www.anylogic.com/ last accessed February 12, 2019 
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ment. A role is defined as a conceptual representation of a stakeholder’s collection of established 

behavior and functions that have observable features [195], [197], [198]. Specific to SimDoc’s 

elements, I model two types of roles: learner and supervisor. As such, I model two types of 

agents to represent doctoral students (who we will refer to as learners in our simulation) and su-

pervisors. A key element in any simulation in AIED is the agent model underlying the simulated 

learners. Numerous probabilistic methods have been used in building such agent models that 

model learner data based on probability distribution functions, as in [199]. The Bayesian 

Knowledge Tracing technique is one of the most popular approaches for modeling learners’ 

knowledge [200]. A common approach to modeling learner knowledge is combining Bayesian 

Knowledge Tracing with other methods, for example, Bayesian Knowledge Tracing and Item 

Response Theory [201]. Still another Bayesian related approach is Bayesian Decision Theory 

[202].  

Another main approach is to use simulation strategies based on cognitive theories in which 

cognitive problem-solving processes are modeled to produce rich simulated learners. Faghihi, 

Fournier-Viger, and Nkambou introduced a technique based on neuroscientific theories that 

combine several human learning capabilities including emotional, episodic, causal and 

procedural learning to capture a learner model for a cognitive tutoring agent [203]. Rule-Based 

Modeling often augments the cognitive approach by representing learners’ knowledge using 

procedural and production rules as in the cognitive tutoring systems [135]. These approaches 

attempt to create high fidelity agent models based on historical interactions between an ITS and 

learners. 

Alternatively, some researchers have chosen to build low fidelity agent models that 

typically don’t need to draw on a large amount of human learners’ usage data. For instance, Frost 

and McCalla [204] model very simple abstractions of learning objects and learners. Each simu-

lated learner is modeled to have an attribute called aptitude-of-learner whose value is between (0 

and 1). Similarly Champaign and Cohen [205] have used low fidelity models consisting of learn-

ers and learning objects. Each learner is modeled to have a level of knowledge, a value between 

(0 and 1). These low fidelity models are useful for exploring parameter interactions and general 

pedagogical tendencies in the simulated learning environment. In this dissertation, I use agent 

models with medium fidelity. The learner agent model captures the following key attributes: pre-

ferred meeting frequency, class workload, class requirements, stage of program, research group, 
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actual frequency of meeting with supervisor, latent effort (how much they are willing to work on 

their doctoral tasks), weekly effort-of-learner (how much they actually work on their doctoral 

tasks), and satisfaction (with the program). See Figure 3-5 for an exhaustive list of attributes im-

plemented in AnyLogicTM. In Table 3-1, I provide brief descriptions that demonstrate how each 

learner agent’s attribute is initialized and changed.  

 

 

Figure 3-4. SimDoc’s Conceptual Model Implemented in AnyLogic
TM

 Programming Platform 
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Figure 3-5. SimDoc’s Learner Model Implemented in AnyLogic
TM 

 



42 

 

Table 3-1. Learner Agent Attributes and their Parameterization 

Attribute  

Description 

Data type (val-

ue range) 

How its value is assigned  

How its value changes 

Learner Agent Id Integer (>0) 

Its value is generated sequentially as agents are 

added to the simulation 

Once set, its value does not change 

Start Date Date  
Its value is assigned when a learner is added 

Once set, its value does not change 

Stage 

This attribute indicates the milestone a 

learner is working on at a given time 

String 

(coursework, 

comprehensive, 

proposal, dis-

sertation) 

 

If a learner has class requirements to complete, a 

learner is first assigned to the coursework stage. 

Otherwise, a learner is first assigned to the com-

prehensive stage. 

A learner agent progresses to the next stage once 

it has completed the requirements of the previous 

stage  

Research Group 

Indicates research group a given learner 

agent is assigned to upon admission 

Integer (re-

search group 

id) 

 

Its value is assigned based on the research group 

sizes derived from UofS CS department data – 

indirect assignment of a supervisor since every 

research group is led by a supervisor. 

Once set, its value does not change  

Class Requirements 

The number of classes a learner is as-

signed to take in the course of their pro-

gram 

Integer (0,8) 

 

Its value is determined and allocated based on a 

distribution derived from UofS dataset 

Once set, its value does not change  

Class Workload 

Indicates the number of classes a learner 

chooses to take in one academic year 

Integer (0,8) 

 

Its value is determined and allocated based on a 

distribution derived from UofS dataset 

Its value changes every academic year  

Preferred Meeting Frequency 

A number indicating the number of in-

teractions a learner desires to have with 

their supervisor per week  

Numeric (0,2) 

 

Its value is assigned randomly based on Heath’s 

[178] findings  

Once set, its value does not change 

Weekly Effort-of-Learner 

Indicates the number of hours a learner 

is devoting to learning per week 

Integer (0,70) 

Assigned based on values deduced from UofS 

dataset student performance and UofS require-

ments 

Its value changes weekly 

Actual Meeting Frequency 

A number indicating the number of in-

teractions a learner has with their super-

visor per week  

Numeric (0,2) 

 

Its value is generated during simulation runtime 

and is based on learner’s and supervisor’s availa-

bility 

This value changes every week 

Latent Effort 

A number that indicates how much a 

learner is willing to work on their doc-

toral tasks. 

Numeric 

(1.16,1.32) 

Derived from the UofS dataset. 

Once set, its value does not change. 

Satisfaction 

Measures academic satisfaction. 
Numeric (0,1) 

Derived based on Actual Meeting Frequency and 

Desired Meeting Frequency. 

Its value is calculated weekly. 

 

I model supervisor agents to have the following key attributes: research group, workload, meet-

ing frequency, and preferred supervisory style. See Figure 3-6 for a depiction of a supervisor 

agent model as implemented in AnyLogicTM. 
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Table 3-2, I provide brief descriptions that demonstrate how each supervisor agent attribute is 

initialized and changed. 

 

 

Figure 3-6. SimDoc’s Supervisor Agent Model as Implemented in AnyLogic
TM

 

Table 3-2. Supervisor Agent Attributes and their Parameterization 

Attribute  

Description  

Data type (value 

range) 

How its value is assigned  

How its value changes 

Supervisor Agent Id Integer (>0) 

Its value is generated sequentially as agents are 

added to the simulation 

Once set, its value does not change 

Workload 

Indicates the total number of hours a 

supervisor is committing to their week-

ly work including preparation, teach-

ing, and meeting time 

Integer (0,40) 

Its value is assigned based on the number of clas-

ses taught in a semester and supervisor-learner 

meeting commitments 

Its value changes weekly 

Research Group 

Indicates the ID of a research group 

headed by a supervisor  

Integer (research 

group id) 

Its value is assigned randomly – indirect assign-

ment of learners since every research group is led 

by a supervisor. 

Once set, its value does not change 

Preferred Supervisory Style 

A supervisor’s preferred supervisory 

style 

Integer (0,2)  

Assigned based on distribution statistics derived 

from the Gatfield [151] model 

Once assigned, it does not change 

Preferred Meeting Frequency 

A number indicating the number of 

interactions a supervisor desires to 

have with their supervisor per week  

Numeric (0,2) 

 

Its value is assigned based on Heath’s [178] find-

ings and supervisory style 

Once set, its value does not change 
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Normative Model 

The notion of a normative model allows me to abstract from the complex doctoral program the 

key requirements and constraints that affect learner agents in the aspects that are important to the 

questions I am interested in exploring. The normative model represents the environment (pro-

grams, research groups, classes, and milestones) and therefore determines the consequences of 

actions a learner agent might undertake. Specific to SimDoc’s normative model, I model a doc-

toral program in a multi-level hierarchical organizational structure in the following order: doc-

toral program, research groups, and stakeholders (supervisors and learners). I view the doctoral 

program through a lens of four major milestones: the coursework, comprehensive, proposal, and 

dissertation. In Table 3-3, I provide brief descriptions that demonstrate how each research 

group’s attribute is initialized and changed. 

Table 3-3. Research Group Entity Attributes and their Parameterization 

Attribute  

Description  
Data type (value range) 

How its value is assigned  

How its value changes 

Research Group Id 

Research group identifier 
Integer (>0)  

Its value is assigned sequentially 

Once set, its value is not changed 

Supervisor 

Leads a research group 
Integer (supervisor id) 

Assigned randomly 

Once assigned, no change is expected 

Learners 

Learners assigned to a group 
Array [learner id, status] 

List of learners are assigned randomly  

A learners list is updated every admission period  

Max Intake Size 

Research group yearly intake 
Integer (0,10) 

Its value is determined based on UofS distribution  

This value is re-assigned every admission period 

 

I model each milestone as an agent. Each milestone contains only four attributes: milestone 

id, type, required hours of study, and a list of learners who have engaged with it. In Table 3-4, I 

provide brief descriptions that demonstrate how each milestone’s attribute is initialized and 

changed. As far as time is concerned, I model the following time granularities: hour – I model 

the smallest time unit to be in hours to reflect time learners allocate to their studies; week – I as-

sume that as learners work on each milestone, the hours they each allocate to their research work 

are allocated and tracked on a weekly basis; semester – I model each semester to be 16 weeks, 

this is the length of time learners will work on a course; year – I model each year to have 52 

weeks. Also, I measure time-to-completion in year time units. 
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Table 3-4. Milestone Entity Attributes and their Parameterization 

Attribute  

Description  
Data type (value range) 

How its value is assigned  

How its value changes 

Milestone Id 

Milestone identifier 
Integer (>0) 

Its value is assigned sequentially 

Once set, its value is not changed 

Milestone Type 

The Type of a Milestone rep-

resenting the stage of the 

doctoral learner is currently 

in 

String [class, coursework, 

comprehensive, proposal, 

dissertation] 

Its value is assigned on creation   

Once set, its value is not changed 

Hours 

The number of hours that a 

learner must engage the 

milestone to pass  

Integer (>0)  
Its value is assigned based on the type of milestone  
Once set, its value is not changed 

Learners 

List of learner agents that 

have registered in a given 

milestone 

Array [learner id] 

Its values are augmented every time a learner enters 

Where applicable, updates occur (every start of the 

semester (year)for classes) that a given milestone is 

assigned to learners 

 

In the SimDoc model, the normative model controls events concerning the admission peri-

od, the dissertation period, and the coursework period. See Figure 3-7 for a depiction of this ad-

mission process. The admission process has functions that define the admission numbers at each 

admission period and gives new learners identifier numbers, waiver status, and research group 

assignment. The SimDoc model is programmed to handle both single-admission and multi-

admission period(s) per year. The default setting is a single-admission period – admission hap-

pens once a year in September. Everything starts with an admission event where a number of 

learners are admitted. Once learners enroll, the SimDoc model assigns them to different research 

groups. Each research group is led by a supervisor who also acts as a supervisor to learners as-

signed to that research group. At admission, the SimDoc model also determines whether a learn-

er receives a class waiver or not. Learners who receive a waiver straight away enter the compre-

hensive stage while the rest start in the coursework stage.  

If a learner does not experience learning challenges, such a learner continues with their 

learning endeavors through the doctoral program milestones. However, some learners may expe-

rience learning challenges (e.g. feeling of inadequacy, time management issues, and lack of so-

cial support, to name a few) and require more support from their supervisors. Such support hap-

pens during a supervisor-learner meeting. Reduced numbers of supervisor-learner meetings as 

well as lack of desired progress, increases the probability of failure – dropout or long time-to-

completion. I model learner-supervisor interaction as a contributing factor to the learning out-
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comes of the doctoral program. The impacts of such interactions are indirect; for example, a pos-

itive outcome increases a learner’s motivation, which in turn causes an increase in effort result-

ing in timely completion of learning goals.  

 

Figure 3-7. A Depiction of SimDoc’s Admission Event as Implemented in AnyLogic
TM

. 

The SimDoc model is programmed to handle both single-admission and multi-admission period(s) 

per year. The default setting is a single-admission period – admission happens once a year in 

September. 
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Dialogic Model  

The dialogic model refers to interaction strategies and communication mechanisms that the 

agents use within the simulated learning environment. Specific to the dialogic model, I use a 

message passing mechanism [206] to facilitate communication between learners and their super-

visors. I use the message mechanism to trigger a meeting event between a learner agent and its 

supervisor agent. In case a meeting event is triggered, the agents do not interact or discuss any-

thing. Instead, the SimDoc model determines the outcome of the meeting and updates the learner 

agent’s attributes – which could affect a learner in a positive or a negative way going forward. 

Event Model  

An event refers to a happening, a period, a change, or a stimulus within a model environment 

that triggers (re)action by other agents. I model two types of events: system level and agent level, 

see Figure 3-8 for an illustration of these implementations. I model agents to react to events by 

initiating appropriate actions. Each event has different enabling conditions associated with it. 

Further, each event leads to different outcome(s), including other event(s). The normative model 

manages system level events by scheduling new ones, triggering due ones, and monitoring ongo-

ing ones. One example of a system level event is the learner admission and enrollment process. 

The admission process in a real doctoral program is complex and involves a lot of stakeholders 

and processes, but I have simplified it in the SimDoc model, although the goal is still to deter-

mine and model the year-to-year enrolment patterns, so they exhibit behavior similar to those 

shown by UofS data. At UofS there are three admission periods in a year: September, January, 

and May, but for simplicity, I have chosen to model admissions to happen once a year. 

Any agent type can initiate an interaction which I refer to as an agent level event. For ex-

ample, a learner could send a request for a meeting with its supervisor. When a supervisor re-

ceives a request for a meeting, its response is based on its workload and supervisory style. A su-

pervisor agent can accept a request for a meeting with a learner only when they have free time 

and they have completed assigned tasks (workload and scheduled meeting(s)), all measured in 

terms of hours. In the SimDoc model, if a supervisor wishes to initiate a meeting, a supervisor 

would broadcast their availability as a message to learner agents representing all its supervisees. 

The supervisor can then schedule meetings based on learners’ responses. 
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Figure 3-8. Snippet Showing SimDoc System and Learner Level Events 

Scene Model  

I use the notion of a scene to describe a single interactive session between two agents. Once an 

interaction event has been initiated, the scene model takes over from the event model. The scene 

model captures and monitors all initiated events, all responses, potential start and end times of 

the interaction events, and the outcomes of each interaction event. In a scenario where a learner 

requests a meeting with their supervisor, the scene would capture all the subsequent events and 

potential outcomes. For example, if on one hand, the response is favorable to the learner, a meet-

ing between the learner and its supervisor happens. Such an interaction might be the catalyst that 
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provides an opportunity for each learner agent to go on and achieve their learning goals. On the 

other hand, if the response is not favorable, a learner’s production and progress may be reduced 

in the coming weeks until it meets its supervisor or withdraws. 

3.5 Informing SimDoc’s Model Fidelity: Behavior and Evaluation Functions 

I have chosen to model a medium-level fidelity simulation model primarily based on a real-world 

doctoral program, the University of Saskatchewan’s doctoral program (UofS). I have created a 

dataset (the UofS dataset) based on data about the UofS doctoral programs kept in the University 

Data Warehouse (UDW8). For those attributes whose information is not available from this da-

taset but is necessary in the model in order to explore the research questions elaborated in step 1 

of the framework, I get data from other sources. These sources include different departmental 

web pages and various studies in the literature, specifically, information from [151], [169], [174], 

[178], [188]. The diverse nature of these studies and learners involved allows for the capturing of 

a broad spectrum of doctoral learners’ behavior. 

To gain better insights about any phenomenon using simulation, it is necessary to model 

two types of important functions as suggested by Erickson et al. [2]. These functions are behav-

ior functions and evaluation functions. Behavior functions inform the decision making of an ac-

tive agent and dictate interaction patterns between them, other modeled elements, and the learn-

ing environment. Evaluation functions determine the outcomes of the various interactions be-

tween different agents and/or between learner agents and the learning environment (e.g., deter-

mining the outcome of an interaction between a learner and a supervisor). 

In the subsequent sub-sections, I focus on describing the steps I take to inform SimDoc’s 

key base-line behavior and evaluation functions both using the UofS dataset as well as ‘second-

ary’ data from other sources. Note, based on the research questions I have identified in step 1, the 

key aspects of the SimDoc model that I deem necessary to inform with data include: the distribu-

tion of supervisor types based on supervisory styles; learner types based on desired meeting fre-

quency; and information on doctoral learner-supervisor interaction and learning outcomes. This 

information is not available in the UofS dataset, so I will return to how I get it later, after a more 

detailed description of how I informed attributes of the simulation that was available through the 

UofS dataset. 

                                                 
8 I got this data with permission, and my research has been approved by the U of S Behavioral Ethics Review Board 



50 

 

3.5.1 Informing the SimDoc Model Behavior Functions 

Step 3 of the seven-step framework is to inform the simulation. As much as possible this should 

be from data collected in the target environment, in this case data captured about the UofS doc-

toral program. The UofS dataset contains information on students’ class performances, their per-

sistent registration, graduation, and drop out information as described in Table 3-5. Therefore, I 

can derive important learning outcomes of doctoral students at UofS measured in terms of attri-

tion rates, completion rates, and time-to-completion. Information from the UofS graduate pro-

grams webpage9 shows that as of 2015, UofS had 86 graduate programs. Of these, 54 programs 

offered doctoral degree programs. This number is in line with the number of doctoral programs 

indicated in the UofS dataset I received. 

Table 3-5. The UofS Dataset Attributes and their Description Provided by the UofS Data 

Warehouse 

Attribute Description  

Academic Year The academic year in which a student was registered  

Student ID An obfuscated version of the student’s identification number 

Major Department Code An obfuscated version of the department of the student’s major 

Class Department Code An obfuscated version of the department offering a class 

Class ID An obfuscated version of the class identification number 

Instructor ID An obfuscated version of the identity of a class’ instructor 

Supervisor ID An obfuscated version of the identity of a student’s supervisor 

Class Count The number of classes taught by the instructor/Ph.D. student 

Grade Range A banded version of the grade of a student in a numeric class 

Grade Mode Description The type of grade entered for a class; numeric/percentage 

PHD Student Instructor Number of classes (including lab/tutorials) taught by a student 

As a first step towards informing the SimDoc model behavior and evaluation functions, I 

analyze the UofS dataset. This dataset contains information on doctoral students registered for a 

period of 10 years (2005-2014). Within this period, there were 2291 doctoral students with 

52850 data points on class registration. The year 2005 registration includes students who had 

joined the program earlier than the year 2005. This group of students would add noise to any pat-

terns derived from the UofS dataset. Therefore, I only consider students whose registration start-

ed from the year 2006 onwards. Taking this step reduces the population size of students to 1962. 

From the students who matriculated between the years 2006 and 2014, I use different matricula-

                                                 
9 http://grad.usask.ca/programs/find-a-program.php last accessed on February 12, 2019 
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tion cohort ranges to inform different SimDoc attributes. For example, to inform the length of 

time students take in their program I consider 2006-2010 cohorts and the 349 students from these 

cohorts who had graduated. I use these cohorts because I need to be able to trace the last cohort 

entering in the year 2010 through to their expected completion year, 2014. I decided on this 

range because according to the UofS guidelines students are expected to complete their doctoral 

program in 4 years. Even though students are ideally expected to have graduated in 4 years, 

analysis of UofS data shows that there would still be many students who came in the year 2010 

who would still be in the program beyond the year 2014.  

Admission pattern 

Admission is an important part of a doctoral program that contributes to its dynamic nature. I 

take values for each of the admissions months for the years 2006-2015 and combine those of the 

same academic year. By doing so, I obtain a distribution of enrolment numbers for each of the 10 

years. I then use the resulting distribution to generate a scatter plot of admission numbers. A 

sigmoid pattern emerges. Next, I perform a non-linear curve fitting to the scatter plot so that the 

admission function can be represented in the form shown in Equation 3-1, where N represents 

the total number of learners who will register in each year, t, and a, c, d, and e are variables nec-

essary for creating a sigmoid pattern that matches the UofS pattern. Subsequently, I run a regres-

sion analysis to find values of each of these variables: a = 0.08, c = 1.2, d = 3.9, and e = 1.4. 

Equipped with this equation, I model SimDoc’s admission patterns over a period of ten years. I 

use a two-tailed paired t-test statistical measure to examine the difference between the SimDoc 

and UofS admission patterns. At 95% confidence level, there is no significant difference (p-value 

= 0.4876) of the means of the two admission patterns. The maximum difference of the mean can 

be as low as -0.3411372 and as high as 0.3411372. Therefore, this result shows that SimDoc’s 

admission patterns are statistically like those observed in the UofS dataset. 

Equation 3-1: Informing the SimDoc Model Enrolment Number based on UofS Yearly Intakes 

𝑁 = 𝑎𝑡 +  
𝑠𝑖𝑛(𝑐𝑡)

𝑑
+ 𝑒 
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Length of Time for the Doctoral Program 

The UofS provides guidance on the expected time-to-completion for every doctoral student in 

the doctoral program guidelines web pages10. According to these guidelines, it is expected that 

doctoral students spend at least 40 hours per week on their research work11; when it comes to 

coursework, students are expected to spend 15-20 hours per class per week12. Overall, in an ideal 

situation, doctoral students are expected to complete their degree in 4 years. Time-to-completion 

analysis of the UofS dataset does not reflect this ideal situation for every student. The data re-

veals that some students were able to complete their degrees sooner while others took way longer 

than the 4 years. This variation in time-to-completion could be attributed to many factors. One 

factor that I consider for the purposes of informing the SimDoc model is a learner’s time man-

agement skills and allocation of effort to research work.  

Rodwell and Neumann [175] say that calculating a student’s time-to-completion by just 

simply measuring the elapsed time from the start (admission) to finish (graduation) is mislead-

ing. Instead, they suggest using the concept of full-time equivalent (FTE) workloads. The FTE 

approach determines a more accurate workload time by weighting and comparing elapsed time 

for both full-time and part-time engagement as suggested and used by [175], [207]. In an analy-

sis of approximately 20,000 students, Rodwell and Neumann’s findings suggest that enrolment 

choice (choosing between part-time and full-time) is significant in determining a student’s time-

to-completion and that part-timers finish faster than full-timers when their time to degree is 

measured in terms of FTE. Note that I am not interested in modeling different types of enrol-

ments in the SimDoc model but, I find the concept of FTE to be very interesting and useful in 

modeling the time to completion in the SimDoc model. To estimate the total number of hours a 

doctoral learner in the SimDoc simulation needs to complete their program, I assume that the to-

tal number of FTE hours a learner should invest in their doctoral program is determined as 

shown in Equation 3-2, where 𝑡𝑑 is the time in hours it takes to finish a doctoral program, y = 4 

(ideal number of years), m = 12 (months in a year), w ≈ 4 (weeks in a month), and ℎ𝑟 = 40 (ex-

pected hours allocated to research per week). As such, an estimated value for 𝑡𝑑 would be 7680 

hours. 

                                                 
10 https://grad.usask.ca/programs/find-a-program.php last accessed on February 12, 2019 
11 http://artsandscience.usask.ca/psychology/department/gradteaching.php last accessed on February 12, 2019 
12 https://www.grad.ubc.ca/campus-community/life-grad-student-ubc/what-expect last accessed on February 12, 

2019 
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Equation 3-2. Estimated Full-Time Equivalent Hours Required of Learners to Finished Their 

Doctoral Program in SimDoc 

𝑡𝑑 ≈ 𝑦𝑚𝑤ℎ𝑟 

Length of Time for each Milestone 

Students’ time management skills and ability to allocate time to the milestones affect the average 

length of time required to complete each of the four doctoral milestones and hence affect the 

overall time to completion. I deduce an ideal duration for each milestone based on UofS program 

information provided in the program web pages13. For example, doctoral students are expected to 

complete their coursework requirements within the first academic year (i.e. 2 semesters) and 

their comprehensive exam within the first 18 months14, whereas, nothing is explicitly mentioned 

as to when doctoral students are expected to complete their proposal and dissertation milestones.  

To determine the length of time a learner should be working on coursework in the SimDoc 

simulation, I examine the total number of classes taken by all student in the 2006-2010 time-

frame and perform the operation shown in Equation 3-3, where: 𝑡𝑐𝑤 is length of time dedicated 

to course in years; c is the number of classes; m ≈ 4 (months - length of a semester); w ≈ 4 

(weeks per month); ℎ𝑐𝑤 ≈ 20 (ideal maximum number of hours per week a student is expected to 

allocate to their coursework), and 𝑡𝑐𝑤 FTE ≈ 1920. When measured in years, this is equivalent to 

0.52 years. 

Equation 3-3. Average Full-Time Equivalent for Taking Coursework Workload in the SimDoc 

Simulation 

𝑡𝑐𝑤 =  
𝑐𝑚𝑤ℎ𝑐𝑤

𝐹𝑇𝐸
 

Since there is no explicit information in the UofS dataset that I can use to derive the aver-

age time students need to complete the other two milestones, I use the basic idea of measurement 

of uncertainty based on standard deviation calculations. This concept suggests that a combination 

                                                 
13 https://grad.usask.ca/programs/find-a-program.php last accessed on February 12, 2019 
14 https://www.cs.usask.ca/students/grad-programs/doctoral/index.php last accessed on February 12, 2019 
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of any independent normal random variables results in another normal random variable. In this 

case concerning learner times in milestones, the result should be equal to the average distribution 

of time spent on each milestone by learners who have graduated. That is, the sum of the expected 

mean values and variance values for each milestone should be equal to the overall mean and var-

iance values 5.2 and 1.96 (SD2) derived earlier from the 349 students who persisted to comple-

tion. Consider the following computations and assumptions:  

• the average length of time for the coursework milestone is 0.52 (0.33); 

• the total length of time to finish the program is 5.2 (1.4); 

• an assumption that comprehensive milestone time is approximately equal to that of 

proposal milestone; 

• a further assumption that the dissertation takes approximately twice the time required 

for the proposal. 

Then, the resulting length of time expected for each milestone is shown in Table 3-6. The 

factors affecting agents progressing through the milestones should, ideally, lead to variance simi-

lar to UofS in the simulation runs. 

Table 3-6. Expected FTE and Actual Mean Time Taken for Each Milestone Derived from Both 

the UofS Ph.D. Program Description Webpages and Provided UofS Dataset Respectively 

Milestone stage Mean time taken (in years) 

 Expected FTE Actual mean time taken 

Overall 4 5.20 

Coursework 0.52 0.52 

Comprehensive exam 0.88 1.18 

Proposal 0.96 1.30 

Dissertation 1.64 2.20 

 

The expected FTE and actual mean time for coursework are the same because this infor-

mation is available and gleaned from the raw UofS dataset. However, I must compute the ex-

pected FTE for the comprehensive exam, the proposal, and the dissertation milestones based on 

the actual overall average time taken to finish the program (5.2 years), the mean time taken to 

finish coursework, the actual mean time taken for each of the other three milestones, and the ide-

al expected overall time to degree (4 years). Therefore, I inform each milestone’s length of time 

using a derived formula as shown in Equation 3-4. For example, while completing coursework is 

dependent on the number of classes taken by a learner, FTE hours dedicated to a proposal on a 
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weekly basis should sum up to (0.96 * 1920 ≈ 1843) for the same learner to complete the pro-

posal milestone.  

Equation 3-4. Computing the Expected FTE for Each of the Three Milestones (Comprehensive 

Exam, Proposal, and Dissertation) 

𝐹𝑇𝐸𝑚𝑖𝑙𝑒𝑠𝑡𝑜𝑛𝑒 ≈
𝑎𝑐𝑡𝑢𝑎𝑙 𝑚𝑒𝑎𝑛 𝑡𝑖𝑚𝑒𝑚𝑖𝑙𝑒𝑠𝑡𝑜𝑛𝑒

(𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑚𝑒𝑎𝑛 𝑡𝑖𝑚𝑒 − 0.52)
(𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝐹𝑇𝐸 − 0.52) 

Learner’s Number of Classes 

The UofS program website15 shows that, currently, the minimum number of classes required of 

doctoral students varies from program to program; it ranges between 2 and 7. Nevertheless, there 

are situations where this requirement is waived for some students depending on a given student's 

academic background, qualifications, and achievements. This phenomenon is apparent in the da-

taset provided by the UDW where 12% of the doctoral student population had not taken any 

classes. An analysis of the UofS dataset indicates that of those doctoral students who took clas-

ses, the number of classes ranges between 1-8. To inform the number of classes each SimDoc 

learner who does not receive a waiver will be taking, I determine the frequency of each range 

value to get a distribution of the number of classes taken. Using the resulting distribution (see 

Figure 3-9, graph a), I derive a class load probability distribution function (PDF), f(x), see graph 

b. From this f(x) I obtain a cumulative distribution density function (CDF, see graph c), F(x), that 

I use to inform the number of classes taken by each simulated learner as shown in Algorithm 3-1.  

                                                 
15 http://www.usask.ca/programs/colleges-schools/grad-studies/programs/index.php last accessed on February 12, 

2019 
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For all newly created learners 
Normalize the x-axis (grade points) to become PDF, f(x) 
From f(x), obtain a CDF, F(x) 
For each learner agent which does not receive a waiver 

Draw a uniform random number, x, (bounded by the F(x) upper limit) 
End for 
Learner’s number of classes = F

-1
(x)  

End for 

Algorithm 3-1. Simulated Learner’s Number of Classes Assignment Algorithm 

 

 

Figure 3-9. Distribution of the Number of Classes Taken per Learner Derived from UofS Dataset 

Learner’s Coursework Load per Semester 

To inform a learner’s coursework load – the number of classes a learner is going to take in a giv-

en semester - I first consider if that learner received a waiver during admission. Secondly, I 

check if a learner has completed their course requirements. If not, then I consider the 'year of 

study' vs the 'number of classes taken' program distribution matrix generated from the UofS da-

taset as shown in the matrix in Table 3-7. This matrix is based on the class taking frequency of 
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the entire 2006-2010 cohort. I use this matrix to inform the average FTE taken by simulated 

learners in their coursework milestone as follows: I consider the year of study of a learner and 

use it to obtain the corresponding column from the matrix. I then use the resulting values to de-

rive a class count probability distribution function (PDF), f(x). From this f(x), I obtain a cumula-

tive distribution density function (CDF), F(x), that I use to generate the potential number of 

class(es) to assign to a learner. Finally, I verify if this potential number is greater than the class 

requirement in the agent model. If so, the learner is assigned a coursework load equivalent to the 

class requirement and its class requirement attribute is updated to ‘complete’. If not, the learner 

is assigned coursework load equivalent to the potential number of class(es) and its class require-

ments attribute is updated with a difference between the class requirements value and the poten-

tial number of classes.  

Table 3-7. UofS 'Year of Study' vs 'Number of Classes Taken' Program Distribution Matrix 

 Year of Study 

 
 1 2 3 4 5 6 7 8     N

u
m

b
er o

f C
lasses 

T
ak

en
 

1 203 229 116 43 14 1 2  

2 393 249 62 14 4  2  

3 362 132 24 6     

4 270 91 4 4     

5 235 10       

6 168 18       

7 42        

8 9        

Supervisor Type 

I use Gatfield’s doctoral student supervisory model [151] to inform SimDoc’s supervisor types. 

Gatfield’s model is based on two dimensions: structure and support, which are viewed as axes in 

a two-dimensional space to identify four supervisory styles. These four styles are Laissez-Faire, 

Pastoral, Directorial, and Contractual. These descriptors suggest a mode of supervision style 

that a supervisor would naturally adapt which may vary depending on the needs of students they 

are supervising. However, in the SimDoc simulation, I model supervisory styles to be fixed with 

the percent composition of each supervisor type based on the ratio derived for an analysis of su-

pervisor characteristics in the Gatfield study (n = 12). See the relative position of the 12 supervi-

sors in Figure 3-10.  
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Figure 3-10. Relative Possition of the Four Supervisory Styles Identified by Gatfield [151]. 

3.5.2 Informing the SimDoc Evaluation Functions 

It is important to capture how well the simulated doctoral learners are progressing through their 

program: that is, to design relevant evaluation functions. In a teaching and learning episode, a 

psychometrics assessment plays an important role in tracking and measuring students’ progress 

in acquiring targeted knowledge and skills. An assessment also reveals the current states of stu-

dents’ knowledge which are helpful in adapting instruction to students as per their learning needs 

and challenges [208]. In the SimDoc simulation, simulated learners are evaluated based on their 

time management skills and frequency of student-supervisor meetings. I model these factors to 

affect students’ satisfaction and therefore their progress: withdrawal or persistence, and time-to-

completion in case of the latter outcome. 
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Learner’s Weekly Time Management 

To determine how many hours a learner allocates to their research, I use an evaluation function 

that computes the numbers of hours on a weekly basis, as illustrated in Equation 3-5. Based on 

the outcomes of this evaluation function, the SimDoc model directly updates the values of two 

attributes: the weekly effort of a learner and the learner’s satisfaction level. This update indirect-

ly affects learners’ progress and the choice to either persist or dropout.  

This evaluation function assumes a linear relationship between a learner’s latent effort and 

a logarithm of time to complete the whole program. This evaluation function is inspired by item 

response theory (IRT) [201] which has mainly been used to model students’ probability of 

providing correct answers in tests. Other researchers have also used IRT to model students’ prob-

lem-solving times [209]. To determine the probability of a student providing a correct answer in 

a test item, IRT considers a student’s latent ability, the basic difficulty of an item, a discrimina-

tion factor, and a random factor.  

Similarly, SimDoc’s evaluation function primarily assumes that a learner’s weekly effort 

can be defined in terms of time-to-completion of a milestone unit, their latent effort 𝜃, the diffi-

culty of the current milestone unit (measured in time) 𝑐𝑎𝑡, the number of classes taken 𝑒
𝑥

8, the 

desired supervisor-learner meeting frequency 𝑓𝑚𝑓, and a stochastic factor 𝑧. Therefore, a learn-

er’s weekly time spent on their doctoral studies is given by 𝑐𝑡𝑙 based on an equation adapted 

from a similar IRT equation, see Equation 3-5. In this equation 𝑓𝑚𝑓 ≈ impact factor based on the 

exponential meeting frequency base 𝑓  which is a variable and exponential power  𝑚𝑓 which is 

the meeting frequency 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑒𝑡𝑖𝑛𝑔𝑠 𝑠𝑜 𝑓𝑎𝑟

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑒𝑒𝑘𝑠 𝑖𝑛 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 𝑏𝑦 𝑠𝑡𝑢𝑑𝑒𝑛𝑡
. 𝑒

𝑥

8 ≈ exponential of 𝑥  which is the 

number of classes taken in a semester divided by 8 (the maximum number of classes a learner 

can take). This evaluation function does a weekly calculation of effort-of-learner. The weekly 

effort-of-learner can vary widely as various factors change over time, so the overall time in the 

program can only be determined by simulating the learner’s progress through the entire program. 

Equation 3-5 Determining the Value Learner Agent’s Weekly Effort-of-Learner Attribute 

𝑐𝑡𝑙 =  𝜃. 𝑐𝑎𝑡. 𝑒
𝑥
8. 𝑧. 𝑓𝑚𝑓 
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The Frequency of Learner-Supervisor Meetings 

Another factor that the literature shows to affect doctoral students’ satisfaction and progress in 

their doctoral program is the frequency of meetings between students and their supervisors. 

Seagram, Gould, and Pyke [174] used regression analysis to examine 10 independent variables, 

and their findings suggest that one of the important factors affecting students’ progress is the fre-

quency of meetings with their supervisors. They showed that the more frequently the meetings 

occur, the faster completion time is. Heath [178] goes a step further to actually examine the fre-

quency of these meetings and their impact on students. Heath’s findings show that on average 

80% of students who met at least once biweekly expressed satisfaction with their supervision.  

Heath’s findings also show that up to a third of students who have at least one meeting a 

week desire to have more frequent meetings during the early and later stages of their research 

and don’t desire as many in the middle stage, see Table 3-8. To provide some fidelity to the de-

termination of supervisor meeting frequencies, I draw on data from studies carried out by Heath 

[178] and Gatfield [151]. Even with the known benefits of frequent meetings between a student 

and their supervisor, convening a meeting can be challenging at times because the whole process 

involves at least two persons with converging and diverging interests [158], [187], [190], [210].  

Another contributing factor is the conflict between the supervisory style of a supervisor 

and the preferred supervisory style based on the desired-support level of a doctoral student. Simi-

lar to the inherent nature in supervisors to change their supervisory style preference based on the 

circumstances at hand, according to Lavelle and Bushrow [188] students do not rigidly adhere to 

one learning approach but are influenced by input from their learning environment. However, in 

the SimDoc simulation, I model supervisory style and student type to be unchangeable once as-

signed. Lavelle and Bushrow further suggest that when students receive clear guidelines, they are 

likely to choose a productive approach. In contrast, when students receive unclear suggestions, 

they tend to choose a less productive approach. 

I inform simulated learners’ desired-support level based on the averages of the frequency 

of meetings derived from the Heath [178]. I then use insight derived from Seagram et al.’s [174] 

observations, that suggest that a student who meets their supervisor more frequently tends to 

complete their program quicker, so the actual number of meetings that occur between a student 

and their supervisor impact on the student’s progress.  
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Table 3-8. The Frequency of Supervisor-Doctoral Learner Formal Meetings over Time from 

Heath [178] 

 

Learner’s Decision to Persist or Leave the Program 

Tinto [184] notes that a student’s decision to drop out does not happen all at once; instead their 

satisfaction waxes and wanes. Therefore, I use a progress evaluation function that computes the 

kind of influences, positive, neutral, or negative, students experience on a weekly basis. Based 

on the outcomes of the evaluation function, the SimDoc model updates a learner’s satisfaction 

value appropriately. The evaluation function considers the new learner’s satisfaction value and 

compares it with a dropout threshold derived from the UofS yearly attrition rate and milestone 

completion rates. To inform this dropout threshold, I glean the yearly attrition rates from the 

UofS dataset. Table 3-9 shows the UofS attrition values for students matriculating in the years 

2006 to 2010 included. Table 3-10 shows all milestones’ overall attrition rates. I compute these 

attrition rates for each milestone based on the average time it takes for students to go through the 

various milestones as illustrated earlier with Equation 3-3 and Table 3-6. Note that the sum of 

each column in Table 3-10 matches the results depicted in Table 3-9. 
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Table 3-9. UofS 2006-2010 Cohorts’ Matriculation, Progress, and Attrition Rates 

 Enrollment, progress, and drop out numbers Attrition rates in % 

Year - 2006 2007 2008 2009 2010 Cumulative Yearly 

Of 

study 

Enrolled drop Enrolled drop Enrolled drop Enrolled drop Enrolled drop   

1 154 9 133 7 154 9 200 12 205 10 6% 6% 

2 145 6 126 7 145 11 188 7 195 14 11% 6% 

3 139 1 119 5 134 5 181 6 181 13 14% 4% 

4 132 4 113 4 124 4 169 7 162  17% 3% 

5 112 3 95 3 100 8 143  152  20% 5% 

6 74 1 63 2 67  111    21% 2% 

7 46 3 37  43      23% 7% 

8 21  20        0% 0% 

Table 3-10. Milestone Completion Rates with Their Derived Attrition Rates for Different Year of 

Study Periods 

Year of 

study 

Coursework Comprehensive Proposal Dissertation 
Completion % Attrition  Completion % Attrition  Completion % Attrition  Completion % Attrition  

1 100 6 33 2     

2   63 4 20 1   

3   4  59 2 3  

4     20 1 20 1 

5     1  38 2 

6       29 1 

7       9 1 

8       1  

Sum   6%  6%  4%  4% 

3.6 Summary 

In this chapter, I have addressed two of my four dissertation goals. I have provided answers to 

the following two research questions: (i) how can an AIED system designer create a simulation 

model for a longer-term learning and mentoring environment and (ii) how can the same AIED 

designer inform the resulting simulation model in order to improve its fidelity. To answer the 

first question, I introduced a seven-step framework (adapted from a 7 step process suggested by 

Law [193]) for building pedagogical simulations. The seven steps are: identifying and formulat-

ing a research problem, formulating a conceptual model, identifying sources of data to inform the 

model, implementing the simulation model, calibrating and validating the resulting simulation 

model, experimenting with the resulting model, and finally reporting the results of the simulation 

and exploring ways of improving the simulation model in future cycles of iterative design. I 

demonstrated how system designers can use this framework to design their pedagogical simula-
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tion models by using it to guide the creation of the SimDoc model – a simulation model of a doc-

toral program. I next described the SimDoc conceptual model, enumerating its core components 

and assumptions. These components include an agent model, normative model, dialogic model, 

event model, and scene model. To answer the second question, I outlined how I gleaned appro-

priate attributes and their values from the UofS dataset and determined the supervisor style and 

student style categories from studies in the literature. 
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CHAPTER 4  

TUNING THE SIMDOC MODEL: CALIBRATION AND VALIDATION 

In this chapter, I continue with a practical example of how to carry out the fifth step in the seven-

step framework, that is, I focus on the question: how can a system designer know for certain that 

they have adequately informed a simulation model in order to trust its output? Often when build-

ing a simulation model and is the case with the SimDoc model, reliable information concerning 

every parameter is not always available. Therefore, it is common to have aggregate data on 

emergent behavior that relate to a combination of attributes. Sometimes data on a few parameters 

are available but might not have the detailed breakdown required to inform target parameter val-

ues. To address this challenge, calibrating and validating a simulation model is necessary.  

Calibration is the process of adjusting selected numeric parameters whose values are not 

well-known in the computational model for the purpose of improving the match between simula-

tion output and the dataset from the real-world system [8]. The result of the calibration process is 

to produce a baseline simulation model, the one whose parameter tunings best match the real 

world system. Validation involves checking that a calibrated computational model’s output and 

behavior are statistically similar to the data output and behavior for the system elements under 

study [9]. 

To illustrate how a system designer can calibrate and validate a simulation model, I focus 

on what calibration and validation approaches a system designer would use and how they would 

use them to calibrate and validate their model. In the SimDoc case study, the main concept of 

calibration and validation is to ascertain the validity of the output resulting from running the 

SimDoc model by matching its output with the UofS dataset in three key aspects: completion 

rates, attrition rates, and time to degree.  

4.1 Calibrating the SimDoc Model: Matching UofS Learning Outcomes  

Thus far, the SimDoc model has been equipped with behavior functions and evaluation functions 

that have been informed with real-world data (some obtained from the UofS dataset and other 

data drawn from the research literature pertaining to relevant attributes to my research questions 

of interest) and assumptions. However, before using the SimDoc simulation to run experiments 

to explore hypothetical, ‘what-if’, scenarios, it is important to make sure that I start with a ver-
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sion of the SimDoc model, the baseline model, that as closely as possible matches the real world 

data. This tuning process is called calibration.  

Calibrating the SimDoc model involves adjusting values of parameters (attributes) whose 

values are not known through other means, so that SimDoc’s resulting behavior better matches 

the UofS data. These three attributes are stochastic factor 𝑧, meeting frequency base 𝑓  in Equa-

tion 3-5, and supervisor-learner meeting duration. The goal is to get the AnyLogicTM application 

software to answer the question: ‘What must be the values for each of these (unknown) parame-

ters that would make sure the simulation output matches real-world system dataset?’. Calibration 

reveals whether the current SimDoc model can actually be tuned to reproduce a dataset with sim-

ilar patterns (of important attributes) to the UofS dataset. In addition, where there is a reasonable 

number of datasets that cannot be directly used to parameterize a model, calibration enables sys-

tem designers to take advantage of the available dataset indirectly. In AnyLogicTM, calibration 

uses a (global) optimization algorithm to try to adjust unknown parameter values to find the 

model attribute values that correspond to the simulation output that best fits the real-world da-

taset. The optimization algorithm will run the model many times to find the best match for a real-

world dataset. Therefore, it is important to know what outcome to match, what parameters to 

vary and over what range to vary them, and what payoff function (objective function) to use. 

The process of calibrating the SimDoc model so its outputs match the UofS dataset con-

sists of 500 simulation runs where I vary systematically the values of the three attributes: z, f, 

supervisor-learner meeting duration. The “final” values of the three attributes in the best SimDoc 

model are determined from their values in the simulation run whose graduation and attrition rates 

most closely match the UofS data set with the highest confidence level. The 132nd run out of the 

500 calibration simulation runs is the best one, with a 93% confidence level as shown in Figure 

4-1 below. 

In Figure 4-1, the upper graph shows the objective function numbers that capture the dif-

ference between the simulation output and historical data – the lower the value, the better the 

confidence level. This objective function is only applicable to the calibration process. The light 

blue line captures the value for each simulation run while the dark blue line captures the value 

for the current lowest (best and feasible) objective function value. If the best value was not feasi-

ble, the brown line would be depicted on the graph.  
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The lower graph depicts the graduation numbers each year. The black line represents the 

data from the real-world system and that is why it is labeled ‘Historic’. The brown line repre-

sents the output of the latest simulation run and hence we call it ‘Current’. Finally, the light red 

line represents the closest match so far between the simulation run results and actual real-world 

data, so we labeled it ‘Best feasible’. This calibration process leads to a better parameterized 

computational model with dataset output that best matches relevant data of the real-world target 

system. 

 

 

Figure 4-1. A Chart Showing the Results of SimDoc’s Calibration Process 

4.2 Validating the SimDoc Model: Exploring the Difference in Number of Runs 

The calibration process has been used to tune the parameters of the simulation model whose val-

ues are not well known. The resulting calibrated model, however, must still be validated. Since 
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stochastic elements are often part of a simulation model (as in SimDoc), such validation requires 

many runs of the simulation model to ensure the model is behaving appropriately. Validation in-

volves checking to what degree a computational model’s output and behavior are consistent with 

the data output and behavior of the system elements under study [9]. This process necessitates 

prudent experimentation in order to ascertain that the model works as expected [34]. The objec-

tive of such experimentation is to determine whether the resulting model is correctly implement-

ed and to show that its output accurately reflects the output of the real-world system of interest 

[9]. For system practitioners and designers to fully gain the benefits that simulation offers, they 

need to know how many times it is necessary to run a simulation model in order to validate it. 

Knowing this would allow practitioners to not only effectively explore and test various hypothe-

ses but to also accept or reject them with confidence. 

The baseline model should have been validated against the target real-world environment 

(the UofS dataset in this case) and the validation results show that the simulation outcomes sta-

tistically match the real-world outcomes along measures of interest (yearly graduation, attrition 

rates, and time to degree in this case). That is, the simulation must be run enough times to be sure 

that the phenomena of interest are properly explored and have generated results that are stable 

enough to allow reliable answers to the hypothetical, ‘what-if’, research questions of interest. It 

is also important to be sure that the baseline model has not been overfitted, and displays appro-

priate statistical variability from run to run. This is to give confidence that the SimDoc model in 

fact accurately captures the relevant characteristics of the UofS doctoral program along the di-

mensions affecting the issues being explored as determined in step 1 of the process. 

The main question I aim to answer in this section is thus how many replications of a simu-

lation run does it take to have confidence in SimDoc’s output? I use several statistical measures 

to determine the answer to this question. I illustrate my discussion by using the results of simula-

tion runs I perform when evaluating the SimDoc model [215]. 

4.2.1 Determining an Adequate Number of Simulation Runs: in the Literature  

Replication Runs within Simulation Research 

When using simulation modeling to explore pedagogical phenomena, there are several issues a 

designer/practitioner should consider. One of the most important decisions has to do with deter-
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mining how many replications of a simulation run to perform in order to be confident in the re-

sults produced by the simulation [216]. With a deterministic model, a single simulation run is 

adequate. This issue becomes more challenging when part of the simulation model is based on 

stochastic elements. One of the solutions that have been used to address this challenge in other 

research communities is the use of Monte Carlo simulation [217]. Generally, the answer to the 

question of the number of runs to make in a simulation depends on the question at hand and pro-

ject-specific constraints. The number may range from 25 to 800 when using Monte Carlo ap-

proximation [217], [218]. Monte Carlo methods are used to explore the behavior of statistical 

measures under controlled situations. Usually, in any simulation study, a summary statistic is 

calculated after a finite number of replications of a simulation run have been performed. Often 

there is a between-run variability within the simulation results that depends on experimental set 

up and the number of replications performed. Thus, determining the number of replication runs is 

critical. 

One approach uses standard deviation and the confidence interval convergence rate to de-

termine the stopping point as described in [216]. This approach has the advantage of minimizing 

the waste of simulation runs that would otherwise have been performed if too many replications 

were specified a priori. A similar approach that recalculates sample standard deviation and mean 

when a new replication run is added until a stopping condition is achieved is proposed by Tru-

ong, Sarvi, Currie, and Garoni in [219]. Yet, other methods may consider confidence intervals of 

measures of performance [219]. The domains for which these methods have been explored tend 

to be simpler and more predictable than in AIED, where simulation often involves many more 

variables, a range of statistical sub-models, and pedagogical agents. 

Replication Runs in AIED Research 

Within the AIED research community, however, this question of how many times should a peda-

gogical simulation model be run to produce predictions in which the designer can have confi-

dence has received surprisingly little attention. In AIED there is no clear guidance on how to de-

termine the number of runs a practitioner should use to evaluate their simulation model output. 

Unfortunately, the number of runs practitioners have used is rarely reported, with more general 

descriptions of the model and/or results being the focus of discussion (as in [220], [221] and 

[222] for example). In the few papers that have reported on the number of iteration runs used, the 

number varies greatly, ranging from as low as 2 (see [223]) to as high as 1000 (see [224]) runs. 



69 

 

Sometimes the number of simulation runs is justified based on pedagogical or theoretical 

grounds. So, in an experiment to determine how students learn composite concepts, Liu in [223] 

used Bayesian Networks to represent student models as they are a popular way of capturing the 

relationship between students’ competence and their performance. Liu indicates that the simula-

tion needed at least two runs given that the number of concepts being explored is also two. 

Desmarais and Pu in [225] used Bayesian methods to model a new approach to Computer Adap-

tive Testing (CAT) based on a theory of knowledge spaces and item graphs with no hidden nodes 

called POKS (Partial Order Knowledge Structure). CAT systems are used to administer adaptive 

tests that are used to determine if the examinee is a master or a non-master using the least num-

ber of test items. In evaluating the performance of POKS, an average of 9 simulation runs was 

used. 

Most often, though, the number of runs seems to have been arbitrarily chosen. A simula-

tion-based physics tutor, BEETLE II [224], was developed to encourage effective self-

explanation using adaptive feedback. The BEETLE II tutor expected students to provide expla-

nations for experiments using natural language in the form of sentences as input. An important 

statistical significance test that can be done is the F-Score [226]. The F-Score for BEETLE II 

was evaluated using the approximate randomization significance test with 1000 simulation runs. 

The evaluation was used to determine whether the system made a correct decision on either ac-

cepting or rejecting a student answer. In a proof of concept study exploring a medium fidelity 

simulation of a multi-agent pedagogical environment, Erickson et al. [2] 100 simulation runs are 

performed to experiment with three learning approaches for simulated learners. The goal was to 

determine which learning condition is most desirable between unstructured, semi-structured, and 

structured approaches to assigning learning objects. In another study to explore the impact of an 

instructional planner that employed collaborative filtering based on learning sequences, Frost and 

McCalla [204] used 25 simulation runs to show how different groups of learners would perform. 

In yet another study, StudyWise [227], researchers used simulated learners to test an application 

meant to help students memorize collections of basic techniques required for an effective sched-

uling algorithm. The researchers performed 100 simulation runs to evaluate the pedagogical ef-

fectiveness of their system.  
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4.2.2 Determining an Adequate Number of Simulation Runs: the SimDoc Case Study 

Characteristics of a Set of Simulation Run Outputs from a Valid Simulation Model 

A system designer can have confidence in the simulation outputs when the following two condi-

tions are met:  

i. The collected replication runs are stable; the average of aggregate outputs of simulation 

runs statistically match the outputs of the target real-world system under study.  

ii. The collected replication runs have enough statistical variability from run to run; the 

model has not been overfitted to the data used to inform the simulation model.  

Testing for the Characteristics of a Valid Simulation Model 

To test the stability of a simulation model, it is vital to consider the difference between the ex-

pected frequencies (average of aggregate outputs of the attributes of interest in the simulation 

runs – henceforth I refer to this average output as ‘consolidated dataset’) and the observed fre-

quency from the real-world system under study along the same attributes of interest. A stable 

model should have a consolidated dataset that is statistically similar to that of a real-world sce-

nario, especially, in cases where the simulation model attributes are informed with data from a 

real-world scenario. To determine whether these frequencies are distributed in a statistically 

identical manner, Chi-Square test of homogeneity could be used to check for consistency among 

the consolidated dataset and a Fisher’s exact test of independence could be used to provide an 

exact test of independence among the overall total frequency count per outcome. 

To test for appropriate variability in the consolidated dataset, a system designer can either 

use a graphical approach, a statistical method, or both approaches. A system designer could 

choose to examine the characteristics of the results produced by each simulation run or a subset 

of the total number of simulations runs. Demonstrating variability in a simulation model’s output 

is important to show that there is no overfitting in the parameterization of the model. Graphical-

ly, a system designer could use density plots or box plots for example. To demonstrate whether 

the variability observed is statistically significant, a system designer could use one-way analysis 

of variance (ANOVA) hypothesis testing methods. ANOVA is an extension of independent two-

sample t-test that is used to analyze data organized in groups (must be at least have three (3)). 

ANOVA allows exploration of the variance in means of each of the iteration runs. Before per-
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forming an ANOVA test, it is important to establish that the three main ANOVA assumptions 

are met. These are the independence of observations, homogeneity of variance, and the depend-

ent variable is normally distributed. Note, before an ANOVA test can be performed, a Levene’s 

test can be used to check for homogeneity of variances. If the Levene’s test is positive (p<0.05) 

then an ANOVA test could then be carried out. 

Determining an Adequate Number of Runs for the SimDoc Simulation 

To the best of my knowledge, this is the first attempt (at least within AIED research) to explore 

the appropriate number of runs there needs to be of a simulation model to get results about which 

the experimenter can be confident with the outputs of their simulation model. As identified by 

Ritter et al. [228], many authors fail to report the number of runs used in testing a simulation 

model. Even when the number is included, the reason behind choosing a given number of runs is 

barely mentioned. My approach is based on defining characteristics necessary of the simulation 

output, namely that the simulation runs, collectively, meet statistical standards of stability and 

variability when measured against comparable real-world data. Essentially, the approach is to run 

the simulation iteratively, and after each run, take the average of aggregate simulation outputs 

generated (consolidated dataset) and compare them against real-world data using Chi-Square, 

Levene, and ANOVA testing methods. Algorithm 4-1 summarizes the approach 

I will now illustrate this approach for validating the SimDoc model, produced through the 

calibration process described in section 4.1. Before performing the ANOVA tests, I establish that 

the three main ANOVA assumptions are met: independence of observations, homogeneity of 

variances, and the dependent variable is normally distributed. To do this I perform a Chi-Square 

test of independence, a normality check, and a Levene’s test. Since ANOVA also requires at 

least three (3) groups of data to analyze, the initial number of runs of the simulation is set to 2. 

Subsequently, this number is systematically increased until a stopping condition is matched in 

one of two ways. Either all the statistical conditions of Chi-Square, Levene’s test, and ANOVA 

are satisfied demonstrating that the simulation model produces stable outputs with appropriate 

variability. Or the stopping condition set by a system designer is met meaning the consolidated 

dataset could not converge, and thus that the simulation model structure and parameterization 

need to be improved. 
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Algorithm 4-1. Pseudocode for an Algorithm that Iteratively Calculates Levene, Chi-Square, and 

ANOVA P-Values 

run simulation twice generating two sets of simulation data  
set stopping condition   
iteration = 2  

consolidate simulation runs outputs 
compare consolidated dataset against a real-world system dataset 
until p-values of Chi-Square and Levene’s Test are >0.05 and p-value of ANOVA is < 0.05  

if stopping condition is met 
end until 

endif  
 iteration = iteration + 1 
 run simulation generating the next set of simulation data 

 consolidate simulation runs outputs 
 compare consolidated dataset against a real-world dataset 

end until 
output iteration 

Applying Algorithm 4-1 to the best calibrated SimDoc model, I find that the when compar-

ing SimDoc’s consolidated dataset against the UofS dataset, the statistical conditions of Chi-

Square, Levene’s test, and ANOVA are satisfied when the input number of runs is 100. The re-

sults of running this algorithm on SimDoc’s consolidated dataset show how ANOVA’s values 

slowly converge between the runs 96-100, as summarized in Table 4-1. It can be observed that 

the Chi-Square p-value for each run is greater than 0.05, therefore the ANOVA requirement of 

independence is met. Similarly, the Levene Test’s p-value for each run is also greater than 0.05, 

so the ANOVA assumption of homogeneity is met. Since all the statistical conditions of Chi-

Square, Levene’s test, and ANOVA are satisfied in the 100th iteration run, when the ANOVA p-

value <0.05, more runs are not necessary. So, in the case of the SimDoc simulation, appropriate 

statistical significance on the relevant measures is achieved with 100 simulation runs, and fewer 

runs won’t give us this significance. 
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Table 4-1. P-Values for Levene, Chi-Square, and ANOVA Tests for the Simulation Runs (96 to 

100) 

run Levene Chi-Square ANOVA run Levene Chi-Square ANOVA 

100 0.17 0.28 0.04 95 0.15 0.28 0.08 

99 0.2 0.28 0.06 94 0.17 0.28 0.07 

98 0.18 0.28 0.06 93 0.16 0.28 0.08 

97 0.18 0.28 0.05 92 0.16 0.28 0.12 

96 0.16 0.28 0.06 91 0.15 0.28 0.11 

4.2.3 Confirmation of Stability and Variability in SimDoc’s Output 

Confirmation of Stability 

In this section, I explain in more detail how I test for SimDoc’s stability by elaborating on the 

results achieved by running Algorithm 4-1. The results show that 100 runs of the SimDoc simu-

lation are adequate to gain simulation output that is statistically similar to the UofS dataset. For 

clarity, I consider only one output measure from the simulation: learners’ time-in-program. I 

compare the time-in-program in the consolidated dataset (averaged over 100 runs of the simula-

tion) against the observed time-in-program in the UofS dataset. Table 4-2. shows the time-in-

program frequency counts of the UofS students and the time-in-program frequency counts of the 

consolidated dataset (divided into students who graduated, those who withdrew, and the cumula-

tive total of these two figures). These comparisons are depicted graphically in Figure 4-2. 

Table 4-2. Frequency Counts of Time-in-Program Between the SimDoc and the UofS Students 
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To determine whether these frequencies are distributed in a statistically similar manner, I 

conduct a Chi-Square test of homogeneity to check for consistency among the yearly distribu-

tions, separately for each column: Cumulative, Graduated, and Withdrew. Since the simulation 

model was informed and calibrated based on the UofS dataset, I expect that the consolidated da-

taset is statistically similar to the UofS dataset. Therefore, my null hypothesis is that the frequen-

cy counts of the UofS dataset and the consolidated dataset are equally distributed. Thus, the al-

ternative hypothesis is that there is a difference between the distributions of the frequency 

counts. For this analysis, the significance level I use is 0.05. I then apply the Chi-Square test of 

homogeneity to the cumulative contingency table and compute the degree of freedom, the Chi-

Square test statistic, and p-value. Since the p-value is more than the significance level (0.05), I 

accept the null hypothesis that the frequency counts are statistically consistent between the UofS 

dataset and the consolidated dataset, χ2 (df=9) = 5.0904, p = 0.8264. 

 

 

Figure 4-2. Comparison Between UofS Students and SimDoc Learners Time-to-Outcome 
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The second analysis is to determine if the distribution of frequency counts in time-in-

program among the graduated learners are similar. Given that the distributions of the cumulative 

frequencies are statistically similar, I expect that the real-world graduated frequency counts are 

like the simulated graduated frequency counts per year. Thus, my null hypothesis is that the fre-

quency counts of the UofS (graduated) dataset and the consolidated (graduated) dataset are 

equally distributed. As such, the alternative hypothesis is that there is a difference between the 

frequency counts between these distributions. As in the first analysis, I choose a significance lev-

el at 0.05. I then conduct the Chi-Square test for homogeneity and the results show that we can 

accept the original hypothesis since the p-value is greater than the significance level, and thus the 

frequency counts are statistically consistent between the UofS (graduated) dataset and the con-

solidated (graduated) dataset, χ2 (df=6) = 2.9945, p = 0.8095. 

The third analysis is to assess whether the distribution of frequency counts in time-in-

program among the learners who withdrew were similar between the real-world dataset and sim-

ulated dataset. Given that the distributions of the cumulative datasets were statistically similar, 

my null hypothesis is that the UofS dataset withdrawal frequency counts are similar to the con-

solidated dataset withdrawal frequency counts per year. As such, the alternative hypothesis is 

that there is a difference between the frequency counts between these distributions. As in the first 

analysis, I choose a significance level of 0.05. I then conduct the Chi-Square test for homogenei-

ty and the results show that there is no significant difference in the distribution of frequency 

counts per year between the UofS (withdrew) dataset and the consolidated (withdrew) dataset, 

since the p-value is greater than the significance level, χ2 (df=9) = 7.9344, p = 0.5408. 

Table 4-3. shows the overall total frequency count per outcome for the UofS and the con-

solidated SimDoc datasets. Since the resulting contingency table is small (2x2), to test whether 

the proportions for one nominal variable are different from other nominal variables, the Chi-

Square test of homogeneity is not recommended but instead, it is advisable to use a Fisher’s ex-

act test. In this analysis, I am exploring if the frequency counts per outcome between the UofS 

and the consolidated datasets differ. My hypothesis is that the proportions of the outcome varia-

bles are not the same between the real-world and the simulation datasets. Therefore, the alterna-

tive hypothesis is that there is no difference in the proportion of the frequency counts in the out-

come variables. I then conduct a Fisher’s exact test which yields a result with p-value = 0.3005, 
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indicating that I can accept the hypothesis that there is no significant difference in frequency 

counts per outcome between the UofS and the consolidated datasets.  

Table 4-3. Summary of Frequency Count by Outcome and Data Source 

 

 

Confirmation of Variability  

In this section, I describe in more detail how I test for appropriate variability in SimDoc’s simu-

lation output. As in the previous section, I examine the characteristics of the results paying atten-

tion to variability in time-in-program, produced by 100 iteration runs. Before looking at all 100 

runs, however, I would first like to get a sense of whether there is variation. Thus, I will random-

ly select 12 out of the 100 runs to examine them graphically for insight into the variance among 

them. Figure 4-3 depicts graphically the results for the 12 randomly selected iterations in the 

form of density plots. This figure shows that there is evidence of variation in the graduation and 

withdrawal rates between the runs.  

A box plot sheds more insight into the nature of the simulation results as shown in Figure 

4-4. This box plot shows that indeed there are variations among the different runs and in fact, a 

few outliers exist. To check for homogeneity of variances, I run a Levene’s test for the 100 simu-

lation runs against the UofS dataset, the test reveals a p-value (0.1707) > 0.05, as such, equal var-

iance can be assumed. Thus far, I have shown that there is variability among the results of the 

100 simulation runs. In addition, I have demonstrated that there is no difference in the means 

among the 100 simulation iterations and the UofS dataset.  
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Figure 4-3. Density Plots of 12 Randomly Selected Runs of the Simulation 

 

Figure 4-4. Variation in the Graduation and Attrition Rates in the 12 Simulation Runs 
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However, are these variations statistically significant? Are there any significant differences 

among the 100 iterations of the simulation? To answer these questions, I use a one-way analysis 

of variance (ANOVA). With ANOVA I explore the variance in means of each of the runs be-

tween the distribution of student counts in the program per year in the UofS dataset and Sim-

Doc’s output (each of the 100 runs). In this case, there are 101 groups: 100 groups representing 

the 100 runs of the simulation and 1 group representing the student graduation and withdrawal 

counts gleaned from the UofS dataset. 

I am interested in confirming that there are significant differences in the average mean time 

learners were in the program either leading to completion of their degree or withdrawal from the 

program among the simulation’s 100 runs and the UofS dataset. Since I have shown that the 

ANOVA assumptions are met, I am thus able to conduct a one-factor ANOVA to compare the 

difference in learners’ time-in-program among SimDoc’s 100 runs and the UofS dataset. The 

ANOVA results show that there is a statistically significant difference in the average time-in-

program [F(100,15453) = 1.272, p = 0.0352] among the 100 iterations of the simulation and the 

UofS dataset. Therefore, I reject the null hypothesis and thus accept the hypothesis that there is 

statistical evidence to suggest that there is a difference in the means among SimDoc’s 100 runs 

and the UofS dataset. This result shows that there is a difference between at least one or more 

pairings.  

Whenever the null hypothesis is rejected in ANOVA, all that is known is that at least 2 

groups differ from each other. ANOVA cannot tell us which of these groups are different. There-

fore, to explore how the mean for each of the 100 iterations compared to that of the real-world 

dataset, I perform a post hoc test using the Tukey's Honest Significant Difference test at p < .05. 

The results show that there is no significant difference between the UofS dataset when compared 

to each of the 100 iterations when considering the time-to-program measure. The difference 

therefore exists within the 100 iterations, thus ensuring appropriate variability among the simula-

tion runs. 

4.3 Summary 

In this chapter, I addressed the fourth goal of my dissertation: to demonstrate how an AIED sys-

tem designer can calibrate and validate the resulting simulation model. I first performed calibra-

tion experiments and then validation experiments. The calibration process systematically assigns 
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values to under-determined variables looking for the assignment of values that yields outputs that 

most closely match the real world dataset on outcome variables of interest. This best matching 

run defines the baseline simulation model. 500 runs were used to find the SimDoc baseline. It is 

important to make sure that the calibration process has not gone too far and overfitted the Sim-

Doc simulation model to the UofS dataset. Therefore, I subsequently performed a validation pro-

cess on the calibrated SimDoc model.  

I provided an algorithm that can be used to determine when an appropriate number of runs 

has been carried out. This is achieved by running the best calibrated model until it is clear that 

this model meets appropriate stability and variability criteria. The validation analysis for the cal-

ibrated SimDoc model turned out to converge at the100th run in producing a consolidated dataset 

that is like the UofS dataset. The methods used here are not specific to the SimDoc simulation 

and should generalize to any simulation. Knowing when the simulation has been run an appro-

priate number of times should allow system designers to be confident in the results of subsequent 

experimentation with the simulation model and should avoid them having to needlessly make 

extra simulation runs. This is especially important for medium and high fidelity simulations that 

can take a long time to run. 

The result of the calibration and validation process is a validated baseline simulation 

(called the ‘SimDoc baseline’ in the SimDoc case study) that produces learning outcomes that 

match reality, which can then be used to explore the effects of making various hypotheses about 

changing some of the characteristics of the simulated doctoral program. Essentially, step 5 of the 

seven-step framework is complete. I will explore step 6 of the framework in the next chapter: 

how to use the baseline model as the foundation for a set of experiments designed to explore in-

teresting hypotheses of interest, again using SimDoc to illustrate the process. I show in Figure 

4-5 the completion rate produced by the SimDoc baseline model compared to the UofS comple-

tion rate. Generally, this figure shows a slight difference in these completion rates. Is this differ-

ence significant? I answer this question in the next chapter as I address the 6th and 7th steps of the 

seven-step framework. 
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Figure 4-5. Comparing UofS and SimDoc Baseline Learning Outcomes 
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CHAPTER 5 

EXPERIMENTING WITH SIMDOC: EXPLORING EFFECTS OF PERSONALIZATION 

In this chapter, I use the SimDoc baseline model to illustrate how to carry out the sixth and sev-

enth steps of the seven-step framework. That is, I show how a system designer can run simula-

tion experiments, analyze the results, discuss the results in readiness for presentation and publi-

cation, and explore ways of improving the simulation in preparation for subsequent design itera-

tions and new research directions. 

5.1 Exploring Personalization Using Simulation 

My research aim is to demonstrate how a system designer can build a simulation of a longer-term 

learning environment and use the resulting simulation model to ask hypothetical, ‘what-if’, ped-

agogical questions for better understanding of the dynamics of the modeled longer-term learning 

and mentoring environment. Before I use SimDoc to explore hypothetical, ‘what-if’, research 

questions concerning personalization, it is important to have a validated baseline model for refer-

encing and comparisons. 

5.1.1 Baseline Experimental Set Up 

The simulation model I use for illustration purposes, the SimDoc model, is a medium-fidelity 

validated model involving simple abstractions of learners, supervisors, and milestones. The mile-

stones consist of coursework, comprehensive, proposal, and dissertation. Each of these mile-

stones has a prescribed time requirement. In each experimental set up, a new simulated doctoral 

program structure is created that does not necessarily have an existing real-world parallel to 

compare to. I choose to have a single type of learner or supervisor in each of the experimental set 

ups in order to exaggerate the differences among conditions so as to see clearly the differences in 

effects. To achieve variability and stability in the simulation results, I run 100 iterations for each 

simulation condition as informed by the results of the validation process as to the number of runs 

to achieve an appropriate dataset of simulation results (see chapter 4 for details). For each of 

these 100 runs, a new random seed is selected to ensure variability in simulation results. 
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Table 5-1 The SimDoc Experiments Data Dictionary 

Learner Supervisor 

Latent Effort:  DMF  Supervisor Type (desired meeting frequency)  

Low (1.0 – 1.1)  

Medium (1.1 – 1.23)  

High (1.23 – 1.34) 

Weekly  

Biweekly  

Monthly  

Quarterly 

Laissez-Faire (Quarterly) 

Pastoral (Monthly) 

Directorial (Biweekly)  

Contractual (Weekly) 

 

The key supervisor attributes I am mainly focused on here include:  

• supervisorType – one of these types: Laissez-Faire, Pastoral, Directorial, or Contractual, 

based on Gatfield’s [151] study.  

• desiredMeetingFrequency – represents how often a supervisor is willing and available to 

meet learners. Its value is informed based on supervisor type at a rate of once every week 

for Contractual, once every two weeks for Directorial, once every three weeks for Pasto-

ral, or once every six weeks for Laissez-Faire. Rate values are assigned based on results 

from Heath’s [178] study. 

• allocatedWeeklyMeetingHours – represents the time allocated for total meeting time each 

week (currently set to 5hrs). This value is set based on the SimDoc calibration results. A 

meeting event is made up of one or more meeting sessions depending on the number of 

learners that have requested for a meeting. A meeting session refers to a one to one meet-

ing between a supervisor and a learner.  

• meetingDuration – represents the time allocated for each meeting session (currently set to 

1.5hrs). This value is set based on the SimDoc calibration results. 

The main learner attributes we are focused on include:  

• latentEffort – a number between (1.0, 1.34) representing a learner’s basic capability and 

allows learners to be divided into groups: low (1.0 – 1.1), medium (1.1 – 1.23) and high 

effort (1.23 – 1.34). Its value is assigned inversely based on UofS time-to-completion dis-

tributions. Therefore, shorter times indicate higher latentEffort.  

• desiredMeetingFrequency – represents how often a learner ask for a meeting per week. 

Its value is assigned based on Heath’s [178] distribution of a rate of once every week for 

38%, once every two weeks for 29%, once every three weeks for 19%, or once every six 

weeks for 13% of the learner population. 
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• actualMeetingFrequency – represents the actual meeting frequency per week. Its value is 

calculated weekly as follows: the number of meetings attended / number of weeks in the 

program. 

• satisfaction – a value representing how satisfied a learner is in the program based on the 

frequency of meetings attended. It is calculated as follows: actualMeetingFrequency / de-

siredMeetingFrequency. 

• receivedWaiver – an attribute that indicates whether a learner received a waiver not to 

take classes or not. Its value is derived from the UofS dataset. 

• weeklyEffort – a value representing how many hours a learner is allocating to their studies 

on a weekly basis as they go through the program and interacts with her/his supervisor. 

The is based is computed based on the IRT-based Equation 3-5 

5.1.2 Interpreting Simulation Results 

Simulation modeling is a useful tool in research for a number of reasons. A simulation can be 

used to drill down more deeply into various variables that are hidden in the real world, and their 

interactions. A simulated model can be used for testing various hypothetical scenarios. Further, 

the process of creating the simulation model representing a target real-world system of study of-

ten leads to a better understanding of the real-world system. Depending on the objective of a 

simulation study, using a simulation might help a system designer identify potential areas for 

improvement in the real-world system including changing the structure of the current system or 

adding new components. Where two or more solutions exist to address a challenge, simulation 

allows all competing solutions to be simulated and experimental results to be compared to find 

the best option. It is important to note that any discoveries made using simulation are actually 

predictions for the real-world system and not necessarily reflective of reality.  

5.2 Drilling into the Baseline for Personalization Insights 

In this section, I drill down into the baseline simulation results, looking for patterns based on su-

pervisory type and learner type. One of the advantages of medium and high fidelity simulations 

is that system designers are afforded an ability to drill down into the model details to discover 

potentially interesting patterns. The baseline model can be used to explore ideas around potential 
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questions of interest. For the SimDoc case study, I am interested in exploring the effects of 

matching different supervisors (distinguishing by their desired meeting frequency) and learner 

types (distinguishing first by their desired meeting frequency and second their latent effort level) 

as discussed in detailed experimental set ups in section 5.3. Before I get to the experiments, I am 

interested in discovering the predictions in the baseline simulation. Figure 5-1 reveals potential 

predictions of various learning outcomes based on a combination of different supervisory types 

and different types of learners, at least as both are distinguished by desired meeting frequencies. 

A more detail comparison with SimDoc case study results is provided later in section 5.3. It is 

not surprising to observe that SimDoc baseline forecasts that learners who desire weekly meeting 

would only perform well under Contractual supervision. It is, however, surprising to see that 

when considering the different types of learners supervised by Contractual supervisors, learners 

who desire weekly meeting perform the poorest.  

 

Figure 5-1. SimDoc Baseline Learning Outcomes Differentiated by Meeting Frequency: when 

Learners are Distinguished by Their Desired Meeting Frequency and Assigned Supervisory Type. 
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Figure 5-2 show SimDoc Baseline learning outcomes based on supervisor type (differentiated by 

their desired meeting frequency) and learner type (distinguished by their learner effort level). As 

with Figure 5-1, a more descriptive comparison with SimDoc experimental results is provided 

later in section 5.3. 

 

Figure 5-2. SimDoc Baseline Learning Outcomes Differentiated by Latent Effort: when Learners 

are Grouped by Their Latent Effort Level and Assigned Supervisory Type.  

5.3 Exploring Hypothetical, ‘what-if’, Questions within the SimDoc Case Study 

Personalization of learning support has been one of AIED’s most central research objectives. 

Studies attest that personalization improves learners’ attainment of learning goals. As such, per-

sonalization [25], [28] is important in promoting effective and efficient learning in these longer-

term learning domains. The key is the one-to-one relationships between learners (mentees) and 
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the source of their support (mentors); more specifically how the support styles are in accordance 

with learners’ learning styles and preferred support styles [34]. In the SimDoc case study, I ex-

amine the effectiveness of personalized supervisory styles. The specific hypothetical, ‘what-if’, 

questions I focus on here are:  

E1. How effective would each of the four (4) supervisory styles identified by Gatfield [151] 

and categorized (with a major distinguishing feature being desired meeting frequency) be 

among learners with the four different desired meeting frequencies based on Heath’s 

[178] distribution?  

E2. How effective would each of the four (4) supervisory styles identified by Gatfield [151] 

and categorized  (with a major distinguishing feature being desired meeting frequency) be 

among learners grouped by the three different latent effort values? 

E1. Exploring the Effect of Matching Different Types of Learner and Supervisor based on De-

sired Meeting Frequencies 

In this first experiment I would like to explore the effect of matching different types of learners 

and supervisors based on their desired meeting frequencies. The goal of this experimental set up 

is to explore what would happen in a doctoral program that had only one type of supervisor and 

one type of learner as determined by their desire for meeting frequencies. To achieve this objec-

tive, I set up an experimental with 16 different conditions: four (4) types of supervisory desired 

meeting frequencies multiplied by four (4) groupings of learners’ desired meeting frequencies. 

Since I am experimenting with desired meeting frequencies (MF) for both supervisors and learn-

ers, I named this experimental set up – the MFMF set up.  

For this experimental set up, I start with SimDoc’s baseline simulation model, that is the 

version of SimDoc tuned and validated to match the UofS dataset. From the SimDoc baseline, I 

only change the way I assign values for two attributes: supervisor’s desiredMeetingFrequency 

and learner’s desiredMeetingFrequency. That is, for each MFMF experimental set up, I assign all 

supervisors and all learners to have one supervisor desired meeting frequency type and learner 

desired meeting frequency type respectively. That is the only difference between conditions; eve-

ry other aspect of the SimDoc simulation continues to operate in the baseline mode. I run each 

experimental set up 100 times. This value was determined in the validation stage to provide re-

sults with stability and appropriate variability. For the outcomes of the simulation runs, I take the 

average of the aggregate simulation output for each of the 100 runs in each condition and plot 
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them. Note that it would have been possible to drill down and look separately at each of the 100 

runs in each configuration of supervisors and students, and interesting differences between runs 

may have been observed and possibly shed some light on certain issues, but for these initial ex-

periments averages over the 100 runs seemed to be more useful measures. 

E1. Experimental Results: MFMF set up 

It is important to keep in mind that results yielded by these experiments are actually predictions 

for what might happen in the real-world if the conditions were similar to that in the SimDoc 

MFMF model. Figure 5-3 summarizes the experimental results of the 16 SimDoc MFMF exper-

imental set ups. In total this experiment consisted of 1600 iterations of the simulated doctoral 

program involving hundreds of simulated learners and supervisors.  

As expected, the results show a difference in the effectiveness of each supervisory style on 

each learner type. It is very surprising that the MFMF SimDoc set up predicts that in a doctoral 

program with a single supervisory type, learners who desire weekly meeting frequencies under-

perform all the other types of learners. A similar pattern is seen in the simulation outputs of the 

SimDoc baseline model as depicted in Figure 5-4 (charts for both learning outcomes produced by 

the SimDoc baseline and the SimDoc MFMF set up are included to help with comparison). 

However, the results predict unsurprisingly that learners supervised by Laissez-Faire supervisor 

will have a worse completion rate. On the other hand, the MFMF SimDoc model envisions that 

the highest average of aggregate completion rate would be achieved in a condition where super-

visors of a Contractual type are involved. A comparable outcome is seen in the simulation out-

puts of the SimDoc baseline model.    

Further, when considering time-to-outcome (persistence to graduation or drop out) it is un-

surprising to see the forecast that learners supervised by a Contractual supervisor – those willing 

to meet weekly and give clear direction – would have a high chance of graduating and doing so 

in a relatively good time-to-degree as illustrated in Figure 5-5. It is very interesting to observe 

that of the learner types working with Contractual supervision, learners desiring quarterly meet-

ing frequencies had better time-to-degree; there was no learner graduating or dropping out be-

yond the 7th year. Even more surprising is the forecast by the MFMF SimDoc model that no 

learner will be able to persist beyond the 2nd year when learners with the desire for weekly meet-

ings are paired up with a supervisor that prefers the Laissez-Faire approach to supervising.  
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Visually, Figure 5-4 and Figure 5-6 show that there are some similarities but also substan-

tial differences between the learning outcomes produced by the SimDoc baseline and the Sim-

Doc MFMF set up. To ascertain whether these results are statistically similar, I perform a statis-

tical test. I conduct an independent-samples t-test to compare the learning outcome in SimDoc’s 

baseline set up and experimental results in the MFMF SimDoc set up. I conducted two sets of t-

tests: one for a positive outcome (persistence to completion) and the other for a negative out-

come (withdrawal). The results show that among the learners who persisted to completion there 

was no significant difference in the completion rates for SimDoc’s baseline (M=55.375) and 

SimDoc’s MFMF set ups (M=45.375); t = -0.048264, df = 29.999, p-value = 0.9618. Similarly, 

the results among learners who withdrew indicate that there is no significant difference in the 

completion rates for SimDoc’s baseline (M=44.625) and SimDoc’s MFMF set ups (M=54.625); t 

= -0.048264, df = 29.999, p-value = 0.9618. These t-test results indicate that the two (2) groups 

are not different statistically. 
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Figure 5-3. SimDoc MFMF Set Up Learning Outcomes. A Chart Depicting Learning Outcomes 

of Learners Under Different Conditions Distinguished by Their Desired Meeting Frequency and 

Assigned Supervisory Type. 

The following is the key to notations used for each experimental condition: 

BiWe_Con – represents an interaction between BiWeekly learners and Contractual supervisors  

BiWe_Dir – represents an interaction between BiWeekly learners and Directorial supervisors  

BiWe_Lai – represents an interaction between BiWeekly learners and Laissez-Faire supervisors  

BiWe_Pas – represents an interaction between BiWeekly learners and Pastoral supervisors  

Mont_Con – represents an interaction between Monthly learners and Contractual supervisors  

Mont_Dir – represents an interaction between Monthly learners and Directorial supervisors  

Mont_Lai – represents an interaction between Monthly learners and Laissez-Faire supervisors  

Mont_Pas – represents an interaction between Monthly learners and Pastoral supervisors  

Quar_Con – represents an interaction between Quarterly learners and Contractual supervisors  

Quar_Dir – represents an interaction between Quarterly learners and Directorial supervisors  

Quar_Lai – represents an interaction between Quarterly learners and Laissez-Faire supervisors  

Quar_Pas – represents an interaction between Quarterly learners and Pastoral supervisors  

Week_Con – represents an interaction between Weekly learners and Contractual supervisors  

Week_Dir – represents an interaction between Weekly learners and Directorial supervisors  

Week_Lai – represents an interaction between Weekly learners and Laissez-Faire supervisors  

Week_Pas – represents an interaction between Weekly learners and Pastoral supervisors  
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Figure 5-4. Comparing Learning Outcomes: SimDoc Baseline vs MFMF Set Up. Left: the Chart 

Presented in Figure 5-1. Right: the Graph Presented in Figure 5-3.  
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Figure 5-5. SimDoc MFMF Set Up Learners’ Time-to-Outcome. A Graph Showing Time-to-

Outcome of Learners Under Different Conditions Distinguished by Their Desired Meeting 

Frequency and Assigned Supervisory Type.   

The following is the key to notations used for each experimental condition: 

BiWe_Con – represents an interaction between BiWeekly learners and Contractual supervisors  

BiWe_Dir – represents an interaction between BiWeekly learners and Directorial supervisors  

BiWe_Lai – represents an interaction between BiWeekly learners and Laissez-Faire supervisors  

BiWe_Pas – represents an interaction between BiWeekly learners and Pastoral supervisors  

Mont_Con – represents an interaction between Monthly learners and Contractual supervisors  

Mont_Dir – represents an interaction between Monthly learners and Directorial supervisors  

Mont_Lai – represents an interaction between Monthly learners and Laissez-Faire supervisors  

Mont_Pas – represents an interaction between Monthly learners and Pastoral supervisors  

Quar_Con – represents an interaction between Quarterly learners and Contractual supervisors  

Quar_Dir – represents an interaction between Quarterly learners and Directorial supervisors  

Quar_Lai – represents an interaction between Quarterly learners and Laissez-Faire supervisors  

Quar_Pas – represents an interaction between Quarterly learners and Pastoral supervisors  

Week_Con – represents an interaction between Weekly learners and Contractual supervisors  

Week_Dir – represents an interaction between Weekly learners and Directorial supervisors  

Week_Lai – represents an interaction between Weekly learners and Laissez-Faire supervisors  

Week_Pas – represents an interaction between Weekly learners and Pastoral supervisors  
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Figure 5-6. Comparing Learners’ Time-to-Outcome: SimDoc Baseline vs MFMF Set Up. Left: A 

Graph Showing Time-to-Outcome of Learners in SimDoc Baseline Under Different Conditions 

Distinguished by Their Desired Meeting Frequency and Assigned Supervisory Type. Right: the 

Chart Presented in Figure 5-5. 

 E2. Investigating the Effect of Matching Different Types of Learners and Supervisors based 

on Latent Effort and Desired Meeting Frequency Respectively 

In this second experiment, I would like to investigate the effect of matching different types of 

learners and supervisors based on latent effort and desired meeting frequency respectively. The 

goal of each experimental set up is to discover what would possibly happen in a doctoral pro-

gram that had only one type of supervisor and one type of learner as determined by their desire 

for meeting frequencies and latent effort respectively. To achieve this objective, I set up an ex-

periment with 12 different conditions: four (4) types of supervisory desired meeting frequencies 

multiplied by three (3) types of learners’ latent efforts. As with the previous experiment, I name 

this experimental set up based on the attributes being experimented with (learners’ latent efforts 

(LE) and supervisors’ desired meeting frequencies (MF)) – thus the LEMF set up. 

In total this experiment consisted of 1200 iterations of a simulated doctoral program in-

volving hundreds of simulated learners and supervisors. As with experiment E1, I start with the 
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SimDoc validated baseline simulation model, and only change attributes directly involved in the 

hypothetical question being explored. In this case, I change the way I assign values for only two 

attributes: supervisor’s desiredMeetingFrequency and learner’s latentEffort. That is, I assign all 

supervisors to have one supervisor desired meeting frequency type and assign and all learners to 

have one learner latent effort type for each experimental set up. As with E1, each experimental 

set up consists of 100 simulation runs. For the outcomes of the simulation runs, as in E1 I take 

the average of the aggregate simulation output for each of the 100 runs in each condition and plot 

them. Figure 5-2 reveals a prediction of potential learning outcomes under each of the 12 exper-

imental set ups exploring various E2 hypotheses. 

E2. Experimental Results: LEMF set up 

Once again, the discoveries of the SimDoc LEMF experimental set up are actually predictions 

for what might happen in the real-world if the conditions were similar to that in the SimDoc 

LEMF model. Figure 5-7 summarizes the experimental results of the 12 SimDoc LEMF experi-

mental set ups. In total this experiment consisted of 1200 iterations of the simulated doctoral 

program involving hundreds of simulated learners and supervisors. Figure 5-7 depicts a predic-

tion by the LEMF experiment that learners under Laissez-Faire supervision would generally have 

a very high attrition rate. The opposite is true when I examine learners under the similar condi-

tion in the SimDoc baseline model as depicted Figure 5-2. This pattern of observing opposite 

outcomes can also be seen when considering learning outcomes under the Contractual superviso-

ry type. In the SimDoc baseline model, learners under Contractual supervision have high com-

pletion rates while the LEMF SimDoc model predicts a scenario where learners, regardless of 

type, would have the highest attrition rates among their group.  

Visually, Figure 5-8 shows that the differences that exist between the two graphs is surpris-

ingly very high. To establish whether the results depicted in Figure 5-8 are statistically different, 

I conducted an independent-samples t-test to compare the learning outcome in SimDoc’s base-

line set up and experimental results in SimDoc’s LEMF set up. As with E1, I conducted two sets 

of t-tests: one for a positive outcome (graduate) and the other for a negative outcome (withdraw-

al). The results show that among those learners who persisted to completion there was no signifi-

cant difference in the completion rates for SimDoc’s baseline (M=61.81) and SimDoc’s LEMF 

set ups (M=55.15); t = 0.66764, df = 13.134, p-value = 0.5159. Comparably, the results among 

learners who withdrew indicate that there is no significant difference in the completion rates for 
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SimDoc’s baseline (M=38.18) and SimDoc’s LEMF set ups (M=44.84); t = 0.66764, df = 

13.134, p-value = 0.5159. 

 

Figure 5-7. SimDoc LEMF Set Up Learning Outcomes. A Chart Depicting Learning Outcomes of 

Learners Under Different Conditions Distinguished by Their Latent Effort Level and Assigned 

Supervisory Type. 

The following is the key to notations used for each experimental condition:  

Hig_Con – represents an interaction between BiWeekly learners and Contractual supervisors  

Hig_Dir – represents an interaction between BiWeekly learners and Directorial supervisors  

Hig_Lai – represents an interaction between BiWeekly learners and Laissez-Faire supervisors  

Hig_Pas – represents an interaction between BiWeekly learners and Pastoral supervisors  

Low_Con – represents an interaction between Monthly learners and Contractual supervisors  

Low_Dir – represents an interaction between Monthly learners and Directorial supervisors  

Low_Lai – represents an interaction between Monthly learners and Laissez-Faire supervisors  

Low_Pas – represents an interaction between Monthly learners and Pastoral supervisors  

Med_Con – represents an interaction between Quarterly learners and Contractual supervisors  

Med_Dir – represents an interaction between Quarterly learners and Directorial supervisors  

Med_Lai – represents an interaction between Quarterly learners and Laissez-Faire supervisors  

Med_Pas – represents an interaction between Quarterly learners and Pastoral supervisors  
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Figure 5-8. Comparing Learning Outcomes in the SimDoc Baseline and the LEMF Set Up. Left: 

the Graph Presented in Figure 5-2. Right: the Chart Presented in Figure 5-7. 

5.4 Insights into the Personalization Experimental Findings 

The tasks done in this chapter help illustrate how to achieve the requirements of step 6 and 7 of 

the seven-step framework. I have experimented with the SimDoc model and analyzed the results. 

The results of the simulations should not be taken literally. However, they are predictions of 

what could actually happen in a real-world system if all the conditions were similar. The 7th step 

of the framework suggests providing a discussion of the results and identifying potential ways of 

improving the model and hence new research directions. 

It is very interesting to observe that in a doctoral program scenario with only Contractual 

supervisors and only learners of one learner type (those who desire weekly meetings), SimDoc 

predicts that the outcome is worse in this SimDoc’s MFMF set up than in SimDoc’s baseline set 

up. This discovery is counterintuitive because one would expect that matching highly productive 

supervisors with high performing high maintenance learners would result in better outcomes. 

However, probably the envisioned high attrition among learners in this condition is caused by 

high demand for supervisor meeting time. This phenomenon is magnified by very high attrition 
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rates among this type of learner and the other three types of supervisors who do not have the time 

to meet with learners regularly with the worst matchup being with Laissez-Faire type supervi-

sors. Simulation results show a prediction that almost all learners in this situation will drop out in 

their first year – see Figure 5-5. Furthermore, the simulation results forecast that learners with 

quarterly desired meeting frequency tend to complete their program under all supervisor types. 

My interpretation of this observation is that the most important thing that leads to a prediction of 

high completion rates is keeping learners satisfied with their progress and meeting frequencies. 

Furthermore, I find it fascinating to discover a prediction that when there is only a single 

learner type based on latent effort, the overall completion rates are worse in a one-supervisor 

type (SimDoc’s LEMF) condition as compared to SimDoc’s baseline set up except for the Lais-

sez-Faire supervisory condition. This suggests that it is not desirable to have a single type of 

learner in a doctoral program. I observe another interesting phenomenon in SimDoc’s LEMF set 

up (see Figure 5-9, showing completion rates by year in the LEMF set up). Results depicted in 

this figure predict that, overall, learners stay in the program longer as compared to outcomes 

shown in SimDoc’s baseline set up (see Figure 5-10). Further, there is no expected condition in 

SimDoc’s LEMF set up that leads to 100% attrition rate as compared to SimDoc’s MFMF condi-

tions.  
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Figure 5-9. SimDoc LEMF Set Up Learners’ Time-to-Outcome. A Chart Depicting Time-to-

Outcome of Learners Under Different Conditions Distinguished by Their Latent Effort Level and 

Assigned Supervisory Type 

The following is the key to notations used for each experimental condition: 

Hig_Con – represents an interaction between BiWeekly learners and Contractual supervisors  

Hig_Dir – represents an interaction between BiWeekly learners and Directorial supervisors  

Hig_Lai – represents an interaction between BiWeekly learners and Laissez-Faire supervisors  

Hig_Pas – represents an interaction between BiWeekly learners and Pastoral supervisors  

Low_Con – represents an interaction between Monthly learners and Contractual supervisors  

Low_Dir – represents an interaction between Monthly learners and Directorial supervisors  

Low_Lai – represents an interaction between Monthly learners and Laissez-Faire supervisors  

Low_Pas – represents an interaction between Monthly learners and Pastoral supervisors  

Med_Con – represents an interaction between Quarterly learners and Contractual supervisors  

Med_Dir – represents an interaction between Quarterly learners and Directorial supervisors  

Med_Lai – represents an interaction between Quarterly learners and Laissez-Faire supervisors  

Med_Pas – represents an interaction between Quarterly learners and Pastoral supervisors  
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Figure 5-10. Comparing Learners’ Time-to-Outcome: SimDoc Baseline vs LEMF Set Up. Left: A 

Graph Showing Time-to-Outcome of Learners in SimDoc Baseline Under Different Conditions 

Distinguished by Their Latent Effort Level and Assigned Supervisory Type. Right: the Chart 

Presented in Figure 5-9. 

5.5 Future Experimental Directions 

E1&E2 Future Directions 

Results from E1 and E2 shed some light on interesting predictions on the effect of using person-

alized approaches to selecting and allocating supervisors to doctoral learners. Drawing from the 

lessons learned in these first set of experiments, here are some future directions that could be ex-

plored in future experimentation and application. A system designer could develop an algorithm 

that can match doctoral learners to supervisors, based on characteristics of the learners and the 

supervisors derived from the current version of SimDoc’s experimental results that offers the 

best chance of learner success. Success, in this case, is measured in having a short time-to-

completion with high completion rates. The algorithm could be modified to enable learners to 

benefit the most from getting an appropriate match with their supervisors. In these follow up sets 

of experiments, it would particularly be interesting to examine the contrast between the new al-
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location algorithm, the baseline as informed by UofS data, and random assignment of supervi-

sors to learners to determine which allocation strategy works best.  

Studying the Impact of Different Ratios of Learner Types  

A study by Heath [178] shows that the most important factor in the success of doctoral mentor-

ship is not the format (one-to-one or many-to-one) but rather the quality of the supervisor-learner 

(mentor-mentee) relationship, with the supervisor having a far more crucial role to play in foster-

ing, encouraging, and supporting the learner through regular supervisor-learner meetings [177], 

[178]. However, one major challenge is maintaining a regular or even a frequent enough meeting 

schedule [178], [187]. Thus, it will be interesting to explore the impact of a combination of vari-

ous meeting frequencies between supervisors and learners and different ratios of the learner type. 

The aim of this experimental set up would be to gain insight into the impact different learning 

environment set ups have on different types of learners. It would be interesting to run follow-up 

experiments that examine how the different types of learners perform in an environment with a 

different combination of learners. Results from such experiments could lead to the development 

of an algorithm that would be used to assign learners to different research groups based on that 

learner’s and research group’s attributes, that is, a personalized allocation of learners to research 

groups.   

Investigating the Effect of Research Group Sizes/Supervisor Workload 

Learners take on learning endeavors for a myriad of reasons. Relatedness, a sense of belonging 

to a community, affects such motivations and individual performances [229]. These studies 

[182], [230] show that in different learning environments learners that feel supported and re-

spected by their teachers and their family are more likely to demonstrate natural inquisitive 

tendencies and desire to learn new skills. In a doctoral program, the number of other learners su-

pervised by the same supervisor could indirectly affect a given learner’s relatedness to the rest of 

the group because of demand for shared supervisor’s time.  

Supervisor’s workload is one factor amongst others that affect the availability of a supervi-

sor to meet regularly with the learner(s) s/he supervises. One of the contributing factors to a su-

pervisor’s workload is the number of learners s/he supervises and her/his preferred supervisory 

style. It would be interesting to explore the following hypothetical question: how would the dif-

ferent sizes of the research groups affect the learning outcomes of a doctoral program? This 
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question could be answered by setting up an experiment where the simulation is run under ten 

different conditions: from a scenario where each supervisor has only one learner through a situa-

tion where each supervisor has ten learners. The various conditions could then be compared to 

learning outcomes. 

The goal of this experimental set up would be to explore the effect of both the research 

group size and the supervisory workload on doctoral learners with characteristics and behaviors 

captured in the SimDoc model. Another intention of such an experiment would be to figure out 

an optimum research group size based on the attributes of supervisors and learners. In this exper-

imental set up, no outcome need be compared with SimDoc baseline outputs. The findings would 

shed light on personalization and could lead to recommendations being made to supervisors as to 

whether they should take on more learners or not. In addition, insights would be gained on the 

impact of supervisor decisions on their supervisees and how new learners can get personalized 

recommendation on which supervisor to choose based on supervisors’ workload. 

Moreover, going beyond the current SimDoc model, new learner model attributes and 

event models could be devised that took into account the effects (both beneficial and detrimental) 

of a student’s interactions within their research group on their progress through the doctoral pro-

gram. This would require another design iteration through the 7-step framework, with new ques-

tions leading to revised SimDoc models, a new round of calibration and validation, and a new 

experimental program. Such iterative improvement and deepening of the simulation model 

would, over time, slowly enhance the model’s fidelity and the realism of its predictions. 

5.6 Summary 

In this chapter, I addressed the fourth goal of my dissertation, that is to demonstrate how an 

AIED system designer can use a simulation model of a longer-term learning and mentoring envi-

ronment to better understand the environment, its characteristics, learning and teaching needs, 

and possible tools to support these needs. I illustrated this concept by showing how an AIED sys-

tem designer can experiment with the resulting simulation model (step 6 of the process in Figure 

3-2). I carried out two experiments aimed at understanding more about personalization issues in 

the learner-supervisor relationship. I further identified potential research directions that could be 

carried out relatively easily using the simulation (and certainly much more easily and quickly 
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than in the real world).  I also looked briefly forward to future experiments and subsequent cy-

cles of iterative design. 
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CHAPTER 6 

DISCUSSION AND CONCLUSION  

In this chapter, I conclude my thesis. First, I revisit the main underlying objective of my re-

search. Next, I describe the need for simulation to support the AIED system development pro-

cess, especially when creating systems for supporting longer-term learning and mentoring envi-

ronments. Subsequently, I summarize how I used the seven-step framework to guide the model-

ing of a doctoral program as an example of a longer-term mentoring and learning environment. 

Finally, I present a discussion on some potential future research directions. 

6.1 Discussion 

6.1.1 Research Objectives 

My overriding research goal is to demonstrate how to build, calibrate and validate, and use a 

simulation model of a longer-term learning environment to explore pedagogical issues, including 

being able to pose hypothetical, ‘what-if’, research questions. This demonstration is made con-

crete through the development of a simulation for a real world longer-term learning environment, 

a doctoral program, focused on the interaction between different types of mentors (supervisors) 

and different kinds of mentees (doctoral students) in a longer-term mentoring environment (doc-

toral program). Insight from my research provides a template for other AIED researchers who 

desire to design AIED systems for supporting learning in other longer-term learning environ-

ments. This research also sets the stage for future research related to many factors that affect 

doctoral students’ persistence to degree. 

6.1.2 Simulation for Supporting AIED System Development Process 

Simulation has been considered as an important decision support tool since the 1950s and has 

been used in numerous areas including healthcare, the military, crowd behavior analysis, com-

merce, as well as education [144]–[147], [231], [232]. The idea of using simulation within AIED 

research was introduced more than two decades ago VanLehn et al. [1]. Simulated learners in the 

form of pedagogical agents have been used within various AIED systems to play significant 

roles, for example, playing the role of learning companions, acting as conversational agents, or 
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taking the role of teachable agents. Research results show that learning gains from the use of 

these virtual agents are dependent on agent and learner characteristics. The use of simulation is 

of increasing importance within AIED research as the field trends towards supporting longer-

term learning. 

There are several reasons why AIED system designers should have simulation as part of 

their toolkit. Using simulation as an evaluation tool enables rapid comparison among the various 

adaptive and personalization strategies to determine the most effective ones. Simulation allows 

for the testing and understanding of the possible impact of various adaptive and personalization 

measures in a learning environment before embarking on building an actual system to experi-

ment with real learners. Moreover, the time taken to develop a simulation model would be rela-

tively shorter than the time required to develop a functional real system prototype for evaluation 

purposes. Furthermore, simulation gives a researcher the ability to conduct experiments that shed 

light on real-world systems that are otherwise impractical to investigate because of the nature of 

the environment or the length of the investigation in real time that is required [34], [129], [143]. 

Finally, simulation can be used to replicate a real-world situation by modeling key characteristics 

of the target domain and learner behavior over a span of time enabling system designers to ex-

plore interactions among variables that are hidden in the real world as well as to answer hypo-

thetical, ‘what-if’, design decision questions. 

Simulation can be used at different stages of the AIED system building process and for dif-

ferent purposes. For instance, a simulation can be built to be used in the early stages of the de-

sign process for formative evaluation of proposed designs which might require developing a 

standalone simulation, for example, exploring how to create an effective sequence of learning 

material for an AIED system [205]. Or simulation can be used to help in the design of AIED sys-

tem components as in the use of SimStudent for the authoring of student models for a cognitive 

tutor [233]. Or simulated learners can be developed as part of AIED systems in the capacity of 

pedagogical agents created to act as peer learners [234] or help in peer assessment [235]. Or a 

pedagogical agent can be developed and iteratively redesigned based on a complex simulated 

learner that is useful in studying theories of learning such as learning by teaching [236] or the 

design of effective pedagogical conversations [237]. 

Simulation can be used to address the lack of an adequate amount of data to allow explora-

tory study. For example, in an interactive learning game situation, generating interactive narra-



104 

 

tive plans is crucial for gameplay experiences. Data-driven approaches are often used to inform 

policies for creating new plans; however, these data-driven approaches require huge datasets that 

are mostly not available. As a solution, researchers in [238] proposed the use of simulation, spe-

cifically the simulation of high-fidelity players. High-level fidelity simulated players which mim-

icked human player behaviors were generated and used to examine the effectiveness of rein-

forcement learning on narrative policy planning. Experimental results showed that the use of re-

inforcement learning led to narrative plans that are generalizable.  

Some researchers might argue against the use of simulation to study pedagogical issues and 

AIED system design concerns. They could question whether it is possible to capture the right 

level of model fidelity to represent a target complex learning context being studied. As a result, 

they might raise concerns about the validity of the simulation’s outputs and how well those out-

puts match real-world outcomes. Likewise, they may question the appropriateness of using simu-

lation or simulated learners in the AIED system development process, especially where there is a 

lack of good data to either inform the simulation model or verify the simulation model outputs. 

Furthermore, they might even argue that all that needs to be known about system design issues 

can be gathered by engaging stakeholders (users and experts), not through simulation. Further, 

they may contend that with pervasive and ubiquitous technology there are loads of data about 

learners.  

These are genuine concerns. However, as AIED research trends towards supporting learn-

ers in longer-term learning and mentoring contexts where many operations and the roles of vari-

ous stakeholders are interconnected with innate variability and complexity, simulation is an es-

sential aid to experimentation considering costs, time and the need for control of experimental 

set ups. Further, having loads of data is not enough by itself to explore design issues in AIED, 

especially when designing an AIED system to serve longer-term learners. Merely having lots of 

data doesn't help directly with ‘what-if’ questions - simulation is needed for this, although the 

data can be useful for informing the simulation models and functions. In addition, the concern 

about the validity of the model could be mitigated by clearly describing the level of model fideli-

ty to be used in a given research. 

Simulation model fidelity is an issue that arises when using simulation to study real-world 

phenomena because it dictates the level of reality captured in the model. Different researchers 

have demonstrated that it is possible to use different levels of model fidelity to gain insight into 
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various pedagogical research issues within educational technology research. The level of cogni-

tive fidelity required is dictated by the nature of the research issues being explored. For example, 

while Champaign [148] used a very low fidelity model to explore the interactions of various pa-

rameters in a learning system, Matsuda et al. [118] used a model with high cognitive fidelity to 

reach compelling conclusions about the use of AIED systems to personalize student learning ex-

periences. Erickson et al. [2] demonstrated that it is possible to use a medium fidelity simulation 

model to uncover interesting results. In choosing the appropriate fidelity of the simulation model 

it is important to consider the objectives of the research and the research questions researchers 

hope to explore [122]. Evaluation of AIED systems for supporting learning in longer-term learn-

ing contexts can be achieved by using simulation since it provides an economically cheaper, and 

ethically safer alternative to using human learners. Whatever the use of simulation, an important 

challenge is to understand how to design and develop pedagogical agents and simulated learning 

environments with the appropriate level of simulation model fidelity and including the participa-

tion of instructors and students in the design and development decisions.  

6.2 Summary of the Research 

Many AIED systems have been developed that assist learners in single learning sessions whose 

duration is hours or at most months. There is a relative paucity of research that provides a 

framework for exploring challenges facing designers of AIED systems for supporting mentoring 

of learners over longer-term durations, such as the mentoring of doctoral students. Designing 

mentoring systems to support longer-term learning and mentoring such as a doctoral program 

requires a large financial investment to pay for study participants as well as to pay for the cost of 

prototyping. It also takes a long time to seek ethics approval even for initial prototypes. Many 

human resources are required for a successful system development. Therefore, an important 

question is how can a system designer evaluate designs for a longer-term mentoring system 

while mitigating the cost and testing the system in a timely manner? The obvious answer is the 

use of simulation. This then leads to another important question: how can a system designer 

build a simulation of a longer-term learning context, especially one that would allow the system 

designer to ask hypothetical, ‘what-if’, research questions about the learning environment and 

make informed design decisions? Answering this question was the focus of my dissertation. 
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In my dissertation, I have explored the least examined role of simulation within AIED re-

search: how to use simulation to support the AIED system design process. Specifically, I exam-

ined how to use simulation as a tool to support AIED system design for longer-term learning and 

mentoring environments. I presented a seven-step framework, adopted from [193], that can be 

used to guide the modeling and simulation of longer-term learning environments. These steps 

are: identification and formulation of research questions of interest around the target real-world 

system; designing a conceptual simulation model based on the research questions; identification 

of sources of real-world data to inform the simulation model; building a simulation model; cali-

brating and validating the resulting simulation model; performing experimentation with the re-

sulting model, analyzing and interpreting the results of the experimentation; and presenting the 

results and suggesting improvements to the model as a foundation for future research directions.    

To apply this seven-step framework to model building, I presented a case study where I 

demonstrated how to build and use a simulation of a doctoral program to help to understand the 

interactions of hidden variables of interest and to answer hypothetical, ‘what-if’, pedagogical 

questions concerning the doctoral program. The simulation model I developed for this case study 

is called SimDoc. At the outset, it was unclear how such a simulation model should be devel-

oped, what features it should have, and how these attributes should be informed. I was able to 

access a dataset from the target learning environment, the UofS doctoral program, to inform var-

ious attributes in order to explore initial research questions. But the dataset did not contain all the 

information necessary to inform the simulation.  

The iterative process in the seven-step framework was very useful in helping overcome this 

difficulty. Over the analysis of what data was available I was able to refine the research ques-

tions. This allowed for a significant reduction in the number of stakeholders and attributes to 

model. I designed the SimDoc conceptual model, with five key components: agents, normative 

rules, dialogic rules, events, and scenes. I used the notion of agents to represent stakeholders ac-

cording to their role. I only modeled two types of agents to represent doctoral students (who we 

will refer to as learners in our simulation) and supervisors. I chose to create a medium-level fi-

delity simulation model. Though the model was already simplified, I found out that the UofS da-

taset still did not contain enough information to inform all the agent attributes necessary to ena-

ble the exploration of the identified research questions. 
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Knowing that the UofS dataset was insufficient, I considered other sources of information 

to augment the UofS dataset. These sources included different departmental web pages and vari-

ous studies in the literature. The diverse nature of these studies and students involved allowed for 

the capturing of a broad spectrum of doctoral students’ behavior. I used the data from these 

sources to inform characteristics of two important types of functions in SimDoc: behavior func-

tions and evaluation functions. Behavior functions inform the decision making of an active 

agent. Evaluation functions determine the outcomes of the various interactions between different 

agents. This process of seeking additional data led to the need to refine the SimDoc conceptual 

model. 

After refining the SimDoc model by establishing essential elements, functions, and charac-

teristics and identifying relevant sources of data to inform it, I implemented the SimDoc model 

in AnyLogicTM, a Java-based platform for modeling and simulation16. I modeled SimDoc’s enti-

ties following the agent-based modeling (ABM) technique. Using ABM, I was able to model all 

entities of interest as agents with their various characteristics. After implementing the SimDoc 

simulation model, it was important to ascertain the validity of its output by comparing the simu-

lation output against the real-world dataset along key measures of interest. In the UofS dataset, I 

had aggregate data on expected emergent behavior but not necessarily data to specifically inform 

exact parameter values for the SimDoc model so that SimDoc reproduces the same emergent be-

havior. 

Identifying that it was vital to tune parameter values for those attributes whose parameter 

values were not well-known, I calibrated and validated the SimDoc model. The calibration pro-

cess consisted of 500 simulation runs. The best run had a 93% match between the UofS dataset 

and the SimDoc dataset. I then validated the SimDoc model. I provided a pseudo-algorithm that 

can be used to determine the number of runs necessary for a model to produce results with stabil-

ity and appropriate variability to ensure that the model had not been overfitted. The overall out-

come of the validation analysis showed that 100 runs were the appropriate number of times 

SimDoc should be run in order to be confident in the results and avoid having to needlessly make 

extra simulation runs. With 100 simulation runs, the SimDoc model reproduced a consolidated 

dataset that is statistically similar to the UofS dataset on variables of interest. 

                                                 
16 https://www.anylogic.com/ last accessed February 12, 2019 
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Having calibrated and validated the SimDoc model, I used the resulting SimDoc model to 

illustrate how to explore interactions of "hidden" variables and to ask hypothetical, ‘what-if’, 

pedagogical issues concerning personalization within a doctoral program. This resulted in dis-

coveries that constitute predictions for the real-world system. For example, simulating (exagger-

ated) hypothetical situations in which there is a supervisor of only a single type reveals that 

learners who prefer weekly meeting frequency will be subject to very high attrition rates, regard-

less of the supervisory type. However, having learners who preferred quarterly meeting frequen-

cy leads to high completion rates across all the four supervisory styles.   

6.3 Contributions 

The central contribution of this dissertation is the demonstration of how to build, calibrate and 

validate, and use a simulation model of a longer-term learning environment to explore various 

aspects of the environment, and in particular to hypothetical, ‘what-if’, research questions.  

This dissertation also presented several contributions to advanced learning technology re-

search and most specifically to artificial intelligence in education. In my research I have: 

• Presented an extended seven-step framework (based on [193]) for guiding the design and 

modeling of simulation models. In a case study, I showed how AIED and other advanced 

learning technology researchers could use this seven-step framework to guide the build-

ing, informing, and validating of a pedagogical simulation model for exploring different 

research issues in longer-term learning and mentoring environments. 

● Identified a pedagogical use of simulation not explored very much in AIED or other ad-

vanced learning technology communities: how simulation could be used to explore vari-

ous hypothetical, ‘what-if’, pedagogical questions related to understanding issues in 

longer-term learning and mentoring environments. 

● Developed a medium fidelity simulation model, a rarely investigated level of fidelity. In 

this dissertation, I have described the steps that I took to design and build SimDoc, a sim-

ulation of doctoral program, as an example of a longer-term learning environment. Other 

designers with aspirations to build simulations of learning environment, especially long-

er-term environment, can benefit greatly by following the steps I followed in designing 

and developing SimDoc. 
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● Illustrated how to inform a simulation model by showing how to combine data from di-

verse sources related to phenomena of interest. AIED system designers creating simula-

tion models to be used to explore issues other than those in the doctoral program can fol-

low the steps I took to inform the SimDoc model, since these steps are generalizable to 

other domains and contexts. The first step is all about identifying the experimental ques-

tion to be explored using simulation. To successfully use simulation, it is important to 

have clear and specific experimental questions. Doing so helps in the formulation of a 

conceptual model and data collection. In addition, it helps the designer to think critically 

about the problem he or she is interested in exploring. The next step involves identifying, 

collecting, and analyzing data about the target learning environment to inform the various 

behavior and evaluation functions. There are important data and behaviour functions of 

the doctoral program that the UofS data didn’t provide any insight on. I have shown how 

to inform the model from either the real-world environment, from results in the research 

literature, or both. 

● Demonstrated how to calibrate a simulation model using a baseline dataset gathered from 

the target learning environment. With data from different sources, it was important to 

combine and synthesize them to make sure they still reproduce learning outcomes that 

match the target learning environment. This is where the calibration process comes in. 

Calibration also has a further advantage of helping determine the values of as yet unas-

signed parameters and attributes. I showed how to use the calibration process available in 

AnyLogicTM, a Java-Based simulation platform to find a very good baseline model in 

SimDoc. Designers of other simulations can follow my example to calibrate their own 

models. 

● Showed how to validate a simulation model by providing a pseudo-algorithm that can be 

used to determine how many replications of a simulation run to perform in order to be 

confident in the results produced by the simulation. With the best calibrated model, it is 

important to establish that the model is stable (i.e. that it matches the real-world system 

over time) but also that the model’s attribute values are not overfitted (i.e. that it displays 

appropriate variability over time). This is where validation comes in. The pseudo-

algorithm that I have provided is generalizable and a system designer can use it by fol-

lowing the steps I took in validating SimDoc and validate the model they have built. 
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Moreover, the validation pseudo-algorithm terminates after a certain number of simula-

tion runs, when the appropriate stability and variability has been achieved. This number 

can then be used to determine the number of runs to use in actual experiments with the 

simulation. This pseudo-algorithm is based on statistical measures that generalize to any 

simulation context. 

● Showed how to develop an experimental program to explore specific AIED and advanced 

learning technology research questions through simulation. In particular I explored some 

interesting patterns in supervisor-student interactions, as they affected time-in-program, 

and graduation and attrition rates. While the particular experiments were SimDoc specif-

ic, others can learn from them even in different learning contexts, especially in the use of 

‘what if’ scenarios that allow exploration of situations that don’t occur in the real world, 

but nevertheless might reveal interesting patterns.  

● Illustrated the importance of using simulation in exploring various learning domains 

where data is not readily available, particularly self-directed, and longer-term learning 

scenarios. Simulation allows exploration of such domains while also enabling deeper in-

sight into student models and learning contexts. 

6.4 Limitations  

The research I conducted in this thesis has limitations. One of the issues concerns the availability 

of enough data on graduate students. The amount of detailed information about graduate students 

that the university of Saskatchewan was willing to provide was limited. To address this concern, 

I had to glean data from other sources including the research literature and doctoral program 

webpages, but using such derived data is certainly not as informative as having all the data from 

a single source – the UofS doctoral program – the target environment in this case. 

Another issue is that the SimDoc model as currently constructed is a major simplification 

of the doctoral program given the social complexity of the doctoral environment. This is a valid 

concern; however, I informed, calibrated and validated the SimDoc model around the research 

issues of interest. In order to experiment with other issues concerning the doctoral program, the 

SimDoc model must be revised, informed, calibrated, and validated accordingly. 

In addition, the actual experimental results are possibly not reliable. However, at the very 

least they constitute predictions of what could possibly happen in a doctoral program if the con-
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ditions were at least somewhat similar to the assumptions underlying the simulation. These find-

ings can form the basis of new research questions that can be explored either with a modified 

simulation model or with a real-world experimental set up. 

Some researchers have expressed reservations concerning the use of simulation to evaluate 

learning systems17. The argument is that results derived from running simulations might not re-

flect the reality and accuracy of learning outcomes. This concern is justified particularly if a sys-

tem designer wants a simulation to handle all the complexities of a learning environment. How-

ever, a simulation can still be informed well enough to answer specific questions about the learn-

ing environment, even at low and medium fidelities. Moreover, even with limitations, simulation 

is the only possible way of exploring issues in some specific contexts, especially longer-term 

learning environments. Constraints of research time and the nature of the research context neces-

sitate the use of simulation. Additionally, simulation enables the exploration of issues in learning 

contexts that would otherwise be difficult to study. The fidelity and validity of the models play 

key roles in the accuracy or the trustworthiness of the simulation predictive output. 

6.5 Future Work 

It would be nice to see follow up research directions resulting from this dissertation work. One of 

these directions is better informing SimDoc model following a few directions I have briefly dis-

cussed in section 5.5 and a few more I suggest in section 6.5.1. These directions focus on par-

ticular experiments that could be run following the SimDoc experiments performed in this dis-

sertation. Another research direction is to have follow up research into the art/science of building 

longer-term pedagogical simulations. 

6.5.1 Extensions to the Current SimDoc Simulation 

In the future, there are several extensions to the SimDoc baseline simulation model that could be 

improved on. Some of these directions might require changes in the composition of SimDoc’s 

conceptual model while others might not. 

Better Informing SimDoc 

                                                 
17 At the Artificial Intelligence in Education 2013 conference, for example. 
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Although there are many possible improvements that could be done to improve SimDoc and its 

predictive power, the most consequential one in my view is informing the whole model with data 

from one source – the target learning environment to be investigated. Future studies might ex-

plore the impact of informing all aspects of the SimDoc model with data from the same doctoral 

program as opposed to using only aggregate data. This might also require the reproduction of 

similar research performed in the referenced literature in the context of the target learning envi-

ronment. This research can be performed without the need for changing SimDoc’s conceptual 

model. The only step I foresee to be necessary before experimenting with such an updated Sim-

Doc model would be calibration and validation. Such an undertaking would shed further light on 

the use of simulation in longer-term learning environments that are not captured in this thesis 

research.   

Impact of Informed Meeting Frequencies 

To follow up the SimDoc experiments described in this thesis, a specific fidelity issue is to ex-

plore the impact of informing desired meeting frequencies with data from the target learning en-

vironment. This would require an historical dataset on student-supervisor meetings – frequen-

cies, durations, and learning outcomes. Such a dataset could be collected through a detailed 

quantitative study. With this change, it would be interesting to see how the research findings will 

compare with the predictive findings provided by the current set up.   

Exploring Impact of Departmental Factors 

Future studies might consider improving the SimDoc simulation model by actually limiting the 

scope of the model from the doctoral program as a whole to modeling a single department’s doc-

toral program. In this thesis research, the SimDoc model is informed by aggregated data from 

different departments of the University of Saskatchewan doctoral program and data from the lit-

erature that were initially collected and used for different purposes. There is a need for research 

on whether and to what extent do different departmental factors influence doctoral learners’ per-

sistence to degree. Studying various departmental types and incorporating their factors into the 

model will lead to a better understanding of factors impacting persistence in different depart-

ments and programs.  
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6.5.2 Directions for Simulation Research 

The following are more general ideas for research that might be done in the future to explore the 

use of simulation to investigate issues within longer-term learning environments.  

Integrating a Simulation Model into an Actual Learning Environment 

It would be very interesting to explore ways of integrating a simulation model into an actual 

learning environment, much as SimStudent has done. This would probably lead to the simulation 

model getting more sophisticated over time as the actual learning environment produces more 

data. At best there could be a positive feedback loop here, where simulation leads to a better real-

world learning environment which creates data that can lead to a better simulation, and so on. 

This iterative design-use cycle would be highly informative for a simulation, as well as leading 

to immediate real world applications at each iteration. 

Deepening the Cognitive Fidelity of a Simulation Model 

Further, it would be fascinating to investigate different ways of deepening a simulation model’s 

cognitive fidelity, gradually going from medium fidelity to higher fidelity. This would involve an 

increase in the number of attributes and functions in the simulation over time, perhaps informed 

as indicated in my previous point through interleaving the simulation with the use in the real 

world of actual learning systems spinning off from the simulation.  Eventually so many attributes 

and behaviours could be captured that the fidelity becomes high, rather than medium. 

Better Informing Simulations of Other Longer-Term Learning Environments  

It would be interesting to explore better informing simulations of other longer-term learning en-

vironments. The pervasive and ubiquitous nature of technology has enabled many learners to en-

gage in learning beyond the limits of learning institutions. More and more people are using learn-

ing environments such as MOOCs to improve their knowledge. While this makes access to learn-

ing material easy, the completion rates of learners using such platforms is very low and would 

benefit greatly with improved mentoring services within the platform. I would suggest using 

simulation to explore how such mentoring services could be integrated into the platform of inter-

est. This would include informing a simulation model by taking advantage of the large datasets 

that are increasingly becoming available in well used MOOCs. This step would require exploring 

ways of better informing a simulation (beyond what would be done in the immediate future for 
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SimDoc). This would also include finding ways of integrating other scientific results, as I have 

explored in this dissertation work. This future direction would involve accessing a much bigger 

scientific literature.  

Despite the limitations of this research and the need for future research to overcome them, 

this thesis makes a strong case for the importance of simulation in designing learning environ-

ments, especially in longer-term domains. It also confirms the possibility of actually building 

such a simulation of a longer-term learning environment through a case study demonstrating how 

to build a "medium fidelity" simulated doctoral program, the SimDoc model. Specific lessons are 

drawn at every stage of the creation and experimentation with SimDoc that can inform other ad-

vanced learning technology researchers who wish to use simulation in their own research.  
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