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op dinsdag 18 januari 2022 om 13.45 uur

in een bijeenkomst van de universiteit,
De Boelelaan 1105

door

Ali el Hassouni

geboren te Tetouan, Marokko



promotoren: prof.dr. M. Hoogendoorn
prof.dr. A.E. Eiben

copromotor: dr. V. Muhonen

promotiecommissie: prof.dr. P. Lago
prof.dr. G.M. Koole
dr. A.M. Kleiboer
dr. H. van Hoof
prof.dr. B.P. Veldkamp



Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Samenvatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1 Introduction 11
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5 List of Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.6 Extra Publications . . . . . . . . . . . . . . . . . . . . . . . . . 24

I Reinforcement Learning for Personalization 25

2 A Systematic Literature Review 27
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2 Reinforcement Learning for Personalization . . . . . . . . . . . 31
2.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4 A Classification of Personalization Settings . . . . . . . . . . . 47
2.5 A Systematic Literature Review . . . . . . . . . . . . . . . . . . 50
2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.8 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.9 Appendix A. Queries . . . . . . . . . . . . . . . . . . . . . . . . 67
2.10 Tabular View of Data . . . . . . . . . . . . . . . . . . . . . . . 69

3 Personalization: Pooled, Grouped or Separate? 79
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.4 Evaluation Environments . . . . . . . . . . . . . . . . . . . . . 91
3.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 99

i



ii CONTENTS

3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.8 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . 115

II Bridging the Reality Gap Safely 117

4 Bridging the Reality Gap with GANs 119
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.3 Model-based Reinforcement Learning . . . . . . . . . . . . . . . 123
4.4 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . 125
4.5 Using GANs to Generate Sensor Data . . . . . . . . . . . . . . 127
4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5 Structural and Functional Representativity 133
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 142
5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

III End-to-End Personalization 155

6 End-to-End Deep Reinforcement Learning 157
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 165
6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

IV Real-world Applications 175

7 Transferability of Reinforcement Learning Models for Sepsis 177
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.2 Background and Related Work . . . . . . . . . . . . . . . . . . 180
7.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191



CONTENTS iii

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
7.7 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 217
7.8 State Space Features . . . . . . . . . . . . . . . . . . . . . . . . 219

8 pH-RL: A Personalization Architecture to Bring Reinforce-
ment Learning to Health Practice 221
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
8.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
8.3 pH-RL - A Framework for Personalisation with RL . . . . . . . 227
8.4 Real-world Performance Evaluation . . . . . . . . . . . . . . . . 235
8.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
8.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
8.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . 242
8.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

V Conclusion 245

9 Conclusion 247
9.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
9.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . 252
9.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

List of Figures 255

List of Tables 261

SIKS Dissertatiereeks 311





To Mom and Dad,

Malika and Mohamed,

Without whom none of this would have been possible...

“You know nothing of future time,” pronounced Deep Thought, “and yet

in my teeming circuitry I can navigate the infinite delta streams of future

probability and see that there must one day come a computer whose merest

operational parameters I am not worthy to calculate, but which it will be my

fate eventually to design.”

(Douglas Adams, in ”The Hitchhiker’s Guide to the Galaxy”)

1





Acknowledgements

First and foremost, I would like to thank my loving parents for all their support

and encouragement in every choice I have made. Thanks to both of you

for bringing me into this world and for everything you have done for me.

Furthermore, I am very grateful to my sisters for always being there for me.

I want to thank Mark Hoogendoorn, Gusz Eiben, and Evert Haasdijk

for introducing me to the field of Artificial Intelligence, for offering me the

opportunity of pursuing a Ph.D., welcoming me to the group with open arms

and helping me grow both as a person and a researcher.

Thank you, Mark, for being a fantastic mentor and supervisor, always

being available, supportive, and helpful, giving me the freedom to pursue many

exciting projects, and having faith in me throughout the time we have known

each other. Also, thanks for teaching me how to bake a cheesecake!

Furthermore, I am profoundly grateful to Gusz for the supervision throughout

the last four years, for the great advice, ingenious ideas and continuous feedback.

My sincere thanks to Vesa Muhonen for always being there for me, for the

detailed feedback, for the support and guidance, for being a great listener, for

all the fun meetings, and above all, for being a nice human being.

My research would have been impossible without Mobiquity Inc. Thanks

to everyone from this amazing company, especially Mark de Blaauw, Lennart

Bootsman, Alissa de Bruijn, Jeroen van den Hoven, Nesko Jancic, Engy Mazika,

Vesa Muhonen, Dennis Timmers, and every single member of the Data Science

and Analytics team. It has been a blast! Many thanks to Paul van Raak and

Lionell Schuring for helping out with designing the cover of this thesis.

3



Thanks to Martijn van Otterlo for the collaborations, inspiration, conversa-

tions, guidance, and thorough feedback. Thanks to Eduardo Barbaro and Evert

Haasdijk for all the support and help during the first year of my Ph.D.

Many thanks to all current and former Computational Intelligence and

Quantitative Data Analytics members at the Vrije Universiteit Amsterdam for

being great colleagues, for all the group outings, lunches, dinners, and movie

nights. Thank you, Frank Bennis, Ward van Breda, Matteo De Carlo, Tarik

Dam, Fuda van Diggelen, Eliseo Ferrante, Lucas Fleuren, Vincent François, Eoin

Grua, Jacqueline Heinerman, Floris den Hengst, Julien Hubert, Milan Jelisavčić,
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Summary

Reinforcement learning has shown great potential in many applications in recent

years. However, many of these applications rely on simulators such as games to

obtain significant amounts of interactions at a relatively low cost. Data suitable

for sequential decision-making is hard to obtain in the health domain, while

simulators are complicated to build. In this thesis, we investigated how we

can use reinforcement learning for personalization in e-Health. We explored

the state-of-the-art applications of reinforcement learning for personalization

through a systematic literature review. We looked at related work in the

health domain and found that reinforcement learning is an appropriate learning

paradigm for personalization in general. Furthermore, we observed a lack of

simulation environments and standardized datasets for the health domain. To

mitigate this limitation, we developed an open-source simulation environment

for e-Health problems. Using this simulator as a testbed, we proposed a cluster-

based reinforcement learning approach to personalize e-Health interventions.

Our approach finds similarities in behaviors and learns personalized policies

optimized for long-term health behaviors. To bridge the gap towards real-

life applications, we employed generative models (e.g., generative adversarial

networks) to synthesize low-level sensor data we can obtain from mobile devices

in real life. To evaluate the generated data’s representativity for sequential

decision-making problems, we proposed a framework consisting of two properties,

the structural and functional representativity properties. Using our realistic

simulator, we employed deep reinforcement learning to demonstrate that end-to-

end learning on raw sensor data can improve performance. Finally, we utilized
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reinforcement learning for personalization for several real-world problems. We

applied deep reinforcement learning for the hemodynamic optimization of

patients with Sepsis at the Intensive Care Unit. Furthermore, we applied our

proposed cluster-based reinforcement learning approach for personalization to

improve adherence to internet-based interventions tested in a real-life experiment

using a mobile application for mental health.
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Samenvatting

Reinforcement Learning (RL) heeft de afgelopen jaren aangetoond enorme

potentie te hebben in veel verschillende toepassingen. Voor de ontwikkeling

van RL modellen zijn echter simulatoren nodig om aanzienlijke hoeveelheden

interacties te verkrijgen tegen relatief lage kosten. Gegevens die geschikt zijn

voor sequentiële besluitvorming zijn moeilijk te verkrijgen in het gezondheids-

domein, terwijl simulatoren ingewikkeld zijn om te bouwen. In dit proefschrift

hebben we onderzocht hoe we RL kunnen gebruiken voor personalisatie in e-

Health. We hebben de state-of-the-art toepassingen van RL voor personalisatie

onderzocht door middel van een systematische literatuurstudie. We keken naar

gerelateerd werk gekeken in het gezondheidsdomein en ontdekten dat RL een

geschikt leerparadigma is voor personalisatie in het algemeen. Verder zagen

we een gebrek aan simulatie omgevingen en gestandaardiseerde datasets voor

het gezondheidsdomein. Om deze beperking het hoofd te bieden, hebben we

we een open-source simulatieomgeving ontwikkeld voor e-Health problemen.

Door het gebruik van deze simulator, hebben we een cluster-gebaseerde be-

nadering van RL ontwikkeld om e-gezondheidsinterventies te personaliseren.

Onze aanpak vindt patronen in gedrag en leert gepersonaliseerd beleid dat is

geoptimaliseerd voor gezondheidswinst op de lange termijn. Om de kloof naar

real-life toepassingen te overbruggen, hebben we generatieve modellen (bijv.

Generative Adversarial Networks) gebruikt om sensorgegevens op gedetailleerd

niveau te synthetiseren die in het echte leven van mobiele apparaten is te

verkrijgen. Om de generaliseerbaarheid van de gesimuleerde data gegevens voor

sequentiële besluitvorming problemen te evalueren, hebben we een framework

7



voorgesteld dat bestaat uit twee eigenschappen, de structurele en functionele

representativiteit eigenschappen. Met behulp van onze realistische simulator

en Deep RL hebben we aangetoond dat end-to-end leren van onbewerkte sen-

sorgegevens de prestaties kan verbeteren. Ten slotte hebben we RL gebruikt

voor personalisatie voor verschillende problemen in de medische wereld. Op

de Intensive Care hebben we Deep RL toegepast voor de hemodynamische

optimalisatie van patiënten met sepsis. Verder hebben we onze voorgestelde

cluster-gebaseerde leeraanpak voor RL toegepast voor personalisatie om de

therapietrouw te verbeteren van op internet gebaseerde interventies die zijn

getest in een real-life experiment met behulp van een mobiele applicatie voor

geestelijke gezondheid.
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Thomas A. Edison - “The doctor of the future will give no

medication, but will interest his patients in the care of the human

frame, diet and in the cause and prevention of disease.”





1
Introduction

Preamble. Imagine a healthcare system without computers that continuously

monitor patients and aid caregivers. Not so long ago, this was the case. Nowa-

days, computers form an integral part of healthcare. Now imagine a situation

where these computers are not solely passively monitoring patients and alerting

caregivers but also actively thinking along with the humans to provide the best

possible personalized care. The best caregiver has limited time and can get

overwhelmed by the wealth of data; Artificial Intelligence-driven computers, on

the opposite thrive on lots of data, are tireless, and are easy to produce. At the

time of writing, the current COVID-19 pandemic puts our healthcare systems

to the test. Machines that can learn from the ever-increasing amounts of data

will offer solutions that will improve our healthcare systems and make them

future-proof. This thesis aims to contribute to the accomplishment of this goal.
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Chapter 1. Introduction

1.1 Motivation

In healthcare, caregivers are often involved with their patients’ well-being over a

sustained period. Providing highly personalized care improves the effectiveness

of health interventions [6; 22; 126; 232; 233]. In practice, however, this approach

is not always scalable due to the amount of time required to provide highly

personalized care, and the massive amounts of data caregivers have to consider.

The vast amounts of available data combined with smart algorithms offer

excellent opportunities to improve the state of our healthcare systems and

the level of personalization. E-Health is the subarea of healthcare, where

one relies on learning machines (e.g., computers) to automate processes. If

a particular decision-making process regarding patient care must be fully or

partially automated, then solutions equipped to solve sequential decision-making

problems could be considered as an appropriate approach to use.

Reinforcement learning (RL) has proven to be the algorithm of choice for

many sequential decision-making problems. The RL community witnessed

remarkable progress in areas that rely on artificial or well-defined environments

with perfect knowledge about the states and rewards, such as video games

or board games [36; 66; 224; 350; 362]. Although RL is getting a foot in

the door regarding real-world applications, many challenges inherent to real-

world scenarios remain prevalent. The main challenges are caused by the large

disparity between the current experimental setup in research primarily focused

on games or benchmark environments and ill-defined realities encountered in

real-life [80; 143].

For many real-world applications, training needs to be performed off-line

on fixed data obtained from an existing system controlled by a behavior policy.

The behavior policy can either be a human or an algorithmic controller. Biases

in the data are inherited by the policy, resulting in a sub-optimal policy and

overfitting. When learning is performed online on the whole system, other types

of challenges arise. For instance, unlike some benchmark environments used in

research, real-world systems that interact with humans cannot be parallelized

to generate more data and perform more exploration.

12



1.1. Motivation

Furthermore, different from benchmarks used in research, real-world systems

do not have a separate evaluation environment. The training data comes directly

from the system, and exploration can be very costly and sometimes undesirable

in the healthcare domain. As a result, the system has to achieve a good enough

performance level quickly using a relatively small dataset while keeping safety

concerns into account. As a consequence, the amount of exploration is limited,

which leads to a low-variance dataset.

Ensuring the safety and reliability of automated systems in the real world

is a significant challenge. Safety applies to both the system itself and the

environment it is influencing. This challenge plays an essential role during

exploration and operation time (e.g., when the policy is possibly frozen and

used). Fall-back policies designed by humans offer a solution but introduce the

risk of bias creeping into the system. Also related to the humans involved in

the loop, the policies’ explainability is often a requirement. Understanding the

intent of a policy and the implications of a selected action in a particular state is

essential. Henceforth, a trade-off between model complexity and explainability

is required.

In many real-world problems, the state and action spaces are intractable

and continuous [80]. Consider a health-related scenario where the state space

consists of sensors measuring a person’s health state and an action space with

hundreds of medications that doctors prescribe [238]. These large spaces usually

cause many problems for traditional RL algorithms [183]. Most real-world

problems that require RL as a solution can be considered partially observable.

For instance, in the health domain, we cannot measure a person’s physical state

entirely. Non-stationarity and stochasticity are what appear to the observer

of the system due to the partial observabilities (cf.[80]). Compared to many

artificial RL environments in research, real-world systems are highly stochastic

and noisy. This phenomenon is also called the reality gap. Incorporating history

into the state space and using recurrent neural networks can handle partial

observabilities in RL [80]. Like the complexity of the state and action spaces,

real-world problems can have multi-dimensional rewards functions. In many

environments used in research, we clearly define a global reward function, while

13



Chapter 1. Introduction

in real-world situations, it is unclear what needs to be optimized. Often the

proper reward function consists of multiple sub-goals.

Other aspects that we usually encounter during run-time in production are

related to delays in the systems and the ability to perform inference in real-time.

Delays in incoming (sensor) data needed for the system to run and the feedback

from the environment needed to define the reward can cause challenges during

learning (cf. [80]). Although we may not encounter these problems in many

artificial environments for RL, a system’s frequency in the real world dictates

inference speed. Policy inference should, in many real-world scenarios, be made

in real-time. Running inference slower than real-time for planning purposes is

not allowed while running inference faster than real-time is impossible because

one must wait on the system’s sensor data.

Work has been done to tackle most of these challenges separately, but

little work is available where all these challenges are tackled in an end-to-end

real-world RL system in healthcare.

14



1.2. Research Questions

1.2 Research Questions

This thesis aims to explore the current state-of-the-art concerning applications

of RL for personalization. Furthermore, we propose methods and algorithms to

improve the learning efficiency for e-Health interventions while improving these

interventions’ effectiveness through novel personalization methods. Finally, we

aim at tackling the challenges encountered when deploying RL applications in

real-life scenarios. Consequently, the following research questions arose.

1. How can RL be used for personalization in e-Health?

2. How can we improve the learning efficiency and efficacy of (deep) RL

methods for e-Health applications?

3. How can we ameliorate the lack of appropriate and sufficient data for

sequential decision-making problems?

4. How applicable and accurate are RL methods when applied in real-world

health scenarios?

1.3 Scope

This thesis consists of a collection of papers written over the course of four

years. We present each paper in a separate chapter. A few papers underwent

minor changes, such as image or table resizing. We define four main topics that

together shape the scope of this thesis, namely: 1) RL for personalization, 2)

data availability, simulation, and the reality gap, 3) evaluation: representativity

and transferability, and 4) real-world applications. In the remainder of this

section, we shed light on each topic and discuss each paper’s contribution to

the topic at hand. The first topic answers research questions 1 and 2. Next,

the second topic relates to research questions 2 and 3. Furthermore, the third

topic answers research question 3 and part of research question 4. Finally, the

fourth topic answers research question 4.
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Chapter 1. Introduction

1.3.1 Reinforcement Learning for Personalization

We performed a systematic literature review study published in paper [IV].

This paper develops a framework of personalization in RL for several domains,

including the health domain, and demonstrates trends and limitations in the

current state-of-the-art. Using this framework of personalization in RL, we

reviewed settings, solutions, and evaluation strategies. This topic answers our

first two research questions. These questions are related to how we can use RL

for personalization in e-Health and improve the learning efficiency and efficacy

of these methods for e-Health applications.

We proposed a methodological contribution in papers [I and VI] in the form

of an algorithm that combines clustering techniques with RL. We demonstrated

with empirical evidence how clustering techniques combined with RL (either

on a group level or individual level) differ from the one-fits-all approach. Fur-

thermore, we looked into the influence of different algorithms on the learning

efficiency (speed of learning) and learning efficacy (level of personalization). We

demonstrated that our proposed approach leads to better learning efficiency and

efficacy than existing methods while introducing a novel approach for clustering

based on traces of experiences using dynamic time warping.

To make our proposed methods easier to apply in real-world situations, we

addressed limitations from paper [I] and included raw sensor data to be part of

the state from which the algorithms will learn. The state representation in our

initial approach (e.g., paper [I]) was not realistic for the health setting at hand

(i.e., having perfect knowledge of the states), and we, therefore, opted for a

more realistic setting where we do not know the specific activities to be included

as a feature in the state representation. Subsequently, we adapted deep RL

algorithms, learned directly from raw sensor data, and investigated the speed

of learning and the level of personalization for varying state representations

published in paper [III].
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1.3.2 Data Availability, Simulation, and the Reality Gap

Some of the main challenges that make RL applications for real-world settings

complicated are related to data availability. In many off-line training settings,

we learn policies from fixed data generated by an original behavior policy. The

aim here is to improve the performance compared to the behavior policy. The

performance of the new policy is dependent on the data obtained from the

original policy.

Another challenge encountered while learning on real-world systems is related

to the cost at which we can obtain the data and perform exploration. Unlike

artificial environments, interactions with the real world do not come for free,

and more importantly, exploratory actions must perform well. Little work has

been done to develop RL simulation environments and benchmarks for the

e-Health domain. Furthermore, little work has been done to apply generative

modeling to mitigate the data availability challenges in RL problems by fully

generating sequences of states, actions, and rewards.

For the e-Health domain, these challenges and other restrictions, such

as safety and privacy, make it very hard to apply RL. To make the step

towards real-world applications easy, we opted to develop a realistic multi-

agent simulation environment for the e-Health domain presented in paper [I].

We use this environment as a test-bed for algorithms such as RL to solve

decision-making problems.

As a next step to make the simulator more realistic, we used generative

adversarial networks (GANs) to synthesize realistic low-level sensor data, as

presented in paper [II]. This type of data can usually be obtained from mobile

devices. Finally, we introduced a methodology, published as paper [V], for

utilizing generative models to synthesize data useful for sequential decision-

making problems trained on small samples of original data and an evaluation

framework for the generated data’s structural and functional representativity.
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1.3.3 Evaluation: Representativity and Transferability

We proposed a framework with two properties to evaluate generated data’s rep-

resentativity for sequential decision-making problems: structural and functional

representativity. The structural representativity property investigates whether

the generated data follows the distribution of the original data. The functional

representativity property investigates if there is a difference between evaluating

policies for generated and real-life data. Furthermore, we demonstrate that gen-

erative models can generate representative data for RL, starting with a relatively

small amount of data points. The main goal here is to propose methodologies

to generate sequential data for RL based on small amounts of data and to do so

in a manner whereby the generated data follows the representativity properties.

Furthermore, we aimed to demonstrate that our developed policies are

trained using representative datasets and transferred between different pop-

ulations of patients effectively. To investigate the validity of the assumption

that deep RL models can generalize across different patient populations, we

tested these models’ transferability in clinical practice. A model was devel-

oped for hemodynamic optimization in sepsis using the MIMIC intensive care

database from the USA. This model was then transferred to the European

AmsterdamUMCdb intensive care database.

1.3.4 Real-world Applications

Finally, we apply our proposed methods in real-world situations. In the first

use case, we developed deep RL models for optimal bedside hemodynamic

management. We demonstrate the transferability between populations from the

USA and Europe. This approach tests the assumption of model generalizability

across different patient populations. Furthermore, we propose and test new

methods for deep policy inspection in clinical practice integrating expert domain

knowledge, which contributes to deep RL models’ safety and reliability. In the

second use-case, we propose an architecture design for personalization using

RL in e-Health. We utilize the MoodBuster platform for e-Health studies

and integrate our RL for personalization algorithms in a mobile application
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to demonstrate the feasibility of our methods to be used for mental e-Health

applications as part of a clinical trial with depressed patients.

1.4 Contributions

The main contributions to the field of Artificial Intelligence presented in this

thesis are:

1. Insight into the current state of the art: A framework of person-

alization settings, solutions, and evaluation strategies in RL and health

published as a systematic literature review to demonstrate trends and

limitations in the current state-of-the-art. This contribution relates to all

four topics and helps with answering parts of all four research questions.

2. Developing a realistic e-Health benchmark simulation environ-

ment for RL: Design and develop an e-Health benchmark simulation

environment for RL containing generative models for low-level sensor data

to help ameliorate the reality gap problem. This contribution relates to

RL’s topics for personalization and data availability, simulation, and the

reality gap and answers research question 3.

3. Developing more data-efficient RL algorithms for personaliza-

tion: Design a methodological approach for personalization with RL

using clustering techniques to exploit within-group similarities based on

behavioral trajectories to increase learning speed and deliver better poli-

cies for personalization. This contribution relates to the topic of RL for

personalization and answers research questions 1 and 2.

4. Addressing data availability and bridging the reality gap for RL:

Designing a framework and methodological approach for the generation

of sequential data suitable for sequential decision problems with a lack of

available data and a framework to evaluate the structural and functional

representativity of the generated sequences and the learned policies. This

contribution relates to the main topics: 1) data availability, simulation,

19



Chapter 1. Introduction

and the reality gap, and 2) evaluation: representativity and transferability

and helps answering research question 3.

5. Real-world applications: Obtaining empirical evidence for the feasibil-

ity of personalization using RL through various applications, including

preparations for a randomized controlled trial of internet-based interven-

tions and the development of RL policies for Sepsis treatments for intensive

care. This contribution relates to the topic of real-world applications and

answers research question 4.
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1.5 List of Papers

During four years, I conducted research that resulted in five conference papers

and three journal papers. This thesis is constructed using the contents of these

eight academic papers. Furthermore, I contributed to two extra conference

publications. Below all papers are listed, along with a detailed summary of my

contribution to each paper.

Topic 2018 2019 2020

RL for Personalization [I] [III] [IV, VI]

Simulation and the reality gap [I, II] [V, VI]

Evaluation: Representativity,

Transferability

[V, VII]

Real-world applications [VII,VIII]

[I] El Hassouni, A., Hoogendoorn M., van Otterlo M., Barbaro E. (2018).

Personalization of Health Interventions Using Cluster-Based Reinforcement

Learning. In: Miller T., Oren N., Sakurai Y., Noda I., Savarimuthu B., Cao

Son T. (eds) PRIMA 2018: Principles and Practice of Multi-Agent Systems.

PRIMA 2018. Lecture Notes in Computer Science, vol 11224, pp. 467–475.

Springer, Cham.

I identified the lack of simulation environments for e-Health problems in

the literature. Next, I designed and programmed an open-source simulation

environment for e-Health from scratch. Furthermore, I implemented and carried

out experiments using RL and clustering techniques. Moreover, I conducted

the analysis and wrote a significant amount of the paper.

[II] El Hassouni, A., Hoogendoorn M., Muhonen V. (2018). Using Generative

Adversarial Networks to Develop a Realistic Human Behavior Simulator. In:

Miller T., Oren N., Sakurai Y., Noda I., Savarimuthu B., Cao Son T. (eds)

PRIMA 2018: Principles and Practice of Multi-Agent Systems. PRIMA 2018.

Lecture Notes in Computer Science, vol 11224, pp. 476–483. Springer, Cham.
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I proposed enhancing the simulation environment with generative models for

low-level sensor data to bridge the reality gap. Then, I designed, programmed,

and trained the generative adversarial network. Next, I implemented and carried

out experiments to obtain accurate models. Furthermore, I incorporated the

models into the simulation environment. Moreover, I conducted the analysis

and wrote most of the paper.

[III] El Hassouni, A., M. Hoogendoorn, A. E. Eiben, M. van Otterlo and V.

Muhonen (2019), End-to-end Personalization of Digital Health Interventions

using Raw Sensor Data with Deep Reinforcement Learning : A comparative

study in digital health interventions for behavior change. In: 2019

IEEE/WIC/ACM International Conference on Web Intelligence (WI),

Thessaloniki, Greece, 2019, pp. 258-264. IEEE.

I proposed applying deep RL on the raw sensor data for end-to-end personal-

ization. Then, I designed and programmed the adjustments and enhancements

to the simulation environment. Next, I implemented the deep RL algorithms

and carried out the experiments. Moreover, I conducted the analysis and wrote

most of the paper.

[IV] Den Hengst, F., Grua, E.M., el Hassouni, A. and Hoogendoorn, M. (2020).

Reinforcement Learning for Personalization: A Systematic Literature Review.

In: Data Science, pp. 1-41. IOS Press.

I contributed equally to the study design and the paper screening process.

Furthermore, I helped with data analysis and wrote several sections of the

paper.

[V] El Hassouni, A., Hoogendoorn M., Eiben A.E., Muhonen V. (2020).

Structural and Functional Representativity of GANs for Data Generation in

Sequential Decision Making. In: Nicosia G. et al. (eds) Machine Learning,

Optimization, and Data Science. LOD 2020. Lecture Notes in Computer

Science, vol 12565, pp. 458-471. Springer, Cham. Nominated for Best

Paper Award.
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I proposed the idea of using generative models to synthesize sequential data

for RL problems. I designed, coded, and implemented the evaluation approach

along with the generative model. Furthermore, I carried out the experiments.

Moreover, I conducted the analysis and wrote most of the text.

[VI] El Hassouni, A., M. Hoogendoorn, M. van Otterlo, A. E. Eiben, V.

Muhonen and E. Barbaro (2020). A clustering-based reinforcement learning

approach for tailored personalization of e-Health interventions. Under review

(journal).

As an extended version of paper [I], I proposed, designed, and programmed

an additional e-Health use-case from literature to compare with our simulation

environment. Furthermore, I implemented and carried out experiments using

RL and clustering techniques. Moreover, I conducted the analysis and wrote a

significant amount of the paper.

[VII] Roggeveen, L., El Hassouni, A., Ahrendt, J., Guo, T., Fleuren, L.,

Thoral, P., Girbes, A., M. Hoogendoorn, Elbers, P (2020). Transatlantic

transferability of a new reinforcement learning model for optimizing

hemodynamic treatment for critically ill patients with sepsis. In: Artificial

Intelligence in Medicine, vol 112, pp. 102003. Elsevier.

I contributed during the idea forming phase. Furthermore, I helped with

RL’s technical parts and performed a thorough evaluation of the implementation.

[VIII] El Hassouni, A., M. Hoogendoorn, M. Ciharova, A. Kleiboer, K.

Amarti, V. Muhonen, H. Riper and A. E. Eiben (2021). pH-RL: A

personalization architecture to bring reinforcement learning to health practice.

In: Nicosia G. et al. (eds) Machine Learning, Optimization, and Data Science.

LOD 2021. In press.

I proposed the idea of integrating our proposed methods for personalization

into a mental health mobile application. I designed and programmed an open-

source RL personalization architecture for e-Health mobile applications from
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scratch. Next, I integrated the software with the MoodBuster application.

Furthermore, I implemented and carried out pre-clinical trial experiments with

human participants using RL and clustering techniques. Moreover, I oversaw the

experiments and monitored the production system during this period. Finally,

I conducted the analysis and wrote the paper.

1.6 Extra Publications

[IX] Hoogendoorn, M., A. el Hassouni, K. Mok, M. Ghassemi and P. Szolovits

(2016). Prediction using patient comparison vs. modeling: a case study for

mortality prediction. In: 38th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC), Orlando, FL, 2016, pp.

2464-2467. IEEE.

I programmed and implemented a significant amount of the features in the

feature engineering stage. Furthermore, I conducted extensive experiments with

clustering techniques and machine learning models. Finally, I conducted the

analysis and contributed to writing the paper.

[X] Zonta A., El Hassouni, A., Romero D.W., Tomczak J.M. (2020) Generative

Fourier-Based Auto-encoders: Preliminary Results. In: Nicosia G. et al. (eds)

Machine Learning, Optimization, and Data Science. LOD 2020. Lecture Notes

in Computer Science, vol 12566, pp. 12-15. Springer, Cham.

I contributed during the idea forming phase. Furthermore, I helped with the

technical part by programming an evaluation metric. Moreover, I contributed

to writing the paper.

[XI] Lutscher D., El Hassouni, A., Stol M., Hoogendoorn M. (2021) Mixing

Consistent Deep Clustering. In: Nicosia G. et al. (eds) Machine Learning,

Optimization, and Data Science. LOD 2021. In press.

I contributed during the idea forming phase. Furthermore, I helped with the

technical parts. Moreover, I contributed to writing and proofreading the paper.
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2
A Systematic Literature Review

Chapter 2 was published as:

den Hengst, F., Grua, E.M., el Hassouni, A. and Hoogendoorn, M. (2020). Reinforcement
Learning for Personalization: A Systematic Literature Review. In: Data Science, pp. 1-41.
IOS Press.
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Chapter 2. A Systematic Literature Review

Abstract - The major application areas of reinforcement learning (RL)

have traditionally been game playing and continuous control. In recent years,

however, RL has been increasingly applied in systems that interact with humans.

RL can personalize digital systems to make them more relevant to individual

users. Challenges in personalization settings may be different from challenges

found in traditional application areas of RL. An overview of work that uses RL

for personalization, however, is lacking. In this work, we introduce a framework

of personalization settings and use it in a systematic literature review. Besides

setting, we review solutions and evaluation strategies. Results show that RL has

been increasingly applied to personalization problems and realistic evaluations

have become more prevalent. RL has become sufficiently robust to apply in

contexts that involve humans and the field as a whole is growing. However,

it seems not to be maturing: the ratios of studies that include a comparison

or a realistic evaluation are not showing upward trends and the vast majority

of algorithms are used only once. This review can be used to find related

work across domains, provides insights into the state of the field and identifies

opportunities for future work.

2.1 Introduction

For several decades, both academia and commerce have sought to develop

tailored products and services at low cost in various application domains. These

reach far and wide, including medicine [109; 9], human-computer interaction

[197; 97], product, news, music and video recommendations [273; 274; 357]

and even manufacturing [253; 61]. When products and services are adapted

to individual tastes, they become more appealing, desirable, informative, e.g.

relevant to the intended user than one-size-fits all alternatives. Such adaptation

is referred to as personalization [89].

Digital systems enable personalization on a grand scale. The key enabler is

data. While the software on these systems is identical for all users, the behavior

of these systems can be tailored based on experiences with individual users. For
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example, Netflix’s1 digital video delivery mechanism includes tracking of views

and ratings. These ease the gratification of diverse entertainment needs as they

enable Netflix to offer instantaneous personalized content recommendations. The

ability to adapt system behavior to individual tastes is becoming increasingly

valuable as digital systems permeate our society.

Recently, reinforcement learning (RL) has been attracting substantial at-

tention as an elegant paradigm for personalization based on data. For any

particular environment or user state, this technique strives to determine the

sequence of actions to maximize a reward. These actions are not necessarily

selected to yield the highest reward now, but are typically selected to achieve a

high reward in the long term. Returning to the Netflix example, the company

may not be interested in having a user watch a single recommended video

instantly, but rather aim for users to prolong their subscription after having

enjoyed many recommended videos. Besides the focus on long-term goals in

RL, rewards can be formulated in terms of user feedback so that no explicit

definition of desired behavior is required [20; 124].

RL has seen successful applications to personalization in a wide variety of

domains. Some of the earliest work, such as [302], [300] and [380] focused on web

services. More recently, [176] showed that adding personalization to an existing

online news recommendation engine increased click-through rates by 12.5%.

Applications are not limited to web services, however. As an example from the

health domain, [384] achieve optimal per-patient treatment plans to address

advanced metastatic stage IIIB/IV non-small cell lung cancer in simulation.

They state that ‘there is significant potential of the proposed methodology for

developing personalized treatment strategies in other cancers, in cystic fibrosis,

and in other life-threatening diseases’. An early example of tailoring intelligent

tutor behavior using RL can be found in [209]. A more recent example in

this domain, [115], compared the effect of personalized and non-personalized

affective feedback in language learning with a social robot for children and

found that personalization significantly impacts psychological valence.

Although the aforementioned applications span various domains, they are

1https://www.netflix.com
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similar in solution: they all use traits of users to achieve personalization, and

all rely on implicit feedback from users. Furthermore, the use of RL in contexts

that involve humans poses challenges unique to this setting. In traditional

RL subfields such as game-playing and robotics, for example, simulators can

be used for rapid prototyping and in-silico benchmarks are well established

[25; 36; 79; 155]. Contexts with humans, however, may be much harder to

simulate and the deployment of autonomous agents in these contexts may come

with different concerns regarding for example safety. When using RL for a

personalization problem, similar issues may arise across different application

domains. An overview of RL for personalization across domains, however, is

lacking. We believe this is not to be attributed to fundamental differences in

setting, solution or methodology, but stems from application domains working

in isolation for cultural and historical reasons.

This paper provides an overview and categorization of RL applications for

personalization across a variety of application domains. It thus aids researchers

and practictioners in identifying related work relevant to a specific personaliza-

tion setting, promotes the understanding of how RL is used for personalization

and identifies challenges across domains. We first provide a brief introduction

of the RL framework and formally introduce how it can be used for person-

alization. We then present a framework to classify personalization settings

by. The purpose of this framework is for researchers with a specific setting to

identify relevant related work across domains. We then use this framework in

a systematic literature review (SLR). We investigate in which settings RL is

used, which solutions are common and how they are evaluated: Section 2.5

details the SLR protocol, results and analysis are described in Section 6.4. All

data collected has been made available digitally [72]. Finally, we conclude with

current trends challenges in Section 6.5.
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Agent

Environment

action
at

reward
rt

state
st

t t+ 1

Figure 2.1: The agent-environment in RL for personaliza-
tion from [321].

2.2 Reinforcement Learning for Personalization

RL considers problems in the framework of Markov decision processes or MDPs.

In this framework, an agent collects rewards over time by performing actions

in an environment as depicted in 2.1. The goal of the agent is to maximize

the total amount of collected rewards over time. In this section, we formally

introduce the core concepts of MDPs and RL and include some strategies to

personalization without aiming to provide an in depth introduction to RL.

Following [321], we consider the related multi-armed and contextual bandit

problems as special cases of the full RL problem where actions do not affect the

environment and where observations of the environment are absent or present

respectively. We refer the reader to [321], [362] and [323] for a full introduction.

An MDP is defined as a tuple 〈S,A, T,R, γ〉 where S ∈ {s1, . . . , sn} is a finite

set of states, A ∈ {a1, . . . , am} a finite set of system actions, T : S×A×S → [0, 1]

a probabilistic transition function, R : S×A→ R a reward function and γ ∈ [0, 1]

a factor to discount future rewards. At each time step t, the system is confronted

with some state st, performs some action at which yields a reward rt+1 : R(st, at)

and some state st+1 following the probability distribution T (st, at). A series

of these states, actions and rewards from the onset to some terminal state

T is called a trajectory tr : 〈st0 , at0 , rt1 , st1 , . . . , sT−1, aT−1, rT , sT 〉. These

trajectories typically contain the interaction histories for users with the system.

A single trajectory can describe a single session of the user interacting with the

system or can contain many different separate sessions. Multiple trajectories

31



Chapter 2. A Systematic Literature Review

may be available in a data set D ∈ {tr1, . . . , tr`}. The goal is to find a policy

π∗ out of all Π : S × A → [0, 1] that maximizes the sum of future rewards at

any t, given an end time T :

Gt :

T−1∑
k=t

γk−trk+1 (2.1)

If some expectation Eπ over the future reward for some policy π can be formu-

lated, a value can be assigned to some state s given that policy:

Vπ(s) = Eπ[Gt|st = s] (2.2)

Similarly, a value can be assigned to an action a in a state s:

Qπ(s, a) = Eπ[Gt|st = s, at = a] (2.3)

Now the optimal policy π∗ should satisfy ∀s ∈ S,∀π ∈ Π : Vπ∗(s) ≥ Vπ(s) and

∀s ∈ S, a ∈ A,∀π ∈ Π : Qπ∗(s, a) ≥ Qπ(s, a). Assuming a suitable Eπ∗ [G], π∗

consists of selecting the action that is expected to yield the highest sum of

rewards:

π∗(s) = arg max
a

Qπ∗(s, a),∀s ∈ S, a ∈ A (2.4)

With these definitions in place, we now turn to methods of finding π∗. Such

methods can be categorized by considering which elements of the MDP are

known. Generally, S, A and γ are determined upfront and known. T and R,

on the other hand, may or may not be known. If they are both known, the

expectation Eπ[G] is directly available and a corresponding π∗ can be found

analytically. In some settings, however, T and R may be unknown and π∗ must

be found empirically. This can be done by estimating T , R, V , Q and finally π∗

or a combination thereof using data set D. Thus, if we include approximations

in Eq. (2.4), we get:

π̂∗(s)|D = arg max
a

Q̂π̂∗(s, a)|D,∀s ∈ S, a ∈ A (2.5)

32



2.2. Reinforcement Learning for Personalization

As D may lack the required trajectories for a reasonable Eπ̂∗ [G] and may even

be empty initially, exploratory actions can be selected to enrich D. Such actions

need not follow π̂∗ as in Eq. (2.5) but may be selected through some other

mechanism such as sampling from the full action set A randomly.

Having introduced RL briefly, we continue by exploring some strategies in

applying this framework to the problem of personalizing systems. We return

to our earlier example of a video recommendation task and consider a set

of n users U ∈ {u1, . . . , un}. A first way to adapt software systems to an

individual users’ needs is to define a separate environment, corresponding

MDP and RL agent for each user. The overall goal becomes to find a set of

optimal policies {π∗1 , . . . , π∗n} for a set of environments formalized as MDPs

M : {M1 : 〈S1, A1, T1, R1, γ1〉, . . . ,Mn : 〈Sn, An, Tn, Rn, γn〉}. In the case

of approximations as in Eq. (2.5), these are made per MDP based on data

set Di with trajectories only involving that environment. In the running

example, videos would be recommended to a user based on previous video

recommendations and selections of that particular user. The benefit of isolated

MDPs is that differences between Ti and Tj or between Ri and Rj for MDPs

Mi 6= Mj are handled naturally, e.g. such differences do not make Eπi
[G]

incorrect. On the other hand, similarities between Ti, Tj and Ri, Rj cannot

be used. For example, consider a video recommendation task with Sij =

{morning, afternoon, night}. If two users ui 6= uj are both using a video

service in the morning state, they may both like to watch a breakfast news

broadcast whereas in the night state they may both prefer a talk show. Learning

such patterns for each environment individually may require a substantial

number of trajectories and may be infeasible in some settings, such as those

where users cannot be identified across trajectories or those where each user is

expected to contribute only one trajectory to Di.

An alternative approach is to define is a single agent and MDP with user-

specific information in the state space S and learn a single π∗ for all users

[75]. In some settings, users can be described using a function that returns

a vector representation of the l features that characterize a user φ : U →
〈φ1(U), . . . , φl(U)〉. Such a vector could for example contain age, favourite
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genre and viewing history. If two users uj 6= ui have both enjoyed the first

“Lord of the Rings” movie and viewer uj has followed up on a recommendation of

its sequel by the system then this sequel may be a suitable recommendation for

the other viewer ui as well. Generally, this approach can be valuable when it is

unclear which elements of trajectories of users uj should be used in determining

π∗i . Conceptually, finding π∗ now includes determining ui’s preference for actions

given a state and determining the relationship between user preferences. This

approach should therefore be able to overcome the negative transfer problem

described below when enough trajectories are available. The growth in state

space size, on the other hand, may require an exorbitant number of trajectories

in D due to the curse of dimensionality [28]. Thus, φ is to be carefully designed

or dimensionality reduction techniques are to be used in approaches following

this strategy. As a closing remark on this approach to personalization, we

note that the distinction between task-related and user-specific information is

somewhat artificial as S may already contain φ(U) in many practical settings

and we stress that the distinction is made for illustrative purposes here.

A third category of approaches can be considered as a middle ground

between learning a single π∗ and learning a π∗i per user. It is motivated by

the idea that users and corresponding environments may be similar. If this is

the case, then trajectories Dj from some similar environment Mj 6= Mi may

prove useful in estimating Eπi
[G]. One such an approach is based on clustering

[209; 324; 121; 88]. Formally, it requires q ≤ n groups G ∈ {g1, . . . , gq} and a

mapping function Φ : M → G. In practice, this mapping function is typically

defined on the level of users U or the feature representation φ(U). An RL agent

is defined for every gp and interacts with all environments Mi,Mj ,Φ(Mi) =

Φ(Mj) = gp. Trajectories in Di and Dj are concatenated or pooled to form

a single Dp which is used to approximate Eπ̂p [G] for all Mi,Mj . A combined

Dp may be orders of magnitude bigger than an isolated Di, which may result

in a much better approximation Eπ̂p
[G]|Dp and a resulting π̂∗p(s)|Dp that

yields a higher reward in all environments. For example, users of the video

recommendation service may be clustered by age and users in the ‘infant’ cluster

may generally prefer children’s movies over history documentaries. A related
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approach similarly uses trajectories Dj of other environments Mj 6= Mi but still

aims to find environment-specific π∗i . Trajectories in Dj are weighted during

estimation of Eπi [G] using some weighting scheme. This can be understood as

a generalization of the pooling approach. First, recall that Φ : M → G for the

pooling approach and note that it can be rewritten to Φ : M ×M → {0, 1}.
The weighting scheme, now, is a generalization where Φ : M ×M → R. Finding

a suitable Φ can be challenging in itself and depends on the availability of user

features, trajectories and the task at hand. Typical strategies are to define Φ in

terms of similarity of feature representations of users [φ(ui), φ(uj)] or similarity

of Di, Dj . The two previous approaches work under the assumption that Ti, Tj

and Ri, Rj are similar and that Φ is suitable. If either of these assumptions is

not met, pooling data may result in a policy that is suboptimal for both Mi and

Mj . This phenomenon is typically referred to as the negative transfer problem

[243].

2.3 Algorithms

In this section we provide an overview of specific RL techniques and algorithms

used for personalization. This overview is the result of our systematic literature

review as can be seen in Table 2.4. Figure 2.2 contains a diagram of the discussed

techniques. We start with a subset of the full RL problem known as k-armed

bandits. We bridge the gap towards the full RL setting with contextual bandits

approaches. Then, value-based and policy-gradient RL methods are discussed.

2.3.1 Multi-armed bandits

Multi-armed bandits is a simplified setting of RL. As a result, it is often used

to introduce basic learning methods that can be extended to full RL algorithms

[321]. In the non-associative setting, the objective is to learn how to act

optimally in a single situation. Formally, this setting is equivalent to an MDP

with a single state. In the associative or contextual version of this setting,

actions are taken in more than one situation. This setting is closer to the full
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Reinforcement learning
n=205

Multi-armed
bandits n=24

UCB
n=5

CLUB
n=2

Contextual
bandits n=12

LinUCB
n=5

Value-based
n=99

Q-Learning
n=60

DQN
n=3

DDQN
n=2

Policy
iteration n=5

Fitted Q-
iteration n=3

Dyna-Q
n=2

Policy-
gradient n=2

Actor-Critic
n=8

Figure 2.2: Overview of types of RL algorithms discussed in
this section and the number of uses in publications included
in this survey. See Table 2.4 for a list of all (families of)
algorithms used by more than one publication.

RL problem yet it lacks an important trait of full RL, namely that the selected

action affects the situation. Both associative and non-associative multi-armed

bandit approaches do not take into account temporal separation of actions and

related rewards.

In general, multi-armed bandit solutions are not suitable when success is

achieved by sequences of actions. Non-associative k-armed bandits solutions

are only applicable when context is not important. This makes them generally

unsuitable for personalizaton as it typically utilizes different personal contexts

for different users by offering a different functionality. In some niche areas,

however, k-armed bandits are applicable and can be very attractive due to formal

guarantees on their performace. If context is of importance, contextual bandit

approaches provide a good starting point for personalizing an application. These

approaches hold a middle ground between non-associative multi-armed bandits

and full RL solutions in terms of modeling power and ease of implementation.

Their theoretical guarantees on optimality are less strong than their k-armed

counterparts but they are easier to implement, evaluate and maintain than full

RL solutions.
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2.3.1.1 k-Armed bandits

In a k-armed bandit setting, one is constantly faced with the choice between

k different actions [321]. Depending on the selected action, a scalar reward is

obtained. This reward is drawn from a stationary probability distribution. It is

assumed that an independent probability distribution exists for every action.

The goal is to maximize the expected total reward over a certain period of time.

Still considering the k-armed bandit setting, we assign a value Q(a) to each of

the k actions and define this value as the expected reward given that the action

was selected. The expected reward given that an action a is selected is defined

as follows:

Q(a) = E[rt|at = a]. (2.6)

In a trivial problem setting, one knows the exact value of each action and

selecting the action with the highest value would constitute the optimal policy.

In more realistic problems, it is fair to assume that one cannot know the values

of the actions exactly. In this case, one can estimate the value of an action. We

denote this estimated value with Q̂(a) and our goal is to have estimate Q̂(a) as

close to the true Q(a) as possible.

At each time step t, estimates of the values of actions are obtained. Always

selecting the actions with the highest estimated value is called greedy action

selection. In this case we are exploiting the knowledge we have built about the

values of the actions. When we select actions with a lower expected value, we

say we are exploring. In this case we are improving the estimates of values for

these actions. In the balancing act of exploration and exploitation, we opt for

exploitation to maximize the expected total reward for the next step, while

opting for exploration could results in higher expected total reward in the long

run.

2.3.1.2 Action-value Methods for Multi-armed Bandits

Action-value methods [321] denote a collections of methods used for estimating

the values of actions. The most natural way of estimating the action-values is

to average the rewards that were observed. This method is called the sample-

37



Chapter 2. A Systematic Literature Review

average method. The value estimate Q̂π(a) is then defined as:

Q̂(a) =

∑t−1
i=1 ri · 1ai=a∑t−1
i=1 1ai=a

(2.7)

where 1ai=a is 1 when ai = a is true and 0 otherwise. A default value is

assigned to Q̂(a) when the denominator is zero. As the denominator approaches

infinity, the estimate Q̂(a) converges to the true Q(a). Again, the most basic

way of selecting actions is the greedy action selection method. Here the action

with the highest value is selected. In the case of a tie, one action is selected

using tie-breaking methods such as random selection. Greedy action selection

is defined as follows for any time point t:

at = arg max
a

Q̂(a). (2.8)

Greedy action selection only exploits knowledge built up using the action-

value method and only maximizes the immediate reward. This can lead to

incorrect action-value approximations because actions with e.g. low estimated

but high actual values are not sampled. An improvement over this greedy action

selection is to randomly explore with a small probability ε. This method is

named the ε-greedy action selection. A benefit of this method is that, while it

is relatively simple, in the limit Q̂(a) will converge to Q(a) [321]. This indicates

that the probability of selecting the optimal action is then greater than 1− ε
which is near certainty.

2.3.1.3 Incremental Implementation

In Section 2.3.1.2 we discussed a method to estimate action-values using sample-

averaging. To ensure the usability of these method in real-world applications,

we need to be able to compute these values in an efficient way. Assume a setting

with one action. At each iteration j a reward rtj is obtained after selecting an

action. Let Q̂n(a) denote the estimate value of the action after n− 1 iterations.
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We can then define:

Q̂n(a) =
rt1 + rt2 + rt3 + ...+ rtn−1

n− 1
. (2.9)

Using this approach would mean storing the values of all the rewards to

recalculate Q̂n(a) from scratch at every iteration. There is however a more

efficient way for calculating Q̂n(a) that is constant in memory and computation

time. Rewriting it yields the following update rule:

Q̂n+1(a) = Q̂n(a) +
1

n
[rtn − Q̂n(a)], (2.10)

where the term Q̂n(a) represents the old estimate, [rn − Q̂n(a)] the error in the

estimate we made of the reward and 1
n the learning rate.

2.3.1.4 UCB: Upper-Confidence Bound

The greedy and ε-greedy action selection methods were discussed in Sec-

tion 2.3.1.2 and it was introduced that exploration is required to establish

good action-value estimates. Although ε-greedy explores all actions eventually,

it does so randomly. A better way of exploration would take into account the

action-value’s proximity to the optimal value and the uncertainty in the value

estimations. Intuitively, we want a selected action a to either provide a good

immediate reward or else some very useful information in updating Q̂(a). An

approach that uses this idea is the upper confidence bound action selection

(UCB) method [11; 102; 321]. UCB is defined as follows at time step t:

at = arg max
a

[
Q̂n(a) + c ·

√
ln t

Nt(a)

]
(2.11)

where Nt(a) is how often action a was chosen up to time t and c > 0 is a

parameter to control the rate of exploration. The square root term denotes the

level of uncertainty in the approximation of the value of action a. Hence, UCB

provides an upper bound for the true value of the action a. Here, c is used

to define the confidence level. When the action a is selected often, Nt(a) will
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become larger which leads the uncertainty term to decrease. On the other hand,

if the action a is not selected very often, t increases and so does the uncertainty

term.

k-Armed bandit approaches address the trade-off between exploitation and

exploration directly. It has been shown that the difference between the obtained

rewards and optimal rewards, or the regret, is at best logarithmic in the number

of iterations n in the absence of prior knowledge of the action value distributions

and in the absence of context [169]. UCB algorithms with a regret logarithmic in

and uniformly distributed over n exist [11]. This makes them a very interesting

choice when strong theoretical guarantees on performance are required.

Whether these algorithms are suitable, however, depends on the setting

at hand. If there is a large number of actions to choose from or when the

task is not stationary k-armed bandits are typically too simplistic. In a news

recommendation task, for example, exploration may take longer than an item

stays relevant. Additionally, k-armed bandits are not suitable when action values

are conditioned on the situation at hand, that is: when a single action results

in a different reward based on e.g. time-of-day or user-specific information such

as in Section 2.2. In these scenarios, the problem formalization of contextual

bandits and the use of function approximation are of interest.

2.3.1.5 Contextual Bandits

In the previous sections, action-values where not associated with different

situations. In this section we extend the non-associative bandit setting to the

associative setting of contextual bandits. Assume a setting with n k-armed

bandits problems. At each time step t one encounters a situation with a randomly

selected k-armed bandits problem. We can use some of the approaches that

were discussed to estimate the action values. However, this is only possible if

the true action-values change slowly between the different n problems [321].

Add to this setting the fact that now at each time t a distinctive piece of

information is provided about the underlying k-armed bandit which is not the

actual action value. Using this information we can now learn a policy that uses

the distinctive information to associate the k-armed bandit with the best action
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to take. This approach is called contextual bandits and uses trial-and-error to

search for the optimal actions and associates these actions with situation in

which they perform optimally. This type of algorithm is positioned between

k-armed bandits and full RL. The similarity with RL lies in the fact that a

policy is learned while the association with k-armed bandits stems from the

fact that actions only affect immediate rewards. When actions are allowed to

affect the next situation as well then we are dealing with RL.

2.3.1.6 Function Approximation: LinUCB and CLUB

Despite the good theoretical characteristics of the UCB algorithm, it is not

often used in the contextual setting in practice. The reason is that in practice,

state and action spaces may be very large and although UCB is optimal in

the uninformed case, we may do better if we use obtained information across

actions and situations. Instead of maintaining isolated sample-average estimates

per action or per state-action pair such as in Sections 2.3.1.2 and 2.3.1.5,

we can estimate a parametric payoff function approximated from data. The

parametric function takes some feature description of actions for k-armed bandit

settings and state-action pairs for the contextual bandit setting and output

some estimated ˆQθ(a). Here, we focus on the contextual-bandit algorithms

LinUCB and CLUB.

LinUCB (Linear Upper-Confidence Bound) uses linear function approxima-

tion to calculate the confidence interval efficiently in closed form [176]. Define

the expected payoff for action a with the d-dimensional featurized state st,a

and Θ∗a a vector of unknown parameters as follows:

E[ra|sa] = sTaΘ∗a. (2.12)

Using ridge regression, an estimate of Θ̂a can be obtained [176]. Consequently,

it can be shows that for any σ > 0 and sa ∈ Rd with α = 1 +
√
ln( 2

σ )/2 a

reasonably tight estimate for the expected payoff of arm a can be obtained as

follows:

at = arg max
a

[
sTaΘ∗a + α

√
sTaA

−1
a sa

]
, (2.13)
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where A−1
a = DT

aDa + Id and Da a design matrix of dimension m x d whose

rows are the m contexts that are observed, ba ∈ Rm the corresponding response

vector and Id the d x d identity matrix [176].

Similar to LinUCB, CLUB (Clustering of bandits) utilizes the linear bandit

algorithm for payoff estimation [107]. In contrast to LinUCB, CLUB uses

adaptive clustering in order to speed up the learning process. The main idea

is to use confidence balls of user models estimate user similarity and share

feedback across similar users. CLUB can thus be understood as a cluster-based

alternative (see Section 2.2) to LinUCB algorithm.

2.3.2 Value-based RL

In value based RL, we learn an estimate V of the optimal value function Vπ∗ for

a given policy π. We do this with the aim of finding π∗. Temporal-difference

(TD) prediction is a method that learns from raw experiences without having

to build a model of the environment the policy is interacting with [321]. In this

section, we discuss various RL algorithms based on TD prediction.

2.3.2.1 Sarsa: On-policy Temporal-difference RL

Sarsa is an on-policy temporal-difference method that learns an action-value

function [312; 321]. Given the current behaviour policy π, we estimate Q̂π(a) ∀
s, and a. This is done using transitions from state-action pair to state-action

pair. Events of the form 〈st, at, rt+1, st+1, at+1〉 are used in the following update

rule to estimate the state-action values:

Q̂π(st, at) = Q̂π(st, at) + α
[
rt+1 + γQ̂π(st+1, at+1)− Q̂π(st, at)

]
. (2.14)

This update rule is applied after every transition from st to st+1. In case

st+1 is a terminal state, a value of zero is assigned. By doing this we are ensuring

that the estimate Q̂π for a behaviour policy π while resulting in changes in

π given Qπ. Sarsa will converge to an optimal action-value function Qπ∗ and

hence an optimal policy π∗ in the limit given that all possible state-action pairs
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Algorithm 1: Sarsa - An on-policy temporal-difference RL algorithm

1 Parameters: learning rate α ∈ (0, 1] and ε > 0.0;

Initialize Q̂π ∀ s ∈ S, a ∈ A. For terminal states initialize the value
with 0.

2 for each episode do
3 Initialize s

Choose action a in s using π derived from Q̂π (e.g. ε− greedy)
for each step in episode do

4 Select action a and obtain reward r and next state s′

Take next action a′ from s′ following π derived from Q̂π (e.g.
ε− greedy)

Q̂π(s, a) = Q̂π(s, a) + α
[
r + γQ̂π(s′, a′)− Q̂π(s, a)

]
Set s = s′ and a = a′

Stop loop if s is terminal
5 end

6 end

are visited an infinite amount of time [321]. Consequently, Sarsa converges to

the greedy policy in the limit. Algorithm 4 shows Sarsa in more detail.

2.3.2.2 Q-learning: Off-policy Temporal-difference RL

Q-learning was one of the breakthroughs in the field of RL [321; 360]. Q-learning

is classified as an off-policy temporal-difference algorithm for control. Similar

to Sarsa, Q-learning approximates the optimal action-value function Qπ∗ by

learning Q̂π∗ . Differently from Sarsa, Q-learning learns Q̂π∗ independently of

the policy being followed. The policy being followed still has an effect on the

learning process, but only by determining which state-action pairs are visited

and consequently updated. Algorithm 5 shows Q-learning in more detail. The

update rule for Q-learning is defined as follows:

Q̂π(st, at) = Q̂π(st, at) + α
[
rt+1 + γmaxaQ̂π(st+1, a)− Q̂π(st, at)

]
. (2.15)
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Algorithm 2: Q-Learning - An off-policy Temporal-Difference RL
algorithm

1 Parameters: learning rate α ∈ (0, 1] and ε > 0.

Initialize Q̂π ∀ s ∈ S, a ∈ A. For terminal states initialize the value
with 0.

2 for each episode do
3 Initialize s

4 for each step in episode do

5 Choose action a in s using π derived from Q̂π (e.g. ε− greedy)
Take action a and obtain reward r and next state s′

Q̂π(s, a) = Q̂π(s, a) + α

[
r + γ · arg max

a
Q̂π(s′, a)− Q̂π(s, a)

]
Set s = s′

Stop loop if s is terminal
6 end

7 end

2.3.2.3 Value-function Approximation

In sections 2.3.2.2 and 2.3.2.1 we discussed tabular algorithms for value-based

RL. In this section we discuss function approximation in RL for estimating state-

value functions from a known policy π (i.e. on-policy RL). The difference with

the tabular approach is that we represent vπ as a parameterized function with a

weight vector w ∈ Rd where v̂(s, w) ≈ vπ(s) is the approximated value of state

s given the learned weights w. Different function approximators can be used to

estimate v̂. For instance, v̂ can be a deep neural network with w representing the

weights of the network. In the tabular version of value-based RL, states and their

estimated values are isolated from each other while in function approximation

adjusting one weight in the network can lead to changes in the estimated values

of many states. This form of learning is powerful due its ability to generalize

across different states, but at the same time may lead to more complex models

that are harder to understand and to tune. An example of value-function

approximation is the deep Q-network (DQN) algorithm [226]. This algorithm

combines deep (convolutional) neural network and Q-learning. Using DQN, it
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was shown that RL agents can achieve state-of-the-art performances on many

problems without relying on engineered features. DNQ learns directly from raw

(pixel) data instead. The following update rule is an alteration of the Q-learning

(semi-gradient of Q-learning [321]) update rule for estimating the weights of the

network:

wt+1 = wt+α
[
rt+1 + γ ·max

a
Q̂π(st+1, a, wt)− Q̂π(st, at, wt)

]
∇wtQ̂π(st, at, wt).

(2.16)

2.3.3 Policy-gradient RL

In value-based RL values of actions are approximated and then a policy is

derived by selecting actions using a certain selection strategy. In policy-gradient

RL we learn a parameterized policy directly [321; 322]. Consequently, we can

select actions without the need for an explicit value function. Let Θ ∈ Rd where

d is the dimension of the parameter vector Θ. For policy-based methods that

also rely on a value function, we denote the function’s weight vector denoted by

w ∈ Rd′ as v̂(s, w). Define the probability of selecting action a at time step t

given state s with policy parameters Θ as:

π(a|s,Θ) = P [at = a|st = s,Θt = Θ] (2.17)

Consider a function J(Θ) that quantifies the performance of the policy π

with respect to parameter vector Θ. The goal is to optimize Θ such that J(Θ)

is maximized. We use the following update rule to approximate gradient ascent

in J where the term ∇̂J(Θt) ∈ Rd approximates the gradient of J(Θ) at t:

Θt+1 = Θt + α∇̂J(Θt). (2.18)
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Algorithm 3: One-step episodic actor-critic

1 Input: a differentiable policy π(a|s,Θ)
Input: a differentiable state-value function v̂(s, w)
Parameters: α(Θ) > 0 and α(w) > 0 Initialize Θ ∈ Rd and w ∈ Rd′

2 for each episode do
3 Initialize S

I = 1
for each step in episode do

4 Choose action a in s using π: a π(.|s,Θ)
Take action a and obtain reward r and next state s′

δ = r + γv̂(s′, w)− v̂(s, w)
w = w + α(w)δ∇v̂(s, w)
Θ = Θ + α(Θ)Iδ∇ lnπ(a|s,Θ)
I = γI
s = s′

5 end

6 end

2.3.4 Actor-critic

In actor-critic methods [161; 321] both the value and policy functions are

approximated. The actor in actor-critic is the learned policy while the critic

approximates the value function. Algorithm 6 shows the one-step episodic

actor-critic algorithm in more detail. The update rule for the parameter vector

Θ is defined as follows:

Θt+1 = Θt + αδt
∇π(a|st,Θt)

π(a|st,Θt)
(2.19)

where δt is defined as follows:

δt = rt+1 + γv̂(st+1, w)− v̂(st, w). (2.20)
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2.4 A Classification of Personalization Settings

Personalization has many different definitions [276; 49; 89]. We adopt the

definition proposed in [89] as it is based on 21 existing definitions found in

literature and suits a variety of application domains: “personalization is a

process that changes the functionality, interface, information access and content,

or distinctiveness of a system to increase its personal relevance to an individual or

a category of individuals”. This definition identifies personalization as a process

and mentions an existing system subject to that process. We include aspects

of both the desired process of change and existing system in our framework.

Section 2.5.4 further details how this framework was used in a SLR.

Table 2.1 provides an overview of the framework. On a high level, we

distinguish three categories. The first category contains aspects of suitability

of system behavior. We differentiate settings in which suitability of system

behavior is determined explicitly by users and settings in which it is inferred

by the system after observing user behavior [292]. For example, a user can

explicitly rate suitability of a video recommendation; a system can also infer

suitability by observing whether the user decides to watch the video. Whether

implicit or explicit feedback is preferable depends on availability and quality

of feedback signals [141; 292]. Besides suitability, we consider safety of system

behavior. Unaltered RL algorithms use trial-and-error style exploration to

optimize their behavior yet this may not suit a particular domain. For example,

tailoring the insulin delivery policy of an artificial pancreas to the metabolism

of an individual requires trial insulin delivery action but these should only be

sampled when their outcome is within safe certainty bounds [67]. If safety is

a significant concern in the systems’ application domain, specifically designed

safety-aware RL techniques may be required, see [247] and [101] for overviews

of such techniques.

Aspects in the second category deal with the availability of upfront knowledge.

Firstly, knowledge of how users respond to system actions may be captured

in user models. Such models open up a range of RL solutions that require

less or no sampling of new interactions with users [127]. As an example, user
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Table 2.1: Framework to categorize personalization settings.

Category A# Aspect Description Range

Suitability
outcome

A1 Control The extent to which the user de-
fines the suitability of behavior
explicitly.

Explicit -
implicit

A2 Safety The extent to which safety is of
importance.

Trivial -
critical

Upfront
knowledge

A3 User mod-
els

The a priori availability of mod-
els that describe user responses
to system behavior.

Unavailable
- unlim-
ited

A4 Data
availabil-
ity

The a priori availability of hu-
man responses to system behav-
ior.

Unavailable
- unlim-
ited

New
Experiences

A5 Interaction
availabil-
ity

The availability of new samples
of interactions with individuals.

Unavailable
- unlim-
ited

A6 Privacy
sensitivity

The degree to which privacy is
a concern.

Trivial -
critical

A7 State
observ-
ability

The degree to which all informa-
tion to base personalization can
be measured.

Partial -
full
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pain models are used to predict suitability of exercises in an adaptive physical

rehabilitation curriculum manager a priori [342]. Models can also be used to

interact with the RL agent in simulation. For example, dialogue agent modules

may be trained by interacting with a simulated chatbot user [75]. Secondly,

upfront knowledge may be available in the form of data on human responses

to system behavior. This data can be used to derive user models and can be

used to optimize policies directly and provide high-confidence evaluations of

such policies [185; 338].

The third category details new experiences. Empirical RL approaches have

proven capable of modelling extremely complex dynamics, however, this typically

requires complex estimators that in turn need substantial amounts of training

data. The availability of users to interact with is therefore a major consideration

when designing an RL solution. A second aspect that relates to the use of

new experiences is privacy sensitivity of the setting. Privacy sensitivity is of

importance as it may restrict sharing, pooling or any other specific usage of data

[13]. Finally, we identify the state observability as a relevant aspect. In some

settings, the true environment state cannot be observed directly but must be

estimated using available observations. This may be common as personalization

exploits differences in mental [37; 153; 357] and physical state [106; 210]. For

example, recommending appropriate music during running involves matching

songs to the user emotional state and e.g. running pace. Both mental and

physical state may be hard to measure accurately [2; 31; 251].

Although aspects in Table 2.1 are presented separately, we explicitly note

that they are not mutually independent. Settings where privacy is a major

concern, for example, are expected to typically have less existing and new

interactions available. Similarly, safety requirements will impact new interaction

availability. Presence of upfront knowledge is mostly of interest in settings

where control lies with the system as it may ease the control task. In contrast,

user models may be marginally important if desired behavior is specified by

the user in full. Finally, a lack of upfront knowledge and partial observability

complicates adhering to safety requirements.
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2.5 A Systematic Literature Review

A SLR is ‘a form of secondary study that uses a well-defined methodology

to identify, analyze and interpret all available evidence related to a specific

research question in a way that is unbiased and (to a degree) repeatable’ [39].

PRISMA is a standard for reporting on SLRs and details eligibility criteria,

article collection, screening process, data extraction and data synthesis [228].

This section contains a report on this SLR according to the PRISMA statement.

This SLR was a collaborative work to which all authors contributed. We denote

authors by abbreviation of their names, e.g. FDH, EG, AEH and MH.

2.5.1 Inclusion Criteria

Studies in this SLR were included on the basis of three eligibility criteria. To be

included, articles had to be published in a peer-reviewed journal or conference

proceedings in English. Secondly, the study had to address a problem fitting to

our definition of personalization as described in Section 2.4. Finally, the study

had to use a RL algorithm to address such a personalization problem. Here,

we view contextual bandit algorithms as a subset of RL algorithms and thus

included them in our analysis. Additionally, we excluded studies in which a RL

algorithm was used for purposes other than personalization.

2.5.2 Search Strategy

Figure 2.3 contains an overview of the SLR process. The first step is to run a

query on a set of databases. For this SLR, a query was run on Scopus, IEEE

Xplore, ACM’s full-text collection, DBLP and Google Scholar on June 6, 2018.

These databases were selected as their combined index spans a wide range,

and their combined result set was sufficiently large for this study. Scopus and

IEEE Xplore support queries on title, keywords and abstract. ACM’s full-

text collection, DBLP and Google scholar do not support queries on keywords

and abstract content. We therefore ran two kinds of queries: we queried

on title only for ACM’s full-text collection, DBLP and Google Scholar and
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Figure 2.3: Overview of the SLR process.
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we extended this query to keywords and abstract content for Scopus and

IEEE Xplore. The query was constructed by combining techniques of interest

and keywords for the personalization problem. For techniques of interest the

terms ‘reinforcement learning’ and ‘contextual bandits’ were used. For the

personalization problem, variations on the words ‘personalized’, ‘customized’,

‘individualized’ and ‘tailored’ were included in British and American spelling.

All queries are listed in Appendix 2.9. Query results were de-duplicated and

stored in a spreadsheet.

2.5.3 Screening Process

In the screening process, all query results are tested against the inclusion criteria

from Section 2.5.1 in two phases. We used all criteria in both phases. In the first

phase, we assessed eligibility based on keywords, abstract and title whereas we

used full text of the article in the second phase. In the first phase, a spreadsheet

with de-duplicated results was shared with all authors via Google Drive. Studies

were assigned randomly to authors who scored each study by the eligibility

criteria. The results of this screening were verified by one of the other authors,

assigned randomly. Disagreements were settled in meetings involving those in

disagreement and FDH if necessary. In addition to eligibility results, author

preferences for full-text screening were recorded on a three-point scale. Studies

that were not considered eligible were not taken into account beyond this point,

all other studies were included in the second phase.

In the second phase, data on eligible studies was copied to a new spreadsheet.

This sheet was again shared via Google Drive. Full texts were retrieved and

evenly divided amongst authors according to preference. For each study, the

assigned author then assessed eligibility based on full text and extracted the

data items detailed below.
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2.5.4 Data Items

Data on setting, solution and methodology were collected. Table 2.2 contains all

data items for this SLR. For data on setting, we operationalized our framework

from Table 2.1 in Section 2.4. To assess trends in solution, algorithms used,

number of MDP models (see Section 2.2) and training regime were recorded.

Specifically, we noted whether training was performed by interacting with actual

users (‘live’), using existing data and a simulator of user behavior. For the

algorithms, we recorded the name as used by the authors. To gauge maturity of

the proposed solutions and the field as a whole, data on the evaluation strategy

and baselines used were extracted. Again, we listed whether evaluation included

‘live’ interaction with users, existing interactions between systems and users

or using a simulator. Finally, publication year and application domain were

registered to enable identification of trends over time and across domains. The

list of domains was composed as follows: during phase one of the screening

process, all authors recorded a domain for each included paper, yielding a highly

inconsistent initial set of domains. This set was simplified into a more consistent

set of domains which was used during full-text screening. For papers that

did not fall into this consistent set of domains, two categories were added: a

‘Domain Independent’ and an ‘Other’ category. The actual domain was recorded

for the five papers in the ‘Other’ category. These domains were not further

consolidated as all five papers were assigned to unique domains not encountered

before.

2.5.5 Synthesis and Analysis

To facilitate analysis, reported algorithms were normalized using simple text

normalization and key-collision methods. The resulting mappings are available

in the dataset release [72]. Data was summarized using descriptive statistics

and figures with an accompanying narrative to gain insight into trends with

respect to settings, solutions and evaluation over time and across domains.
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Table 2.2: Data items in SLR. The last column relates data
items to aspects of setting from Table 2.1 where applicable.

Category # Data item Values A#

Setting

1 User defines suitability of system be-
havior explicitly

Yes, No A1

2 Suitability of system behavior is de-
rived

Yes, No A1

3 Safety is mentioned as a concern in the
article

Yes, No A2

4 Privacy is mentioned as a concern in
the article

Yes, No A6

5 Models of user responses to system
behavior are available

Yes, No A3

6 Data on user responses to system be-
havior are available

Yes. No A4

7 New interactions with users can be
sampled with ease

Yes, No A5

8 All information to base personalization
on can be measured

Yes, No A7

Solution

9 Algorithms N/A –
10 Number of learners 1, 1/user, 1/group,

multiple
–

11 Usage of traits of the user state, other, not
used

–

12 Training mode online, batch,
other, unknown

–

13 Training in simulation Yes, No A3
14 Training on a real-life dataset Yes, No A4
15 Training in ‘live’ setting Yes, No A5

Evaluation

16 Evaluation in simulation Yes, No A3
17 Evaluation on a real-life dataset Yes, No A4
18 Evaluation in ‘live’ setting Yes, No A5
19 Comparison with ‘no personalization’ Yes, No –
20 Comparison with non-RL methods Yes, No –
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2.6 Results

The quantitative synthesis and analyses introduced in Section 2.5.5 were applied

to the collected data. In this section, we present insights obtained. We focus

on the major insights and encourage the reader to explore the tabular view in

Appendix 2.10 or the collected data for further analysis [72].

Before diving into the details of the study in light of the classification scheme

we have proposed, let us first study some general trends. Figure 2.4 shows the

number of publications addressing personalization using RL techniques over

time. A clear increase can be seen. With over forty entries, the health domain

contains by far the most articles, followed by entertainment, education and

commerce with all approximately just over twenty five entries. Other domains

contain less than twelve papers in total. Figure 2.5a shows the popularity of

domains for the five most recent years and seems to indicate that the number

of articles in the health domain is steadily growing, in contrast with the other

domains. Of course, these graphs are based on a limited number of publications,

so drawing strong conclusions from these results is difficult. We do need to

take into account that the popularity of RL for personalization is increasing

in general. Therefore figure 2.5b shows the relative distribution of studies over

domains for the five most recent years. Now we see that the health domain

is just following the overall trend, and is not becoming more popular within

studies that use RL for personalization. We fail to identify clear trends for

other domains from these figures.

2.6.1 Setting

Table 2.3 provides an overview of the data related to setting in which the studies

were conducted. The table shows that user responses to system behavior are

present in a minority of cases (66/166). Additionally, models of user behavior

are only used in around one quarter of all publications. The suitability of system

behavior is much more frequently derived from data (130/166) rather than

explicitly collected by users (39/166). Privacy is clearly not within the scope of

most articles, only in 9 out of 166 cases do we see this issue explicitly mentioned.
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Figure 2.4: Distribution of included papers over time and
over domains. Note that only studies published prior to
the query date of June 6, 2018 were included.
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Table 2.3: Number of publications by aspects of setting.

Aspect #

User defines suitability of system behavior explicitly 39
Suitability of system behavior is derived 130
Safety is mentioned as a concern in the article 30
Privacy is mentioned as a concern in the article 9
Models of user responses to system behavior are available 41
Data on user responses to system behavior are available 66
New interactions with users can be sampled with ease 97
All information to base personalization on can be measured 132

Safety concerns, however, are mentioned in a reasonable proportion of studies

(30/166). Interactions can generally be sampled with ease and the resulting

information is frequently sufficient to base personalization of the system at hand

on.

Let us dive into some aspects in a bit more detail. A first trend we anticipate

is an increase of the fraction of studies working with real data on human responses

over the years, considering the digitization trend and associated data collection.

Figure 2.6a shows the fraction of papers for which data on user responses to

system behavior is available over time. Surprisingly, we see that this fraction

does not show any clear trend over time. Another aspect of interest relates to

safety issues in particular domains. We hypothesize that in certain domains,

such as health, safety is more frequently mentioned as a concern. Figure 2.6b

shows the fraction of papers of the different domains in which safety is mentioned.

Indeed, we clearly see that certain domains mention safety much more frequently

than other domains. Third, we explore the ease with which interactions with

users can be sampled. Again, we expect to see substantial differences between

domains. Figure 2.7 confirms our intuition. Interactions can be sampled with

ease more frequently in studies in the commerce, entertainment, energy, and

smart homes domains when compared to communication and health domains.

Finally, we investigate whether upfront knowledge is available. In our

analysis, we explore both real data as as well user models being available
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Figure 2.6: Availability of user responses over time (a),
and mentions of safety as a concern over domains (b).

upfront. One would expect papers to have at least one of these two prior to

starting experiments. User models and not real data were reported in 41 studies,

while 53 articles used real data but no user model and 12 use both. We see

that for 71 studies neither is available. In roughly half of these, simulators were

used for both training (38/71) and evaluation (37/71). In a minority, training

(15/71) and evaluation (17/71) were performed in a live setting, e.g. while

collecting data.

2.6.2 Solution

In our investigation into solutions, we first explore the algorithms that were

used. Figure 2.8 shows the distribution of usage frequency. A vast majority

of the algorithms are used only once, some techniques are used a couple of

times and one algorithm is used 60 times. Note again that we use the name

of the algorithms used by the authors as a basis for this analysis. Table 2.4

lists the algorithms that were used more than once. A significant number of

studies (60/166) use the Q-learning algorithm. At the same time, a substantial

number of articles (18/166) reports the use of RL as the underlying algorithmic
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framework without specifying an actual algorithm. The contextual bandits,

Sarsa, actor-critic and inverse RL (IRL) algorithms are used in respectively

(18/166), (12/166), (8/166), (8/166) and (7/166) papers. We also observe some

additional algorithms from the contextual bandits family, such as UCB and

LinUCB. Furthermore, we find various mentions that indicate the usage of deep

neural networks: deep reinforcement learning, DQN and DDQN. In general, we

find that some publications refer to a specific algorithm whereas others only

report generic techniques or families thereof.

Figure 2.9a lists the number of models used in the included publications.

The majority of solutions relies on a single-model architecture. On the other

end of the spectrum lies the architecture of using one model per person. This

architecture comes second in usage frequency. The architecture that uses one

model per group can be considered a middle ground between these former two.

In this architecture, only experiences with relevant individuals can be shared.

Comparisons between architectures are rare. We continue by investigating

whether and where traits of the individual were used in relation to these
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Table 2.4: Algorithm usage for all algorithms that were used
in more than one publication.

Algorithm # of uses

Q-learning [360] 60
RL, not further specified 18

Contextual bandits 12
Sarsa [320] 8
Actor-critic 8

Inverse reinforcement learning 7
UCB [11] 5

Policy iteration 5
LinUCB [58] 5

Deep reinforcement learning 4
Fitted Q-iteration [277] 3

DQN [226] 3
Interactive reinforcement learning 2

TD-learning 2
DYNA-Q [319] 2
Policy gradient 2

CLUB [107] 2
Monte carlo 2

Thompson sampling 2
DDQN [346] 2

architectures. Table 2.5 provides an overview. Out of all papers that use one

model, 52.7% did not use the traits of the individuals and 41.7 % included traits

in the state space. 47.5% of the papers include the traits of the individuals

in the state representation while in 37.3% of the papers the traits were not

included. In 15.3% of the cases this was not known.

Figure 2.9b shows the popularity of using a simulator for training per

domain. We see that a substantial percentage of publications use a simulator

and that simulators are used in all domains. Simulators are used in the majority

of publications for the energy, transport, communication and entertainment

domains. In publications in the first three out of these domains, we typically

find applications that require large-scale implementation and have a big impact

60



2.6. Results

1 1/group 1/person multiple
0

20

40

60

80

#
 p

ub
lic

at
io

ns

(a) Used solution architectures

C
om

m
er

ce

C
om

m
un

ic
at

io
n

D
om

ai
n 

In
de

p.

E
du

ca
tio

n

E
nt

er
ta

in
m

en
t

H
ea

lth

Sm
ar

t H
om

e

Tr
an

sp
or

t

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f t
ot

al
 in

 d
om

ai
n

(b) Training is performed on a simulator

0

10

20

30

40

#
 p

ub
lic

at
io

ns

yes, relative
yes, absolute
all, absolute

Figure 2.9: Occurence of different solution architectures
(a) and usage of simulators in training (b). For (a), publi-
cations that compare architectures are represented in the
‘multiple’ category.

Table 2.5: Number of models and the inclusion of user
traits.

Number of models
Traits of users were used 1 1/group 1/person multiple

In state representation 38 8 28 2
Other 5 0 9 3
Not used 48 3 22 0
Total 91 11 59 5

on infrastructure, e.g. control of the entire energy grid or a fleet of taxis in a

large city. This complicates the collection of useful realistic dataset and training

in a live setting. This is not the case for the entertainment domain with 17

works using a simulator for training. Further investigation shows that nine out

of these 17 also include training on real data or in a ‘live’ setting. It seems that

training on a simulator is part of the validation of the algorithm rather than

the prime contribution of the paper in the entertainment domain.
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Figure 2.10: Number of papers with a ‘live’ evaluation or
evaluation using data on user responses to system behavior.

2.6.3 Evaluation

In investigating evaluation rigor, we first turn to the data on which evaluations

are based. Figure 2.10 shows how many studies include an evaluation in a

‘live’ setting or using existing interactions with users. In the years up to 2007

few studies were done and most of these included realistic evaluations. In

more recent years, the absolute number of studies shows a marked upward

trend to which the relative number of articles that include a realistic evaluation

fails to keep pace. Figure 2.10 also shows the number of realistic evaluations

per domain. Disregarding the smart home domain, as it contains only four

studies, the highest ratio of real evaluations can be found in the commerce and

entertainment domains, followed by the health domain.

We look at possible reasons for a lack of realistic evaluation using our

categorization of settings from Section 2.4. Indeed, there are 63 studies with

no realistic evaluation versus 104 with a realistic evaluation. Because these

group sizes differ, we include ratios with respect to these totals in Table 2.6.

The biggest difference between ratios of studies with and without a realistic

evaluation is in the upfront availability of data on interactions with users. This

is not surprising, as it is natural to use existing interactions for evaluation when
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Table 2.6: Comparison of settings with realistic and other
evaluation.

Real-world evaluation Other evaluation
Count % of column total Count % of column total

Total 104 100.0% 63 100.0%

Data on user responses to system behavior are available 57 54.8% 9 14.5%
Safety is mentioned as a concern in the article 14 13.5% 16 25.8%
Models of user responses to system behavior are available 21 20.2% 20 32.3%
Privacy is mentioned as a concern in the article 7 6.7% 2 3.2%
New interactions with users can be sampled with ease 60 57.7% 37 59.7%

they are available already. The second biggest difference between the groups

is whether safety is mentioned as a concern. Relatively, studies that refrain

from a realistic evaluation mention safety concerns almost twice as often as

studies that do a realistic evaluation. The third biggest difference can be found

in availability of user models. If a model is available, user responses can be

simulated more easily. Privacy concerns are not mentioned frequently, so little

can be said on its contribution to a lacking realistic evaluation. Finally and

surprisingly, the ease of sampling interactions is comparable between studies

with a realistic and without realistic evaluation.

Figure 2.11 describes how many studies include any of the comparisons in

scope in this survey, that is: comparisons between solutions with and without

personalization, comparisons between RL approaches and other approaches to

personalization and comparisons between different RL algorithms. In the first

years, no papers includes such a comparison. The period 2000-2010 contains

relatively little studies in general and the absolute and relative numbers of

studies with a comparison vary. From 2011 to 2018, the absolute number

maintains it upward trend. The relative number follows this trend but flattens

after 2016.
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Figure 2.11: Number of papers that include any comparison
between solutions over time.

2.7 Discussion

The goal of this study was to give an overview and categorization of RL appli-

cations for personalization in different application domains which we addressed

using a SLR on settings, solution architectures and evaluation strategies. The

main result is the marked increase in studies that use RL for personalization

problems over time. Additionally, techniques are increasingly evaluated on

real-life data. RL has proven a suitable paradigm for adaptation of systems to

individual preferences using data.

Results further indicate that this development is driven by various techniques,

which we list in no particular order. Firstly, techniques have been developed to

estimate the performance of deploying a particular RL model prior to deployment.

This helps in communicating risks and benefits of RL solutions with stakeholders

and moves RL further into the realm of feasible technologies for high-impact

application domains [336]. For single-step decision making problems, contextual

bandit algorithms with theoretical bounds on decision-theoretic regret have

become available. For multi-step decision making problems, methods that can

estimate the performance of some policy based on data generated by another

policy have been developed [58; 144; 338]. Secondly, advances in the field of

deep learning have wholly or partly removed the need for feature engineering

[86]. This may be especially challenging for sequential decision-making problems
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as different features may be of importance in different states encountered over

time. Finally, research on safe exploration in RL has developed means to avoid

harmful actions during exploratory phases of learning [101]. How any these

techniques are best applied depends on setting. The collected data can be used

to find suitable related work for any particular setting [72].

Since the field of RL for personalization is growing in size, we investigated

whether methodological maturity is keeping pace. Results show that the growth

in the number of studies with a real-life evaluation is not mirrored by growth

of the ratio of studies with such an evaluation. Similarly, results show no

increase in the relative number of studies with a comparison of approaches

over time. These may be signs that the maturity of the field fails to keep

pace with its growth. This is worrisome, since the advantages of RL over

other approaches or between RL algorithms cannot be understood properly

without such comparisons. Such comparisons benefit from standardized tasks.

Developing standardized personalization datasets and simulation environments

is an excellent opportunity for future research [138; 186].

We found that algorithms presented in literature are reused infrequently.

Although this phenomenon may be driven by various different underlying

dynamics that cannot be untangled using our data, we propose some possible

explanations here without particular order. Firstly, it might be the case that

separate applications require tailored algorithms to the extend that these can

only be used once. This raises the question on the scientific contribution of such

a tailored algorithm and does not fit with the reuse of some well-established

algorithms. Another explanation is that top-ranked venues prefer contributions

that are theoretical or technical in nature, resulting in minor variations to

well-known algorithms being presented as novel. Whether this is the case is

out of scope for this research and forms an excellent avenue for future work.

A final explanation for us to propose, is the myriad axes along which any RL

algorithm can be identified, such as whether and where estimation is involved,

which estimation technique is used and how domain knowledge is encoded in

the algorithm. This may yield a large number of unique algorithms, constructed

out of a relatively small set of core ideas in RL. An overview of these core ideas
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would be useful in understanding how individual algorithms relate to each other.

On top of algorithm reuse, we analyzed which RL algorithms were used

most frequently. Generic and well-established (families of) algorithms such

as Q-learning are the most popular. A notable entry in the top six most-

used techniques is inverse reinforcement learning (IRL). Its frequent usage is

surprising, as the only viable application area of IRL under a decade ago was

robotics [155]. Personalization may be one of the other useful application areas

of this branch of RL and many existing personalization challenges may still

benefit from an IRL approach. Finally, we investigated how many RL models

were included in the proposed solutions and found that the majority of studies

resorts to using either one RL model in total or one RL model per user. Inspired

by common practice of clustering in the related fields such as e.g. recommender

systems, we believe that there exists opportunities in pooling data of similar

users and training RL models on the pooled data.

Besides these findings, we contribute a categorization of personalization

settings in RL. This framework can be used to find related work based on the

setting of a problem at hand. In designing such a framework, one has to balance

specificity and usefulness of aspects in the framework. We take the aspect

of ‘safety’ as an example: any application of RL will imply safety concerns

at some level, but they are more prominent in some application areas. The

framework intentionally includes a single ambiguous aspect to describe a broad

range ‘safety sensitivity levels’ in order for it to suit its purpose of navigating

literature. A possibility for future work is to extend the framework with other,

more formal, aspects of problem setting such as those identified in [286].
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2.9 Appendix A. Queries

Listing 2.1: Query for Scopus Database

TITLE−ABS−KEY(

(” re in fo r cement l e a r n i n g ” OR ” contextua l bandit ”) AND

(” p e r s o n a l i z a t i o n ” OR ” p e r s o n a l i z e d ” OR ” per sona l ” OR

” p e r s o n a l i s a t i o n ” OR ” p e r s o n a l i s e d ” OR ” customizat ion ”

OR ” customized ” OR ” customised ” OR ” customised ” OR

” i n d i v i d u a l i z e d ” OR ” i n d i v i d u a l i s e d ” OR ” t a i l o r e d ”) )

Listing 2.2: Query for IEEE Xplore Database Command

Search

( ( ( r e in fo r cement l e a r n i n g ) OR contextua l bandit ) AND

( p e r s o n a l i z a t i o n OR p e r s o n a l i z e d OR per sona l

OR p e r s o n a l i s a t i o n OR p e r s o n a l i s e d OR

customizat ion OR customized OR customised OR customised OR

i n d i v i d u a l i z e d OR i n d i v i d u a l i s e d OR t a i l o r e d ) )

Listing 2.3: Query for ACM DL Database

(” r e in fo r cement l e a r n i n g ” OR ” contextua l bandit ”) AND

( p e r s o n a l i z a t i o n OR p e r s o n a l i z e d OR per sona l OR

p e r s o n a l i s a t i o n OR p e r s o n a l i s e d OR customizat ion

OR customized OR customised OR customised OR

i n d i v i d u a l i z e d OR i n d i v i d u a l i s e d OR t a i l o r e d )

Listing 2.4: First Query for DBLP Database

r e in fo r cement l e a r n i n g

( p e r s o n a l i z a t i o n | p e r s o n a l i z e d | per sona l | p e r s o n a l i s a t i o n |
p e r s o n a l i s e d | customizat ion | customized | customised |
customised | i n d i v i d u a l i z e d | i n d i v i d u a l i s e d | t a i l o r e d )
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Listing 2.5: Second Query for DBLP Database

contextua l bandit

( p e r s o n a l i z a t i o n | p e r s o n a l i z e d | per sona l | p e r s o n a l i s a t i o n |
p e r s o n a l i s e d | customizat ion | customized | customised |
customised | i n d i v i d u a l i z e d | i n d i v i d u a l i s e d | t a i l o r e d )

Listing 2.6: First Query for Google Scholar Database

a l l i n t i t l e : ” r e in fo r cement l e a r n i n g ”

p e r s o n a l i z a t i o n OR p e r s o n a l i z e d OR per sona l OR p e r s o n a l i s a t i o n

OR p e r s o n a l i s e d OR customizat ion OR customized OR

customised OR customised OR i n d i v i d u a l i z e d OR

i n d i v i d u a l i s e d OR t a i l o r e d

Listing 2.7: Second Query for Google Scholar Database

a l l i n t i t l e : ” contextua l bandit ”

p e r s o n a l i z a t i o n OR p e r s o n a l i z e d OR per sona l OR p e r s o n a l i s a t i o n OR

p e r s o n a l i s e d OR customizat ion OR customized OR customised OR

customised OR i n d i v i d u a l i z e d OR i n d i v i d u a l i s e d OR t a i l o r e d
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2.10 Tabular View of Data

Table 2.7: Table containing all included publications. The
first column refers to the data items in Table 2.2.

# Value Publications

1 n [1; 5; 14; 19; 23; 30; 32; 34; 35; 40; 43; 44; 45; 46; 47; 50; 51; 55;

56; 59; 62; 65; 64; 63; 67; 68; 76; 77; 82; 90; 100; 104; 105; 108;

115; 128; 136; 137; 140; 145; 150; 151; 162; 163; 172; 174; 177; 181;

184; 188; 191; 193; 196; 199; 202; 203; 209; 211; 212; 213; 214; 216;

219; 220; 221; 227; 230; 231; 237; 238; 239; 241; 242; 244; 246; 254;

255; 256; 258; 260; 263; 272; 278; 284; 287; 299; 301; 302; 305; 313;

314; 317; 316; 325; 326; 327; 328; 329; 330; 332; 336; 335; 339; 340;

341; 345; 355; 354; 358; 365; 368; 369; 370; 371; 375; 379; 380; 382;

387; 385; 384; 386; 388; 389; 390; 391; 394]

y [3; 10; 12; 52; 54; 81; 91; 95; 93; 96; 94; 98; 111; 112; 125; 129; 170;

182; 190; 198; 240; 248; 249; 270; 279; 304; 311; 314; 342; 343; 344;

347; 353; 356; 374; 376; 377; 383]

2 n [3; 10; 14; 23; 40; 46; 56; 59; 62; 68; 77; 81; 91; 94; 111; 112; 170;

182; 190; 212; 216; 220; 240; 244; 246; 248; 260; 272; 314; 347; 353;

356; 374; 375; 376; 383]

y [1; 5; 12; 19; 30; 32; 34; 35; 43; 44; 45; 47; 50; 51; 52; 54; 55; 65;

64; 63; 67; 76; 82; 90; 95; 93; 96; 98; 100; 104; 105; 108; 115; 125;

128; 129; 136; 137; 140; 145; 150; 151; 162; 163; 172; 174; 177; 181;

184; 188; 191; 193; 196; 198; 199; 202; 203; 209; 211; 213; 214; 219;

221; 227; 230; 231; 237; 238; 239; 241; 242; 249; 254; 255; 256; 258;

263; 270; 278; 279; 284; 287; 299; 301; 302; 304; 305; 311; 313; 314;

317; 316; 325; 326; 327; 328; 329; 330; 332; 336; 335; 339; 340; 341;

342; 343; 344; 345; 355; 354; 358; 365; 368; 369; 370; 371; 377; 379;

380; 382; 387; 385; 384; 386; 388; 389; 390; 391; 394]
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# Value Publications

3 n [1; 3; 5; 10; 12; 14; 19; 23; 30; 32; 34; 43; 44; 45; 46; 47; 50; 52; 54;

55; 56; 59; 62; 63; 76; 77; 81; 82; 90; 91; 95; 93; 96; 94; 100; 105;

108; 111; 112; 115; 128; 129; 137; 140; 145; 150; 151; 162; 170; 172;

177; 181; 182; 184; 190; 191; 196; 199; 202; 203; 209; 211; 213; 214;

216; 219; 220; 227; 230; 231; 237; 239; 240; 241; 242; 244; 248; 249;

254; 256; 258; 260; 263; 270; 272; 278; 287; 299; 301; 302; 304; 305;

311; 313; 314; 317; 316; 325; 326; 327; 328; 329; 330; 332; 335; 339;

341; 345; 353; 355; 354; 356; 358; 365; 368; 369; 370; 371; 374; 375;

376; 377; 379; 380; 383; 387; 385; 384; 386; 388; 389; 390; 391; 394]

y [35; 40; 51; 65; 64; 67; 68; 98; 104; 125; 136; 163; 174; 188; 193; 198;

212; 221; 238; 246; 255; 279; 284; 336; 340; 342; 343; 344; 347; 382]

4 n [3; 5; 10; 14; 19; 23; 30; 32; 34; 35; 40; 43; 44; 45; 46; 47; 50; 51;

52; 54; 55; 56; 59; 62; 65; 64; 63; 67; 68; 76; 77; 81; 82; 90; 91; 95;

93; 96; 94; 98; 100; 104; 105; 108; 111; 115; 125; 128; 129; 136; 137;

145; 150; 151; 162; 163; 170; 172; 174; 181; 182; 184; 188; 190; 191;

193; 196; 198; 199; 202; 203; 209; 211; 212; 213; 214; 216; 219; 220;

221; 227; 230; 231; 237; 238; 239; 240; 241; 242; 244; 246; 248; 249;

254; 255; 256; 258; 260; 263; 270; 272; 278; 279; 284; 299; 301; 302;

304; 305; 311; 313; 314; 317; 316; 325; 326; 327; 328; 329; 330; 332;

336; 335; 339; 340; 341; 342; 344; 345; 347; 353; 355; 354; 358; 365;

368; 369; 370; 371; 374; 375; 376; 377; 379; 380; 382; 383; 387; 385;

384; 386; 388; 389; 391; 394; 12]

y [1; 112; 140; 177; 287; 314; 343; 356; 390]
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# Value Publications

5 n [1; 3; 10; 14; 19; 23; 34; 40; 43; 44; 45; 46; 47; 50; 52; 54; 55; 59;

62; 63; 77; 81; 82; 90; 91; 98; 100; 108; 111; 115; 125; 128; 136;

137; 140; 145; 150; 151; 162; 170; 172; 174; 177; 181; 182; 184; 188;

190; 191; 193; 196; 198; 202; 203; 213; 214; 216; 220; 221; 227; 230;

231; 237; 240; 241; 242; 244; 246; 249; 254; 255; 258; 260; 263; 270;

272; 278; 279; 284; 287; 299; 301; 302; 305; 311; 313; 314; 316; 325;

326; 328; 329; 330; 336; 335; 339; 340; 341; 343; 344; 347; 353; 355;

354; 356; 358; 365; 368; 369; 375; 376; 379; 380; 383; 387; 385; 384;

386; 388; 389; 390; 391; 394]

y [5; 12; 30; 32; 35; 51; 56; 65; 64; 67; 68; 76; 95; 93; 96; 94; 104;

105; 112; 129; 163; 199; 209; 211; 212; 219; 238; 239; 248; 256; 304;

317; 327; 332; 342; 345; 370; 371; 374; 377; 382]

6 n [1; 3; 5; 12; 14; 23; 30; 32; 40; 44; 45; 46; 50; 51; 52; 59; 62; 64; 63;

67; 68; 76; 77; 81; 82; 90; 91; 94; 98; 104; 105; 108; 125; 128; 129;

136; 137; 145; 150; 151; 162; 163; 172; 174; 182; 193; 196; 198; 199;

202; 203; 209; 211; 212; 214; 219; 220; 221; 231; 237; 238; 239; 241;

242; 244; 248; 249; 255; 256; 260; 272; 278; 284; 287; 301; 304; 305;

313; 314; 317; 316; 326; 339; 340; 341; 342; 344; 345; 353; 358; 365;

368; 379; 382; 387; 385; 384; 386; 388; 394]

y [10; 19; 34; 35; 43; 47; 54; 55; 56; 65; 95; 93; 96; 100; 111; 112; 115;

140; 170; 177; 181; 184; 188; 190; 191; 213; 216; 227; 230; 240; 246;

249; 254; 258; 263; 270; 279; 299; 302; 311; 314; 325; 327; 328; 329;

330; 332; 336; 335; 343; 347; 355; 354; 356; 369; 370; 371; 374; 375;

376; 377; 380; 383; 389; 390; 391]

7 n [1; 19; 23; 30; 45; 46; 47; 50; 51; 55; 56; 59; 62; 65; 76; 77; 81; 82;

91; 100; 104; 108; 115; 125; 151; 163; 170; 172; 174; 182; 188; 193;

202; 203; 211; 212; 220; 221; 230; 237; 239; 240; 244; 248; 254; 255;

256; 260; 272; 279; 287; 299; 305; 311; 313; 314; 339; 340; 341; 343;

344; 347; 358; 376; 379; 382; 385; 384; 386]
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# Value Publications

y [3; 5; 10; 12; 14; 32; 34; 35; 40; 43; 44; 52; 54; 64; 63; 67; 68; 90;

95; 93; 96; 94; 98; 105; 111; 112; 128; 129; 136; 137; 140; 145; 150;

162; 177; 181; 184; 190; 191; 196; 198; 199; 209; 213; 214; 216; 219;

227; 231; 238; 241; 242; 246; 249; 258; 263; 270; 278; 284; 301; 302;

304; 314; 317; 316; 325; 326; 327; 328; 329; 330; 332; 336; 335; 342;

345; 353; 355; 354; 356; 365; 368; 369; 370; 371; 374; 375; 377; 380;

383; 387; 388; 389; 390; 391; 394]

8 n [35; 43; 46; 50; 54; 56; 90; 98; 104; 111; 140; 177; 190; 191; 198;

202; 227; 241; 246; 260; 278; 325; 328; 335; 344; 355; 354; 356; 358;

368; 377; 380; 388; 390]

y [1; 3; 5; 10; 12; 14; 19; 23; 30; 32; 34; 40; 44; 45; 47; 51; 52; 55; 59;

62; 65; 64; 63; 67; 68; 76; 77; 81; 82; 91; 95; 93; 96; 94; 100; 105;

108; 112; 115; 125; 128; 129; 136; 137; 145; 150; 151; 162; 163; 170;

172; 174; 181; 182; 184; 188; 193; 196; 199; 203; 209; 211; 212; 213;

214; 216; 219; 220; 221; 230; 231; 237; 238; 239; 240; 242; 244; 248;

249; 254; 255; 256; 258; 263; 270; 272; 279; 284; 287; 299; 301; 302;

304; 305; 311; 313; 314; 317; 316; 326; 327; 329; 330; 332; 336; 339;

340; 341; 342; 343; 345; 347; 353; 365; 369; 370; 371; 374; 375; 376;

379; 382; 383; 387; 385; 384; 386; 389; 391; 394]

10 1 [1; 5; 14; 19; 32; 44; 45; 46; 47; 50; 54; 55; 59; 62; 65; 64; 68; 76;

82; 90; 100; 104; 108; 128; 129; 136; 137; 140; 150; 151; 163; 170;

172; 177; 182; 184; 188; 190; 202; 211; 212; 213; 221; 230; 238; 239;

241; 244; 256; 258; 260; 263; 284; 287; 299; 304; 305; 313; 314; 317;

316; 325; 326; 327; 328; 329; 330; 336; 335; 340; 341; 342; 343; 345;

347; 353; 355; 354; 356; 369; 370; 371; 374; 376; 379; 382; 385; 384;

388; 391; 394]

1/group [30; 63; 181; 191; 196; 203; 209; 254; 358; 365; 386]
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# Value Publications

1/person [10; 12; 23; 34; 35; 40; 43; 51; 52; 56; 67; 81; 91; 95; 93; 96; 94;

98; 105; 111; 112; 115; 125; 145; 162; 174; 193; 198; 199; 214; 216;

219; 220; 231; 237; 240; 242; 246; 248; 249; 255; 270; 272; 278; 279;

301; 302; 311; 332; 339; 344; 368; 375; 377; 380; 383; 387; 389]

multiple [3; 77; 227; 314; 390]

11 not

used

[10; 12; 14; 23; 30; 32; 40; 44; 46; 50; 52; 54; 55; 59; 62; 65; 63;

67; 68; 82; 91; 94; 100; 105; 108; 111; 128; 129; 136; 140; 150; 151;

162; 170; 172; 182; 190; 191; 198; 202; 213; 214; 221; 230; 231; 241;

242; 244; 249; 260; 279; 284; 299; 305; 313; 314; 317; 325; 326; 332;

336; 339; 345; 347; 353; 356; 368; 369; 374; 376; 387; 389; 391]

other [3; 34; 43; 112; 115; 219; 220; 227; 248; 255; 258; 270; 328; 330;

379; 382; 390]

state

repre-

senta-

tion

[1; 5; 19; 35; 45; 47; 51; 56; 64; 76; 77; 81; 90; 95; 93; 96; 98; 104;

125; 137; 145; 163; 174; 177; 181; 184; 188; 193; 196; 199; 203; 209;

211; 212; 216; 237; 238; 239; 240; 246; 249; 254; 256; 263; 272; 278;

287; 301; 302; 304; 311; 314; 316; 327; 329; 335; 340; 341; 342; 343;

344; 355; 354; 358; 365; 370; 371; 375; 377; 380; 383; 385; 384; 386;

388; 394]

12 batch [1; 54; 55; 62; 77; 81; 90; 95; 93; 96; 94; 112; 140; 163; 170; 181;

193; 202; 203; 209; 211; 212; 216; 238; 239; 248; 256; 258; 272; 311;

314; 317; 316; 325; 326; 329; 330; 332; 336; 335; 340; 355; 354; 369;

377; 379; 385; 384; 386; 388; 390; 394]

n [368]

online [10; 12; 32; 34; 35; 40; 43; 44; 47; 51; 52; 56; 64; 68; 76; 91; 98; 104;

105; 108; 111; 125; 137; 145; 150; 151; 162; 174; 177; 182; 184; 188;

190; 191; 198; 199; 214; 219; 220; 221; 230; 231; 240; 241; 242; 246;

249; 270; 278; 279; 284; 287; 299; 301; 302; 304; 313; 327; 328; 342;

344; 345; 347; 356; 370; 371; 374; 375; 376; 383; 387; 389; 391]

other [67; 115; 128; 227; 237; 254; 358; 380]
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# Value Publications

unknown [3; 5; 14; 19; 23; 30; 45; 46; 50; 59; 65; 63; 82; 100; 129; 136; 172;

196; 213; 244; 255; 260; 263; 305; 314; 339; 341; 343; 353; 365; 382]

13 n [1; 3; 10; 19; 34; 44; 45; 46; 47; 50; 52; 54; 55; 56; 62; 65; 77; 82;

100; 115; 140; 150; 151; 163; 170; 172; 177; 181; 182; 184; 188; 190;

196; 202; 203; 211; 212; 213; 214; 216; 221; 230; 238; 239; 240; 241;

242; 244; 249; 254; 256; 258; 263; 270; 272; 287; 299; 301; 302; 305;

311; 313; 314; 329; 330; 332; 336; 335; 341; 343; 347; 353; 354; 365;

368; 369; 370; 371; 374; 376; 379; 380; 382; 383; 385; 388; 389; 391]

y [5; 12; 14; 23; 30; 32; 35; 40; 43; 51; 59; 64; 63; 67; 68; 76; 81; 90;

91; 95; 93; 96; 94; 98; 104; 105; 108; 111; 112; 125; 128; 129; 136;

137; 145; 162; 174; 191; 193; 198; 199; 209; 219; 220; 227; 231; 237;

246; 248; 249; 255; 260; 278; 279; 284; 304; 314; 317; 316; 325; 326;

327; 328; 339; 340; 342; 344; 345; 355; 356; 358; 375; 377; 387; 384;

386; 390; 394]

14 n [3; 5; 10; 12; 14; 23; 30; 32; 35; 40; 43; 44; 45; 46; 47; 50; 51; 52;

54; 56; 59; 64; 63; 67; 68; 90; 91; 95; 93; 96; 94; 98; 100; 104; 105;

108; 111; 112; 115; 129; 136; 137; 145; 150; 151; 162; 172; 174; 184;

191; 193; 196; 198; 199; 209; 219; 220; 221; 231; 237; 241; 244; 246;

248; 249; 255; 260; 270; 278; 279; 284; 287; 299; 302; 304; 313; 314;

325; 339; 341; 342; 343; 344; 345; 347; 353; 355; 358; 368; 374; 375;

376; 377; 387; 384; 386; 388; 389; 391]

y [1; 19; 34; 55; 62; 65; 76; 77; 81; 82; 125; 128; 140; 163; 170; 177;

181; 182; 188; 190; 202; 203; 211; 212; 213; 214; 216; 227; 230; 238;

239; 240; 242; 254; 256; 258; 263; 272; 301; 305; 311; 314; 317; 316;

326; 327; 328; 329; 330; 332; 336; 335; 340; 354; 356; 365; 369; 370;

371; 379; 380; 382; 383; 385; 390; 394]
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# Value Publications

15 n [1; 3; 12; 14; 19; 23; 30; 32; 34; 40; 43; 45; 46; 50; 51; 54; 55; 59;

62; 65; 64; 63; 67; 68; 76; 77; 81; 82; 90; 91; 94; 98; 104; 105; 108;

112; 125; 129; 136; 140; 145; 162; 163; 170; 177; 181; 182; 188; 190;

191; 193; 196; 199; 202; 203; 209; 211; 212; 213; 214; 216; 219; 220;

227; 230; 231; 237; 238; 239; 240; 242; 244; 246; 248; 249; 254; 255;

256; 258; 260; 272; 278; 279; 284; 301; 304; 305; 311; 314; 317; 316;

325; 326; 327; 328; 330; 336; 335; 339; 340; 341; 342; 343; 344; 345;

353; 355; 354; 358; 365; 368; 369; 370; 371; 377; 379; 382; 383; 385;

384; 386; 388; 390; 394]

y [5; 10; 35; 44; 47; 52; 56; 95; 93; 96; 100; 111; 115; 128; 137; 150;

151; 172; 174; 184; 198; 221; 241; 249; 263; 270; 287; 299; 302; 313;

314; 329; 332; 347; 356; 374; 375; 376; 380; 387; 389; 391]

16 n [1; 3; 10; 19; 34; 44; 45; 46; 47; 50; 52; 54; 55; 56; 62; 77; 82; 100;

115; 125; 137; 140; 150; 151; 163; 170; 172; 177; 181; 184; 188; 190;

196; 202; 203; 211; 212; 213; 214; 216; 221; 230; 238; 239; 240; 241;

242; 244; 249; 254; 256; 258; 263; 270; 272; 287; 299; 301; 302; 305;

311; 313; 314; 329; 330; 332; 336; 335; 341; 343; 344; 347; 353; 354;

365; 368; 369; 370; 371; 374; 376; 380; 382; 383; 385; 388; 389; 391]

y [5; 12; 14; 23; 30; 32; 35; 40; 43; 51; 59; 65; 64; 63; 67; 68; 76; 81;

90; 91; 95; 93; 96; 94; 98; 104; 105; 108; 111; 112; 128; 129; 136;

145; 162; 174; 182; 191; 193; 198; 199; 209; 219; 220; 227; 231; 237;

246; 248; 249; 255; 260; 278; 279; 284; 304; 314; 317; 316; 325; 326;

327; 328; 339; 340; 342; 345; 355; 356; 358; 375; 377; 379; 387; 384;

386; 390; 394]
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# Value Publications

17 n [3; 5; 10; 12; 14; 23; 30; 32; 35; 40; 43; 44; 45; 46; 47; 50; 51; 52; 54;

55; 56; 59; 65; 64; 63; 67; 68; 90; 91; 95; 93; 96; 94; 98; 100; 104;

105; 108; 111; 112; 115; 129; 136; 137; 145; 150; 151; 162; 172; 174;

182; 184; 191; 193; 196; 198; 199; 209; 219; 220; 221; 230; 231; 237;

241; 244; 246; 248; 249; 255; 260; 270; 278; 279; 284; 287; 299; 302;

304; 313; 314; 316; 325; 332; 339; 341; 342; 343; 344; 345; 347; 353;

355; 358; 368; 374; 375; 376; 377; 379; 387; 384; 388; 389; 391]

y [1; 19; 34; 62; 76; 77; 81; 82; 125; 128; 140; 163; 170; 177; 181; 188;

190; 202; 203; 211; 212; 213; 214; 216; 227; 238; 239; 240; 242; 254;

256; 258; 263; 272; 301; 305; 311; 317; 326; 327; 328; 329; 330; 336;

335; 340; 354; 356; 365; 369; 370; 371; 380; 382; 383; 385; 386; 390;

394]

18 n [1; 3; 12; 14; 19; 23; 30; 32; 34; 40; 43; 45; 46; 50; 51; 59; 62; 65;

64; 63; 67; 68; 76; 77; 81; 82; 90; 91; 94; 98; 104; 105; 108; 112;

125; 136; 140; 145; 162; 163; 170; 177; 181; 188; 190; 191; 193; 196;

199; 202; 203; 209; 211; 212; 213; 214; 216; 219; 220; 227; 231; 237;

238; 239; 240; 242; 244; 246; 248; 249; 254; 255; 256; 258; 260; 272;

278; 284; 301; 304; 305; 311; 316; 325; 326; 327; 328; 330; 336; 335;

339; 340; 341; 342; 343; 344; 345; 353; 355; 354; 358; 365; 368; 369;

377; 379; 382; 383; 385; 384; 386; 394]

y [5; 10; 35; 44; 47; 52; 54; 55; 56; 95; 93; 96; 100; 111; 115; 128; 129;

137; 150; 151; 172; 174; 182; 184; 198; 221; 230; 241; 249; 263; 270;

279; 287; 299; 302; 313; 314; 317; 329; 332; 347; 356; 370; 371; 374;

375; 376; 380; 387; 388; 389; 390; 391]

76



2.10. Tabular View of Data

# Value Publications

19 n [1; 3; 12; 32; 34; 40; 43; 44; 45; 46; 47; 50; 55; 56; 62; 65; 64; 63;

68; 81; 82; 90; 91; 95; 93; 96; 98; 104; 112; 125; 128; 136; 137; 140;

145; 150; 151; 170; 172; 181; 184; 188; 190; 191; 193; 196; 198; 199;

202; 203; 213; 214; 216; 219; 220; 221; 230; 231; 239; 240; 241; 244;

246; 248; 249; 254; 255; 258; 270; 272; 278; 279; 284; 287; 299; 304;

305; 313; 317; 316; 325; 326; 327; 336; 335; 339; 341; 342; 343; 344;

345; 353; 355; 358; 365; 368; 369; 374; 376; 377; 387; 385; 384; 388;

389; 390; 394]

y [5; 10; 14; 19; 23; 30; 35; 51; 52; 54; 59; 67; 76; 77; 94; 100; 105;

108; 111; 115; 129; 162; 163; 174; 177; 182; 209; 211; 212; 227; 237;

238; 242; 249; 256; 260; 263; 301; 302; 311; 314; 328; 329; 330; 332;

340; 347; 354; 356; 370; 371; 375; 379; 380; 382; 383; 386; 391]

20 n [1; 3; 5; 10; 12; 14; 19; 23; 32; 34; 40; 43; 44; 45; 46; 47; 50; 51; 52;

54; 56; 59; 62; 65; 64; 63; 67; 68; 77; 81; 82; 90; 91; 95; 93; 96; 94;

98; 100; 105; 108; 111; 112; 115; 125; 128; 136; 137; 140; 145; 150;

163; 172; 177; 181; 184; 188; 193; 196; 198; 199; 202; 203; 211; 212;

213; 214; 220; 221; 230; 231; 237; 238; 241; 244; 246; 249; 254; 255;

260; 270; 272; 278; 279; 284; 304; 305; 313; 314; 317; 327; 328; 330;

332; 336; 335; 339; 341; 342; 343; 344; 347; 353; 355; 354; 358; 365;

368; 369; 374; 376; 377; 379; 387; 384; 386; 389; 390; 391]

y [30; 35; 55; 76; 104; 129; 151; 162; 170; 174; 182; 190; 191; 209;

216; 219; 227; 239; 240; 242; 248; 249; 256; 258; 263; 287; 299; 301;

302; 311; 316; 325; 326; 329; 340; 345; 356; 370; 371; 375; 380; 382;

383; 385; 388; 394]

Commerce[1; 34; 45; 77; 90; 128; 137; 181; 190; 196; 198; 199; 216; 227; 241;

263; 326; 329; 330; 336; 335; 358; 374; 375; 379; 383; 385; 388]

Commu-

nica-

tion

[65; 162; 172; 287]
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# Value Publications

Domain

Inde-

pen-

dent

[35; 43; 56; 212; 231; 237; 246; 327; 370; 371; 377]

Education [47; 50; 55; 82; 100; 115; 125; 129; 150; 151; 170; 191; 202; 203;

209; 244; 270; 272; 304; 305; 317; 316; 355; 354; 369]

Energy [145; 219; 220; 248; 345; 387]

Enter-

tain-

ment

[5; 14; 32; 54; 59; 95; 93; 96; 94; 108; 111; 140; 177; 182; 213; 214;

230; 249; 258; 260; 278; 301; 314; 325; 328; 356; 376; 380; 390]

Health [3; 10; 12; 19; 46; 62; 64; 63; 67; 68; 76; 81; 104; 105; 112; 163; 174;

188; 193; 211; 221; 238; 239; 240; 254; 255; 256; 279; 284; 299; 311;

339; 340; 341; 342; 343; 347; 368; 382; 384; 386; 389; 391; 394]

Other [40; 44; 302; 344; 353]

Smart

Home

[52; 91; 184; 332]

Transport [23; 30; 51; 98; 136; 242; 249; 313; 365]

78



3
Personalization: Pooled, Grouped or

Separate?

Part of chapter 3 was published as:

El Hassouni A., Hoogendoorn M., van Otterlo M., Barbaro E. (2018). Personalization of
Health Interventions Using Cluster-Based Reinforcement Learning. In: Miller T. et al.
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Lecture Notes in Computer Science, vol 11224, pp. 467–475. Springer, Cham.

Furthermore, this chapter is under review as a journal extention:

El Hassouni, A., M. Hoogendoorn, M. van Otterlo, A. E. Eiben, V. Muhonen and E.
Barbaro (2020). A clustering-based reinforcement learning approach for tailored
personalization of e-Health interventions.
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Abstract - Personalization is very powerful in improving the effectiveness

of health interventions. Reinforcement learning (RL) algorithms are suitable

for learning these tailored interventions from sequential data collected about

individuals. However, learning can be very fragile. The time to learn intervention

policies is limited as disengagement from the user can occur quickly. Also, in

e-Health intervention timing can be crucial before the optimal window passes.

We present an approach that learns tailored personalization policies for groups

of users by combining RL and clustering. The benefits are two-fold: speeding

up the learning to prevent disengagement while maintaining a high level of

personalization. Our clustering approach utilizes dynamic time warping to

compare user trajectories consisting of states and rewards. We apply online

and batch RL to learn policies over clusters of individuals and introduce our

self-developed and publicly available simulator for e-Health interventions to

evaluate our approach. We compare our methods with an e-Health intervention

benchmark. We demonstrate that batch learning outperforms online learning

for our setting. Furthermore, our proposed clustering approach for RL finds

near-optimal clusterings which lead to significantly better policies in terms of

cumulative reward compared to learning a policy per individual or learning one

non-personalized policy across all individuals. Our findings also indicate that

the learned policies accurately learn to send interventions at the right moments

and that the users workout more and at the right times of the day.

3.1 Introduction

The amount of data being collected about people’s health state and behaviour

has seen a huge increase in the last decade [232; 6; 233; 126; 22]. This informa-

tion originates from many different sources ranging from medical devices and

medical doctors at hospitals to smartphones, smartwatches, and other sensory

devices people carry and use daily. Consequently, these devices are a good source

of useful data and at the same time, they can be used to provide interventions to

users directly [269]. In healthcare in general, and e-Health specifically, learning

which interventions work best in varying situations is a very relevant and impor-
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tant problem. Generally, one-size-fits-all solutions, where different users may be

provided with the same intervention, are shown to be less effective compared to

approaches that rely on personalization where tailoring interventions towards

(groups of) users is common (see e.g. [164; 295; 309; 60; 48]). The data collected

around these users is being used to perform such personalization [48].

Personalization [89] of interventions poses several challenges. Firstly, the

success of interventions is not immediately clear, and an emphasis should be

placed on interventions that lead to a sustained improvement in the health state

rather than quick wins [41]. Secondly, interventions are typically composed of

sequences of actions (e.g. multiple support messages or exercises) that should

act in harmony [119]. To address these challenges, reinforcement learning (RL)

(see e.g. [362]) arises as a very natural choice (cf. [134]).

While the RL paradigm fits this setting very well, certain properties of RL

do not. The algorithms typically require a substantial learning period before a

suitable policy (specifying which intervention action to select in what situation)

is found [80]. In health settings in general, we do not have a sufficiently long

learning period per user, and trying a lot of unsuitable actions can disengage

users [165]. Hence, there is a need to substantially shorten the learning period.

To establish this, we can either: (1) start with an existing model (transfer

learning, see e.g. [331]) or (2) pool data from multiple users that are similar to

learn policies (cf. [392]). While both are viable options, the latter one has not

been explored for more complex and realistic health settings yet [73].

Several avenues have been explored to shorten the learning period. Transfer

learning (see e.g. [331]) is one of them, where one learns a policy for one user

(or across all users) which can be reused (and tailored) to other users. Recently,

an RL algorithm that learns a policy for clusters of users has been proposed

(cf. [392]). In experiments, both approaches have shown to be viable to improve

the learning speed.

In this paper, we extend our earlier work [88] that presents a cluster-based

RL algorithm and evaluates it for a complex e-Health setting using a dedicated

simulator we have built where interventions are sent to users to maximize

a certain goal (e.g. working out). In this work, we perform more extensive
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experiments and analyses of the obtained results. Furthermore, we test the

applicability of our methods in different e-Health scenario’s and compare them

to an e-Health setting from [392] that is based on the real-word HeartSteps [71]

dataset. We use k-Medoids clustering [152] with Dynamic Time Warping (DTW)

[29] as the distance function to find suitable clusters, thereby automatically

selecting a value for k using the silhouette score [283]. We learn policies over the

clusters using both an online RL algorithm (Q-learning, cf. [360]) and a batch

algorithm (Least-Squares Policy Iteration (LSPI). cf. [168]). We compare the

cluster-based approach to learning a single policy across all users and learning

completely individualized policies. The aforementioned simulation environment

we developed generates realistic user data for an e-Health setting. Here, the

aim is to coach users towards a more active lifestyle. The simulator is made

publicly available to allow for benchmarking and make it easier for others to

evaluate novel RL approaches for this setting 1.

In comparison with [392], our approach relies on a more sophisticated and

complex simulation environment where several types of users defined by a

lifestyle schedule and personality are simulated with each their own behavioral

profile and personal preferences which allows for highly personalized policies.

Furthermore, we perform clustering using a state-of-the-art distance measure

to learn optimal policies for clusters of users. We subsequently argue and

empirically demonstrate that the stochasticity in the behavior of users makes

the simulation environment a robust testbed for RL algorithms.

This paper is organized as follows. We discuss related work in Section 2

and present our cluster-based RL algorithm in Section 3. We continue with

a description of the simulator we have developed in Section 4 along with a

description of the HeartSteps benchmark. We then explain our experimental

setup and our results in Sections 6 and 7 respectively. We close with a discussion.

1An RL multi-agent simulation environment for e-Health [83]:
www.zenodo.org/record/3826055
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3.2 Related Work

In recent years personalization using RL has seen a significant upward trend

in many domains and especially in healthcare applications [73; 109; 9; 386;

378; 308; 306; 86]. Judging from the systematic literature review by [den

Hengst et al., 2020], several interesting statistics were found with regards to the

application of RL for personalization problems [73]. For the papers that rely on

RL for personalization, all information to base the personalization on was found

to be accessible directly from data generated by the users of the RL system

[67; 342; 18; 34]. Interestingly, only a small part of the papers considered

the privacy and safety aspects of the application of RL for personalization

[112; 67; 336]. As for the suitability of system behaviour towards users, in

most cases this was derived from data instead of explicitly asking the users

[342; 67; 336; 18; 86; 35]. Furthermore, it is observed that a large percentage of

publications across all domains rely on simulations for both policy development

and algorithm evaluation [73]. Finally, most RL applications for personalization

develop one policy across all users and most of the remaining work develops

one policy per user [73].

We model the personalization system as an RL system that can act by

sending interventions to users. The goal is to find a (stochastic) mapping from

user states to interventions, by exploring possible strategies to do so, based

only on evaluative feedback on performance. This use of RL for intervention

strategies in health, wellness, coaching, and fitness applications is a relatively

new development, although much other work has considered various nudging

approaches to stimulate human users to do particular things in various ways

[208; 351; 318; 38; 123]. To illustrate, adaptive persuasive systems [149] have

been tested in field trials, for instance to increase the effectiveness of e-mail

reminders.

RL techniques [362; 321] are ideally suited for sequential decision making

problems in health interventions, dynamic treatment regimes [46], or in moti-

vational strategies in citizen science [298]. Work in this area has just begun

to explore computational approaches. Several problems in (mobile) healthcare
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generate new challenges for RL, such as the problem of missing data, privacy,

and especially the difficulty of interactive simulations with real human data

[80; 73]. For that reason we implemented a realistic simulator as an alternative

data gathering option. A challenge is, however, to keep as close as possible to

actual human data.

[Hochberg et al., 2016] compare RL – in particular contextual bandits

– with static reminder policies to encourage diabetes patients through SMS

interventions [130]. [Raghu et al., 2017] combine continuous state-space models

and deep neural networks for the treatment of sepsis [267] and [Rudary et al.,

2004] combine RL with constraints for reminder support [285]. The latter also

shows several forms of personalization that result from learning from patients

with different (scheduling) habits.

The work by [Zhu et al., 2017] is related to ours, in that they too focus

on clustering the set of users for personalization purposes and use a form of

linear function approximation based batch learning as part of their approach

[392]. In addition to algorithmic differences in learning but also in clustering,

a major difference is that we base our experiments on extensive runs with

our novel simulator that allows for users that show complex behaviors, have

defined behavioral profiles, and thus show much more realistic behavior. We

also employ a more sophisticated distance measure in the form of DTW to find

optimal clusters of users and use two types of learning in the form of online and

batch learning. Some other work exists (cf. the mentioned papers) but so far,

most are limited to a few datasets and relatively simple methods. The work

by [Raghu et al., 2017] is already a step to employ more advanced methods

based on deep learning [267], but many other recent techniques in RL will be

applicable for e-Health applications (cf. [180; 86]).

Our work is also related to multi-task RL, where the goal is to learn policies

for multiple problems simultaneously. Some work model an explicit distribution

over problems [363], or distill a general policy which can be made more specific

[333]. In contrast, we focus on clustering groups of users that are alike and

learning separate, more specialized policies. Our work is also related to transfer

learning [331] where learned policies can be transferred to other tasks, in our
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case from group level to subgroup level.

3.3 Methodology

In general terms, our goal is to learn an intervention strategy (i.e. an RL policy)

for a group consisting of different users. In our setting, which types exist, how

their behaviour varies, and how different their responses are to the system’s

intervention, should be unknown beforehand. In our approach, we utilize existing

model-free RL algorithms to experiment with different intervention strategies to

improve user’s health states. This approach allows us to omit learning models

of the environment that would require large amounts of experiences.

3.3.1 User Models and Interventions

Let U be the set of users. We see each user u ∈ U as a control problem modeled

as a Markov decision process (MDP) [362] Mu = 〈Su, I, Tu, Ru〉, where Su is a

finite set of finite states the user u can be in, I is the set of possible interventions

(actions) for u, Tu :: Su × I × Su → [0,1] is a probabilistic transition function

over the states of u, and Ru :: Su × I → R is a reward function that assigns a

reward r = Ru(su, i) to each state su ∈ Su and action i ∈ I.

In our system, the set of interventions I contains a binary action as {yes, no},
representing at each decision moment whether the system sends an intervention

or not. The user’s state set Su consists of the observable features of the user

state. In general, we cannot observe all relevant features of the true underlying

user state strue and Su is therefore restricted to all measurable aspects, modeled

through a set of basis functions over a state su ∈ Su. That is, we use the feature

vector representation ~φ(su) = 〈φ1(su), φ2(su), . . . , φn(su)〉> of the state su ∈ S
of user u as representation. If there is no confusion we will use su instead of

~φ(su). In our case studies, we choose features that are realistically observable

through sensor information, or inferrable.

The transition function Tu, which determines how a user u ∈ U moves from

state su ∈ Su to s′u ∈ Su due to action i ∈ I, is not accessible from the viewpoint
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of the reinforcement learner, which is a natural assumption when dealing with

real human users. In Section 3.4.1, we do show how we have implemented it

for the artificial users in our simulator. The granularity of modeling Tu can be

set based on the case at hand, ranging from seconds to hours, denoted ∆t.

Important to note here is that although the time-scale δt, in reality, can be

fine-grained (e.g. δt is one second), for the learning algorithms we model Tu at

a coarser granularity ∆t (e.g. ∆t is one hour): every time point a user u is in

some state su ∈ S, the system chooses an intervention i ∈ I, upon which the

user enters a new state s′u and a reward r is obtained. Note that for both the

transition function and the reward function it is unknown whether they can be

considered Markov, and thus whether the user can be controlled as an MDP.

Nevertheless, we assume it is close enough such that we can employ standard

RL algorithms. With a state that is Markov, we can make predictions of future

states using only the current state. Note also that all users share the same state

representation, but can differ in Ru and Tu. An alternative strategy would be

to learn the dynamics of Tu and Ru from experience as in model-based RL (e.g.

see [321]), but here we focus on learning them implicitly by clustering users

who are similar in their behavior (and thus Tu and Ru).

3.3.2 Evaluating and Learning Interventions

The goal is to learn intervention strategies, or policies, for all users. For

any user u ∈ U , π :: Su → I specifies the intervention for user u in state

su. The intervention i = π(su) will cause user u to transition to a new

state s′u and a reward r = Ru(su, i) is obtained, resulting in the experience

〈su, i, r, s′u〉. A sequence of experiences for user u can be compactly represented

as 〈su, i, r, s′u, i′, r′, s′′u, i′′, r′′, . . .〉 and is called a trace for user u. For the sake

of simplicity we will drop the user subscript if possible. To compare policies,

we look at the expected reward they receive in the long run. The value of doing
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Algorithm 4: Q-Learning - An off-policy Temporal-Difference RL
algorithm [360]

1 Parameters
2 α ∈ (0, 1] is the learning rate
3 ε > 0 is exploration probability.
4 Initialize
5 Q(s,i) ∀ s ∈ S, s ∈ S. For terminal states initialize the value with 0.
6 for each episode do
7 Initialize s
8 for each step in episode do
9 Choose action i = π(s) (e.g. using )

Take action i′, obtain reward r and next state s′

Q(s, i)← Q(s, i) + α[r + γmaxi′∈I Q(s′, i′)−Q(s, i)] s← s′

10 Stop loop if s is terminal

11 end

12 end
13 return Q

intervention i ∈ I in state s of policy π, where π(s) = i, is:

Qπ(s, i) = Eπ{
∞∑
k=0

γkrt+k+1|st = s, it = i} (3.1)

where γ is a discount factor weighing rewards in the future, and st and it are

states and actions occurring at some future time t. From this Q-function it is

easy to derive a policy, by taking the best action i ∈ I in each state s ∈ S, i.e.

π′(s) = arg max
i∈I

Qπ(s, i), ∀s ∈ S (3.2)

We are looking for the best policy, which is Q∗(s, i) = maxπ Q
π(s, i) for all

s ∈ S and i ∈ I, and ∀π for some restricted policy class.

We employ two off-policy techniques to learn Q-functions: online, table-

based Q-learning [360] and batch, feature-based least squares policy iteration

(LSPI) [168]. Let U be our set of users. For Q-learning we store each Q-value

Q(s, i), for s ∈ S and i ∈ I separately, and after each experience (s, i, r, s′) for
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Algorithm 5: Least-Squares Policy Iteration (LSPI) - An off-policy
RL algorithm [168]

1 Parameters
2 E is the set of experiences (s, i, r, s′)
3 k is the number of basis functions

4 ~φ is the vector of basis functions
5 γ is the discount factor
6 µ is the stopping criterion.
7 Initialize
8 E ← E0 (e.g. empty set of experiences)
9 ~w′ ← ~w0, ~w ← ~w′, (default ~w0 ← 0)

10 while ¬(‖~w − ~w′‖) < µ do
11 Update E (optionally add/remove samples, or leave unaltered).
12 ~w ← ~w′

13 ~w′ ← LSDQ(E, k,~φ, γ, µ)

14 end
15 return w

a user u ∈ U we update the Q-function:

Q(s, i)← Q(s, i) + α[r + γmax
i′∈I

Q(s′, i′)−Q(s, i)] (3.3)

where α is the learning rate. Note that for all users U together one Q-function

is learned. Algorithm 4 depicts Q-learning. In addition, we use variants of

experience replay [185] which amounts to performing additional updates by

”replaying” experienced traces backward to propagate rewards quicker. In our

setting, we sample the experience pairs in chronological order instead of random.

Using disjoint experience pairs would have been the better alternative if the set

of traces we learn from was larger.

In our second method, LSPI, we employ the basis function representation

~φ(s) of a state and compute a linear function approximation of the Q-function,

Q̂ =
∑k
j=1 φ(s)wk, from a batch of experiences E. Here, ~w = 〈w1, . . . , wk〉

consists of tunable weights. LSPI implements an approximate version of standard

policy iteration (cf. [321]) by alternating a policy evaluation step (Eq 8.1) and a
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Algorithm 6: LSDQ(E, k, ~φ, γ, µ) [168]

1 Parameters
2 E is the set of experiences (s, i, r, s′)
3 k is the number of basis functions

4 ~φ is the vector of basis functions
5 γ is the discount factor
6 π is the learned policy
7 Initialize

8 Ã← (k x k)

9 b̃← (k x 1)
10 for each(s, i, r, s′) ∈ E do

11 Ã← Ã + ~φ(s, i)[~φ(s, i)− γ~φ(s′, π(s′))]T

b̃← b̃+ ~φ(s, i)r
12 end

13 w̃π ← Ã
−1
b̃

14 return w̃π

policy improvement step (Eq 8.2). However, due to the linear approximation,

the evaluation step can be computed by representing the batch of experiences in

matrix form and using them to find an optimal weight vector ~w using algorithms

5 and 6. Various methods can be employed for this, and in our experiments we

build on the implementation by David Schwab 2.

3.3.3 Two Learning Phases

For any given set of users, we define two phases in learning an optimization

strategy. In the first phase (warm-up) we employ a default policy πdef (see

the experimental section for details) to generate traces for each user, and use

all experiences of all users to compute Qπdef . By maximization (Eq. 8.2) we

obtain a better policy π′ that is used at the start of the second phase (learning).

During this phase, we iteratively apply the policy to obtain experiences and

update our Q-function (and policy) using either Q-learning or LSPI. In this

phase some exploration is used, reducing the amount of exploration ε over time.

2https://pypi.python.org/pypi/lspi-python/1.0.1
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Figure 3.1: An illustration of the difference between DTW
and Euclidean distance applied on the same two sequences
that are out of phase.

After the learning phase, we fix the policy and enter the performance phase to

evaluate the performance of this final policy. Figure 3.3 provides an overview

of the 3 phases warm-up, learning, and performance.

3.3.4 Cluster-Based Policy Improvement

So far, we have assumed all users belong to one group. Our main hypothesis is

that since users have different (but unknown) transition and reward functions,

learning one general policy for all users will not be optimal. To remedy this,

we add a clustering step after the warm-up phase. We employ the K-Medoids

clustering algorithm using DTW [29] as the distance measure. Earlier work in

e-Health settings has shown that K-Medoids provide good results for clustering

users based on behavioral traces [392; 121]. The advantage of using DTW over

the default Euclidean distance is that DTW measures the similarity of two users

by calculating the optimal match between the traces of these users, which may

be out of phase. The traces that are used here contain the states and reward

defined as 〈su, r, s′u, r′, s′′u, r′′, . . .〉. To find the optimal match several rules have

to be met: (1) every data point from the trace of each user has to be matched

with at least one data point from the trace of the other user, (2) the first data

point from the trace of the first user has to be matched with that of the second

user, (3) the last data point from the trace of the first user has to be matched

with that of the second user, and (4) the mapping of the data points from the
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trace of the first user to those of the second user must increase monotonically.

We split the traces of users by day and deploy DTW to calculate the optimal

match. We demonstrate the difference between the Euclidean distance and

DTW in figure 3.1. For two signals that are out phase, dynamic time warping

will be able to match these signals better leading to a better distance measure.

Let U be the set of users targeted in the warm-up phase and let ΣU be the

set of all traces generated. Let Σ′ui,m be the experiences of user i during day m

excluding the interventions. The similarity between users u1 and u2 is defined

as:

SDTW (u1, u2) =

M∑
m=0

dtw(Σu1,m ,Σu2,m). (3.4)

Applying the K-medoids algorithm yields a clustering. Let the number

of resulting clusters be k and ΣU
1 , . . . ,Σ

U
k be the partitioning of ΣU , and let

U1, . . . Uk be the partitioning of U . Instead of utilizing all experiences of U for

one Q-function, we now induce a separate Q-function QΣU
i

(and corresponding

policy πΣU
i

) for each user set Ui based on the traces in ΣUi and continue with

learning and performance phases for each subgroup individually. Note that these

steps are done in addition to our previous setup, which allows for a comparison

between a policy for U and subgroup policies. Figure 8.1 provides an overview

of the RL system for personalized intervention in e-Health. For a given setup

(i.e. a cluster of users, all users U , or per user) an instance of the system

described in figure 8.1 is created and used to train and update policies.

3.4 Evaluation Environments

Below, we present the evaluation environments for our RL approach. First,

we start with a detailed description of the simulator we have developed for

this study. Secondly, we describe the HeartSteps benchmark we adopted from

literature.
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Environment API

Environment

Observations and rewards Decisions

Experiences Policy learner

User
Policies

Experience data
Observations

Decisions

Figure 3.2: A multi-policy reinforcement learning system
for personalized decision-making in e-Health. Given an as-
signment of users to clusters, policies can be learned across
all users, groups of users, or individual users. Algorithms
1, 2, and 3 provide the details for learning the policies.

92



3.4. Evaluation Environments

3.4.1 An RL Multi-agent Simulator for e-Health.

For the health setting we focus on in this paper, it is difficult to experiment with

different RL strategies and real users, as this requires involving a substantial

number of users in a large scale study and gathering too many interaction

samples per user. We have therefore decided to build a simulator to experiment

with algorithmic settings first [83]. The simulator is created for a realistic

setting where users have daily schedules of activities and should be encouraged

to conduct certain types of (healthy) activities. In this paper, we rely on

data from the US timekeeping research project [132] to define the underlying

parameters of the distributions that drive the order of performed activities for

the different profiles we define. Below, we discuss the details of the schedules

followed by the interventions and the possibility to define rewards.

3.4.1.1 Schedules

We assume that we have n users in our simulator: {u1, . . . , un}, originating

from the set U as defined before. Each of these users can conduct one of m

activities at each time point ({ϕ1, . . . , ϕm}). Time points in our simulator

have a discrete step size δt. Let Φ denote the possible values of the activity.

Example activities are working, sleeping, working out, and eating breakfast.

Each user has a unique activity a ∈ A that is being conducted at a time point t

(activity : A× T → Φ). Note that this activity can also be none. For each user,

a template schedule can be specified, which expresses for each activity ϕi:

i) an early and late start time (early start(ϕi) and late start(ϕi)) with multiple

instances per day possible,

ii) a minimum and maximum duration of the activity, (min duration(ϕi) and

max duration(ϕi))

iii) a standard deviation of the duration of the activity(sd duration(ϕi)),

iv) a probability per day of performing the activity (p(ϕi, day)),

v) priorities of other activities over this activity.

Using these template schedules, a complete schedule is derived which instan-

tiates activities at each time point, on a per-day basis, following Algorithm 7.
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Algorithm 7: Planning activities per day

1 linenosize= day = current day
for each activity ϕi do

2 tstart(ϕi) = rand(early start(ϕi), late start(ϕi))
d(ϕi) = Normal(rand(min duration(ϕi),
max duration(ϕi)), sd duration)
p(ϕi) = p(ϕi, day)

3 t = start of the day
active = false
activity queue = {}
current activity = none
while t < end of the day do

4 activity queue = clean up queue(activity queue) for each activity
a ∈ A do

5 if t == tstart(ϕi) then
6 if rand ≤ p(ϕi, day) then
7 activity queue = activity queue ∪ ϕi

8 current activity = select from queue(activity queue) if ¬
(current activity == none) then

9 active = true;

10 t = t+ δt
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Figure 3.3: The 3 phases during one simulation run: warm-
up, learning, and performance. During the warm-up phase,
data is generated following a default policy. Then the
clustering step is applied. Using the obtained clustering,
policies are learned using the RL system described in figure
8.1.

The algorithm uses the ranges for start times and durations of activities to

generate actual start times and durations. The start times are drawn randomly

from the specified range and the durations are drawn from a normal distribution

with the specified mean and standard deviation. It then starts to run a schedule

and builds up a queue of activities that are relevant for the current time point

(i.e. for which the current time is after the start of the activity and before

the end of it). In case of multiple activities, the one already being performed

is continued, or in case of a higher priority activity, the user switches to that

activity. If the queue is empty, the user is not active (or idle) and selects the

none activity.

3.4.1.2 Interventions and Rewards

Besides performing activities during a day, interventions can also be sent to

users. In our system, the set of interventions I contains a binary action as

{yes, no}, representing at each decision moment whether the system sends an

intervention or not. An intervention is a message that tells the user to perform

a desired activity ϕi (we assume there is only one single desired activity for

now which is workout). To decide upon the acceptance of a message, users

have a profile that expresses the conditions under which the users are willing

to accept the intervention. These conditions are expressed by the range of
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time points during which the users are willing to accept an intervention (e.g. a

working person might not accept an intervention when at work). If a message

is sent at the right time and a gap in the schedule is between tplan min and

tplan min + tplan duration from the time the message is sent, the activity will

be performed. These parameters define a time window in the schedule into

which the users will try to fit the desired activity suggested by the intervention.

Rewards can be defined based on acceptance of the message (i.e. the activity is

considered part of the queue), the commencement of the desired activity, and

how long the activity has been performed (e.g. there might be some optimal

amount of time spent on the activity). More details on the setting we use for

the specific case in this paper are shown in the next section.

3.4.2 HeartSteps

We adopt an existing benchmark for e-Health 3 based on the HeartSteps dataset

as an additional evaluation of our methods [84]. The dataset was generated

during a 42-day long e-Health intervention trial where the goal was to increase

the number of steps people take every day by providing interventions in the

form of positive messages. These messages, for instance, suggest going for a

walk after a long period of sitting [392]. We briefly describe this benchmark

in this section for the sake of completeness. For a more detailed description of

this benchmark and the HeartSteps experiment, we refer to [392; 173; 234].

3.4.2.1 Gaussian Generative Model

Via a micro-randomized trial [173; 234], traces of the form 〈s, i, r, s′, i′, r′, s′′, i′′, r′′, . . .〉
were collected from users. Using these experiences, a generative model was

developed. In this generative model the initial state is drawn from a predefined

Gaussian distribution such that su(0) ∼ Np(0,Σ), where Σ is a p x p predefined

co-variance matrix. In this setting, there are two actions where 1 indicates a

positive intervention and 0 no intervention. Each of these two interventions is

selected from a random policy with probability 0.5. In our case, there are 3

3[84]: Our implementation of the HeartSteps benchmark
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numerical states and a numerical reward observable at each time step t. For

each time-step t ≥ 1, the feature vector representation ~φ(su) for state su and

the immediate reward are generated using the functions 3.5, 3.6, 3.7, 3.8, and

3.9. Here β = [βi]
14
i=1 defines the main parameters for each MDP based on the

HeartSteps dataset while [ξ]pi=1 ∼ N (0, σ2
s) and ρt ∼ N (0, σ2

r) are the noise

distributions for the state and reward models, respectively.

To generate non-identical experiences for N similar users, N different β’s

need to be created whereby some of these β’s are closely similar to others

forming sets. For user u a β is assigned following two steps:

1. Assign user u to basic group k and get the corresponding basic β (i.e.

βbasick ),

2. Make each user u within group k different by adding noise δu ∼ N (0, σβI14)

using βu = βbasick + δu for k ∈ [1, 2, . . . , Nk]. Here Nk defines the number

of users in the k-th group and I ∈ R14x14 an identity matrix.

The exact value is chosen for each basic β and the parameters of the generative

model are discussed in the next section.
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φ1(su)(t)← β1φ1(su)(t− 1) + ξt,1,

(3.5)

φ2(su)(t)← β2φ2(su)(t− 1) + β3 ∗ it−1 + ξt,2,

(3.6)

φ3(su)(t)← β4φ3(su)(t− 1) + β5 ∗ φ3(su)(t− 1) ∗ it−1 + β6 ∗ it−1 + ξt,3,

(3.7)

φn(su)(t)← β7φn(su)(t− 1) + ξt,n, n = 4, . . . , p

(3.8)

r(t)← β14 ∗ [β8 + it ∗ (β9 + β10φ1(su)(t) + β11φ2(su)(t)) + β12φ1(su)(t)

−β13φ3(su)(t) + ρt]

(3.9)

98



3.5. Experimental Setup

3.5 Experimental Setup

As said, we focus on an e-Health setting whereby learning policies as fast as

possible (i.e. based on limited experiences) is essential. The experimental setup

is aiming to answer the following questions:

RQ1: What are the differences between batch and online learning for our

e-Health settings, and how can generalization over state spaces be used to speed

up learning?

RQ2: Can a cluster-based RL algorithm learn faster compared to (1) learning

per individual user or (2) learning across all users at once?

RQ3: Can we cluster users in a proper way based on traces of their states

and rewards?

To answer these questions, we evaluate our methodology with two cases,

namely: our self developed e-Health simulator and the HeartBeats generative

model from the literature.

3.5.1 Simulator Setup

In our simulator setup, we aim to improve the amount of physical activity of

users. We include several types of users. More specifically, we employ three

prototypical users, referred to as the workaholic, the sporter (an avid athlete),

and the retiree. The simulator itself runs on a fine-grained time scale (δt is one

second) while we model Tu at a coarser granularity (∆t is one hour). To this

end, we rely on the US timekeeping dataset to define the different profiles and

their corresponding parameters [132].

3.5.1.1 Activities

We include the following activities: sleep, breakfast, lunch, dinner, work, workout.

The specification of the daily schedule for each of our prototypical users is

expressed in tables 3.1, 3.2, and 3.3. We generate an equal amount of agents
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for all three types (n = 33 per type). Each type has its own profile and within

each profile we added variability to make sure the agents have some slight

differences in preference and behavior.

3.5.1.2 Interventions and Responses

The goal of the scenario is to make sure the total workout time meets the guide-

line for the amount of daily physical activity (30 minutes per day). Messages

can be sent to the user to start working out. The acceptance of the message is

dependent on the planning horizon of the user and whether it fits into the sched-

ule. The workaholic is a chronic planner, the retiree is a spontaneous planner

and the sporter is a mixed planner. The planning horizons in hours of the three

types are defined as follows: (1) chronic planner (tplan min = 3, tplan duration

= 21, tplan sd = 0.1), (2) spontaneous planner (tplan min = 0, tplan duration =

6, tplan sd = 0.1), and (3) mixed planner (tplan min = 0, tplan duration = 24,

tplan sd = 0.1). Here, the standard deviation expresses the variation among the

agents spawned for this profile. On top of that, the workaholic can only accept

interventions when having lunch or being idle while the retiree can only accept

when idle and the sporter always accepts following his acceptance probability.

The probability of acceptance is set at 0.5 for the workaholic, 0.7 for the retiree

and 0.9 for the sporter.

Normally, only one workout per day is performed (and messages can be

rejected based on this). However, each of the three types has a probability

of working out for a second time in one day. The probability of accepting

a second workout intervention is sampled once per agent at the start of the

simulation from a normal distribution with parameters µ=0.05 and sd=0.05 for

the workaholic, µ=0.05 and sd=0.05 for the retiree and µ=0.5 and sd=0.05 for

the sporter. The variations are added to make sure that the behaviors shown

by users from the same type are not drawn from the same distributions. The

sporter has a mean probability of 50% of working out for a second time during

one day, while it is 5% for both the workaholic and the retiree.

How long the work out activity will be performed is defined in the profile of

the user in Tables 3.1, 3.2, and 3.3. Fatigue plays a role here. Fatigue can build
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Parameter Sleep Breakfast Lunch Dinner Work Workout

Early start 22 7 12 18 8 19.5
Late start 23 7.5 12 20 9.5 20.5

Min duration 6 0.15 0.25 0.5 9 0.5
Max duration 7 0.25 0.5 1 10.5 1

Priorities work work none none none none
Probs (day) 1,1,1,1,1,1,1 1,1,1,1,1,1,1 1,1,1,1,1,1,1 1,1,1,1,1,1,1 1,1,1,1,1,1,0 0,0,0,0,0,0,0

Table 3.1: Parameters of the workaholic profile. Start times
and durations are in hours.

Parameter Sleep Breakfast Lunch Dinner Work Workout

Early start 21 8 12 19 9 17
Late tart 23 9 14 20.5 9.5 21

Min duration 8 0.25 0.25 0.5 8 1
Max duration 9 0.5 0.5 1 8 1

Priorities work work none none none none
Probs (day) 1,1,1,1,1,1,1 1,1,1,1,1,1,1 1,1,1,1,1,1,1 1,1,1,1,1,1,1 1,1,1,1,0,0,0 0,0,0,0,0,0,0

Table 3.2: Parameters of the sporter profile. Start times
and durations are in hours.

Parameter Sleep Breakfast Lunch Dinner Work Workout

Early start 21 7 12 18 8 15
Late tart 23.5 10 14 20 9 21.5

Min duration 8 0.5 0.25 0.5 8 0.5
Max duration 10 0.75 0.75 1 8 1

Priorities work work none none none none
Probs (day) 1,1,1,1,1,1,1 1,1,1,1,1,1,1 1,1,1,1,1,1,1 1,1,1,1,1,1,1 0,0,0,0,0,0,0 0,0,0,0,0,0,0

Table 3.3: Parameters of the retiree profile. Start times
and durations are in hours.
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up when working out across multiple days. The value of fatigue is the number

of times a user worked out in total during a consecutive number of days where

at least one workout per day occurred. A second workout during the same day

counts as two workouts in this scenario. When the user skips working out for

one day fatigue resets to zero. The maximum value of fatigue is 7. Agents

start feeling fatigued after a threshold is reached. This threshold depends on

the user. For the retiree, fatigue starts after value 2, for the workaholic after

3, and the sporter after 5. These values are representative of the scenarios we

are considering in this setting [280]. The level of fatigue is initialized randomly

between 0 and 7 after the start of the simulation. Furthermore, the time that

will be spent on a workout is influenced by the level of fatigue. Let Dw,ui(t) be

the planned duration of the workout at time point t for user i and let Fui
(t) be

the level of fatigue for user i at time point t. The actual duration D′w,ui
(t) for

the workout considering the level of fatigue is defined as follows:

D′w,ui
(t) =

Dw,ui(t)√
Fui(t)

(10)

3.5.2 HeartSteps Generative Model Setup

In this section we discuss the parameter setup for the HeartSteps generative

model. To be able to compare our methods with [392], we adopt the same

parameters. For our experiments with the HeartSteps generative model, we

select K = 5 for the number of groups with each Nk = 20 users leading to a

total of 100 users per group and 500 across all groups. The variance parameters

of the Gaussian distributions used to sample noise are 1 for σr and σs and 0.01

for σβ . Furthermore, other parameters have the following values: p = 3, and

q = 4. Finally, the basic β’s are set in functions 3.11, 3.12, 3.13, 3.14, and 3.15.

Similar to [392], the number of timesteps T was set to 100 with an evaluation

method that averages the long run rewards of all users over a trajectory of

length 4000 simulated elements.
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βbasic1 = [0.40, 0.25, 0.35, 0.65, 0.10, 0.50, 0.22, 2.00, 0.15, 0.20, 0.32, 0.10, 0.45, 800]
(3.11)

βbasic2 = [0.45, 0.35, 0.40, 0.70, 0.15, 0.55, 0.30, 2.20, 0.25, 0.25, 0.40, 0.12, 0.55, 700]
(3.12)

βbasic3 = [0.35, 0.30, 0.30, 0.60, 0.05, 0.65, 0.28, 2.60, 0.35, 0.45, 0.45, 0.15, 0.50, 650]
(3.13)

βbasic4 = [0.55, 0.40, 0.25, 0.55, 0.08, 0.70, 0.26, 3.10, 0.25, 0.35, 0.30, 0.17, 0.60, 500]
(3.14)

βbasic5 = [0.20, 0.50, 0.20, 0.62, 0.06, 0.52, 0.27, 3.00, 0.15, 0.15, 0.50, 0.16, 0.70, 450]
(3.15)

3.5.3 Algorithm Setup

In our simulation environment, we instantiate several aspects of our general

algorithmic setup from Section 3.

3.5.3.1 State

As features (i.e. ~φ(su)) we use: i) the current time (hours), ii) the current

weekday (0-6), iii) whether the user has already worked out today (binary), iv)

fatigue level (numerical), and v) which activities were performed in the last

hour (six binary features). All these features are realistically observable through

sensor information, or inferable.

3.5.3.2 Reward

The reward function Ru determines the goal of optimization and consists of three

components. If an intervention is sent and the user accepts it, the immediate

reward is +1 (otherwise −1). A second reward component is obtained while the
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user is exercising, where the exact reward value is scaled relative to the length

of the exercise (+0 per ∆t) and when the user finishes exercising (+10). A

third component is related to the fatigue level of the agent at each hour of the

day: higher levels result in a small negative reward (−0.1 per unit of fatigue per

hour) which shape the intervention strategy such that it does not overstimulate

the user with exercises.

3.5.3.3 Default policy

The first part of a simulation run is a warm-up phase of seven days where

interventions are driven by a default policy which sends one intervention per day

to each user at random between 9:00h and 21:00h. This allows us to perform

exploration and to generate traces for clustering.

3.5.3.4 Q-learning and LSPI

The second part of a simulation run is the learning phase that lasts for 100

days. Immediately after the start of this phase, we update the Q-table using

the traces generated during the warm-up phase. In an initial experimentation

phase, we tuned several parameters. During the learning phase we perform

updates to the Q-table once every hour. For Q-learning we use γ = 0.95, and

ε = 0.05 and the learning rate α decreases from an initial 0.2 with 1% every

day. These parameters have been set using grid search for γ between 0.85 and

0.95 with step size 0.05, ε between 0 and 0.05 with step size 0.05 and α was

fixed at 0.2 with a 1% decrease rate every day. The total reward was used a

the criterion for selecting the parameters. We initialize the Q-values with a

random value between 0 and 1 if the action of the state-action pair is 0 otherwise

we initialize the Q-values with a random number between −1 and 0, all to

encourage exploration. To speed up the learning we use experience replay. We

store the last 250 experiences and use these to update the Q-values.

For runs with LSPI, we learn policies on the traces generated during the

warm-up phase immediately after this phase. The policies get updated at

the end of each day by training a new policy on traces from the start of the
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simulation until that day. For LSPI γ was set at 0.95, ε was selected at 0.01,

the maximum number of iterations was set at 20 with a threshold of the change

in policy weights as a stopping criterion of 0.00001 and we use a first win

tie-breaking strategy which returns the first action encountered with that value

in case of a tie. Again, parameters have been selected based on a grid search for

γ between 0.85 and 0.95 with step size 0.05 and for exploration between 0 and

0.01 with step size 0.005. The learning rate and learning rate decay parameters

were fixed.

3.5.4 Setup of Runs

We started this section with several research questions. To answer these ques-

tions, we run simulations with various configurations. First of all, we vary

the usage of the type of RL algorithm: online (Q-learning) and batch learning

(LSPI); this enables us to answer RQ1. For each type of algorithm, we perform

runs where we learn a single policy across all users (pooled approach) to a cluster

based approach and learning a completely individualized policy for each user

(separate approach). This variation reflects RQ2. For our simulation setting, for

each algorithm we do two simulation runs for the cluster-based approach; one

simulation run using K-Medoids clustering with the DTW distance (clustering

approach) and a second simulation run using three homogeneous clusters, one

for each type of agent (grouped benchmark approach). The latter provides us

with a (gold standard) benchmark to evaluate the cluster quality (i.e. RQ3 ).

Hence, in total, we perform eight runs. For the HeartSteps model, we perform

K-Medoids clustering with the DTW distance (clustering approach).
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3.6 Results

In this section, we present the results related to the three research questions we

posed.

Pooled Grouped Separate

HeartSteps 1291.2 1547.2 1435.0
Batch (LSPI) 1442.48 1446.62 1385.12

Online (Q-learning) 1535.7 1536.71 1536.77

Table 3.4: The average reward of the three methods pooled,
grouped, and separate obtained with the HeartSteps bench-
mark from [392]. The results reported for the HearSteps
case in this table are taken from and are based on the
implementation of [392]. For our implementation see [84].

3.6.1 HeartSteps

Table 3.4 shows the results from our runs using our online and batch learning

methods on our implementation of the HeartSteps use-case and compares them

to the results from [392]. Potential discrepancies between our implementation

and that from [392] are possible. This is due to some details that were missing

and the unavailability of publicly accessible implementation of [392]. Our results

demonstrate that Q-learning (i.e. online learning) outperforms both LSPI (i.e.

batch learning) and the benchmark for the pooled case. Also, LSPI outperforms

the HeartSteps result in this case. For the grouped approach we see that

Q-learning and the HeartSteps achieve comparable results with a slightly better

average reward for the HeartSteps benchmark and both outperform the LSPI

approach. Finally, for the separate case, we see that Q-learning outperforms

LSPI and the HeartSteps with batch learning performing the least of the three.

From these results, we can see that the grouped approach always leads to a result

closest to the optimal reward. Furthermore, we can see that online learning

using Q-learning performs consistently well across all three cases. Furthermore,

we observe that our clustering approach finds 4 clusters with a silhouette score
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of 0.55. The original work [392] does not report on the performance of clustering

though it seems. This makes it hard to compare. Also, they fix k (3 and 7)

while we look for the optimal k using silhouette score.

3.6.2 The RL Multi-agent Simulator for e-Health

Here, we describe the results obtained with the experiments run with our

self-developed simulator for our e-Health setting.

3.6.2.1 Batch versus Online Learning

Figure 3.4: Average rewards over all different setups

Figure 5.1 reports the results from our simulation runs. Our results demon-

strate that LSPI significantly outperforms Q-learning when we compare the

average daily reward over the 100 days during the learning phase. It does so for

all four cases (i.e. separate, pooled, cluster, and grouped benchmark). Significance

has been tested using a Wilcoxon Signed-Rank test with a significance level

of 0.05. LSPI learned policies that result in average daily rewards between

0.14 and 0.33. Q-learning learns policies with average daily rewards of at most

0.065. The Q-learning experiments show that online (table-based) learning
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without generalizing over states is not capable of learning reasonable policies in a

period of 100 days (although learning curves show progress, and given excessive

amounts of extra time, optimal performance would be reached). LSPI, on the

other hand, generalizes over states and utilizes the relatively short amount

of interaction much better. This is not a surprise, but it does confirm that

generalization – over the experiences of multiple agents, but also over states –

is needed to obtain reasonable policies in ”human-scale” interaction time (and

thus answers RQ1).

3.6.2.2 Different Learning Approaches

The grouped benchmark approach with LSPI provided us with a policy that

outperformed all other policies in this setting. This is, of course, the result of

having perfect information about the profiles of the users which allowed us to

created perfect clusters. The grouped approach using clustering with DTW was

the second-best performing approach and ended very close to the performance

of the grouped benchmark approach after learning for 100 days. The separate

approach can match the performance of the grouped benchmark approach given

enough time to learn. At the same time, the grouped approach outperformed

the pooled approach which indicates that clustering helps us learn better policies

in a shorter amount of time, by generalizing over the groups of agents. We can

attribute the slight difference in performance between the clustering approach

and the grouped benchmark approach to the fact that the clustering methods

we used did not find perfect clusters of the same quality of those of the grouped

benchmark approach. However, as shown in Table 3.5, K-Medoids with DTW

finds clusters that are near-optimal. Both the grouped benchmark approach and

the separate approach rely on circumstances that are less realistic in the real

world. Having more than 100 days to learn is very difficult and having complete

knowledge of the profiles of the users is not realistic. With the clustering-based

approach we can speed up the learning time in comparison with the pooled

approach to potentially reach better policies.

The policies that were produced by Q-learning show little variation in terms

of performance resulting from the different learning approaches. On the contrary,
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Figure 3.5: Cumulative reward for batch learning (LSPI)
for the different experimental setups obtained with our
e-Health simulator.

Figure 3.6: Cumulative reward for online learning (Q-
Learning) for the different experimental setups obtained
with our e-Health simulator.
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LSPI produces policies learned using the same approaches that are significantly

different among each other (Wilcoxon Signed-Rank test, 0.05 significance). As

we can see from Figure. 5.1, the policy learned with LSPI using the grouped

benchmark approach resulted in the highest average daily reward (Wilcoxon

Signed-Rank test, 0.05 significance). In this case, three clusters were formed

each containing precisely the agents of one type. An average daily reward that

1.05 that of the clustering approach and roughly 2.25 times that of the pooled

approach was observed. Furthermore, this approach also outperformed the

policies learned with a separate approach. Although Q-learning shows little

differences across the setups, an interesting observation is that clustering using

knowledge about the profiles of the users performs slightly worse in terms of

average daily reward than the remaining approach while using Q-learning.

A different way of measuring performance, by the cumulative average daily

reward, is reported in Figures 3.5 and 3.6. These two graphs show the cumulative

average daily reward across the different learning setups. For policies learned

with LSPI, the grouped benchmark approach provided the highest cumulative

reward throughout the simulation in comparison with all other approaches. A

small decay was noticeable after 90 days. The cluster-based approach resulted

in a higher cumulative reward throughout the simulation compared to the

approaches that learn one policy over all users or rely on learning one policy per

user. The pooled approach outperformed the clustering approach during the

first 10 days after which the grouped approach was overtaken by the clustering

approach.

For the Q-learning case, different behavior was noticeable for the clustering

and the pooled approaches. The former gets overtaken by the clustering-based

approach after day 20. The separate benchmark approach provided the lowest

cumulative reward throughout the simulation in comparison with all other

approaches. The grouped approach is in between these two extremes.

110



3.6. Results
Re

tir
ee

Workout
Sleep

Dinner

Lunch

Breakfast

Sp
or

te
r

Work

Workout
Sleep

Dinner

Lunch

Breakfast

W
or

ka
ho

lic

Work

Workout
Sleep

Dinner

Lunch

Breakfast

Starting time distributions of daily activities

Figure 3.7: Starting times distributions of activities for the
setup: LSPI Grouped with DTW during the last 30 days
of the simulation.

3.6.2.3 Clustering

Table 3.5 shows the clustering with the K-Medoids algorithm and the DTW

distance measure for the LSPI run. We can clearly see that the clustering is

near-optimal for LSPI. Two users of the type retiree were confused as the type

sporter and one sporter was put together with the workaholics in the same

cluster. For the Q-learning case similar patterns were observed.

1 2 3 1 2 3

Profile Batch Online

Workaholic 0 33 0 33 0 0

Sporter 0 1 32 1 1 31

Retiree 31 0 2 0 32 1

Table 3.5: K-medoids clustering performance with DTW.
For both setups, near-perfect clustering is found.

111



Chapter 3. Personalization: Pooled, Grouped or Separate?

3.6.2.4 In Depth Profile Policy Analysis

Figure 3.7 reports on the observed starting times of the activities after the

simulations have run. We show here data from the last 30 days of the simulation

obtained with the setup grouped and algorithm LSPI. We see that the retiree

mostly works out during morning hours after breakfast, but also after lunch or

in the evening. The sporter prefers to perform his workout spread over the hours

of the day with a higher likelihood during the morning hours and in the evening.

Finally, the workaholic works out most of the time right after waking up and

before having breakfast. There are occasions when the workaholic works out

before going to bed. These findings indicate that the learned policies accurately

learn to send interventions at the right moments and that the users from the

different profiles workout more and at the right moments.

Figure 3.8 reports on the average performance across the different experi-

mental setups and learning algorithms. We see that Q-learning learns slowly,

but is consistent over all types of users. LSPI, however, shows great diversity

between the different setups in terms of average reward, also which learning

setup is most appropriate. We can observe that for LSPI, most of the learning

takes place during the first week after which the average reward stabilizes.

Overall, we see that there are three different ways to speed up learning

such that learning is feasible in human-scale time: i) generalization over states

through basis functions (LSPI) outperforms table-based learning (Q-learning),

ii) generalization over traces of several agents (group-based policies) outperforms

learning for agents individually (separate learning), and iii) generalization over

the right agents (cluster-based approaches) outperforms generalization over

all agents (pooled). All three are needed for interventions in realistic, human

domains.
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Figure 3.8: Average daily reward across all 4 experimental
setups (grouped benchmark, grouped, pooled and separate)
and the two learning setups (online (LSPI) vs batch (Q-
learning)). The steepest increase in average daily reward
occurs after 7 days of learning across the different setups.
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3.7 Discussion

In this paper, we have introduced steps towards a cluster-based RL approach for

the personalization of e-Health interventions. Such a setting is characterized by

limited opportunity to collect experiences from users and where the outcome is

focused on optimization of long term health behavior. The presented approach

allows for the identification of clusters of users that behave in a similar way and

require a similar policy. We have posed various research questions to evaluate

the suitability of the approach. Based on the results generated using our novel

simulator, for our setting we can say the following.

RQ1: What are the differences between batch and online learning for our

e-Health settings, and how can generalization over state spaces be used to speed

up learning?

RL with batch learning and function approximation outperforms table-based

RL using online learning in a significant way, thereby disqualifying the latter

when interaction time is short for our e-Health setting using our simulator.

For the HeartSteps setting, we observe that online learning outperforms batch

learning. Comparing the HeartSteps generative model with our e-Health setting,

we can state that our setting allows for more complex behaviours and dynamics

of the simulated users with a state-space containing contextual information.

Also, our e-Health simulator has a higher level of stochasticity and randomness

built-in compared to the HeartSteps setting.

RQ2: Can a cluster-based RL algorithm learn faster compared to (1) learning

per individual user or (2) learning across all users at once?

In our e-Health setting, cluster-based RL learns a significantly better policy

within 100 days compared to learning per user and learning across all users,

provided that a suitable clustering is found. For the HeartSteps setting, the

benchmark and batch learning outperform the two settings separate and pooled.

However, we find that online learning always performs close to optimal.
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RQ3: Can we cluster users in a proper way based on traces of their states

and rewards?

Learning suitable clusters using the Dynamic Time Warping distance function

and K-Medoids clustering based on traces of states and rewards over 7 days

shows to perform very well and find close to optimal clusters for our simulator

setup. For the HeartSteps model, 4 clusters with a silhouette score of 0.55 were

found.

While our simulator exhibits realistic behavior, we plan on moving more and

more to a setting where the actual user is in the loop. A logical next step which

is to use data collected from actual users to drive the behavior of the agent. We

envision to do this by applying machine learning on the data per user and using

the resulting model as a behavioral model for that specific user. We already

have access to data obtained from a mobile treatment app used by around

250 depressed patients. In the data, responses to interventions of individual

agents are stored as well as socio-demographic and intake questionnaire data

and daily ratings of their mental state. Clustering could even be based on the

data collected at the start of the intervention. Also, using a state representation

that exists of raw sensor has been shown to add to realism of the simulator [86].
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Abstract - Simulation environments have proven to be very useful as

testbeds for reinforcement learning (RL) algorithms. For settings where an

actual human user is involved, these simulation environments allow one to test

out the suitability of new RL approaches without having to include real users at

first. It obviously does require the simulator to have a certain degree of realism,

however, realistic simulators for the behavior of humans in the health domain

are rarely seen. To generate realistic behavior, the simulator could be driven by

data from real users, but this might lead to privacy issues. In this paper, we

propose to use Generative Adversarial Networks (GANs) for generating realistic

simulation environments. In this first step, we use an existing simulator that

simulates daily activities of users and the GANs are used to generate realistic

sensory data that accompanies such activities. After training, the original

(potentially privacy sensitive) data can be thrown away and the simulator can

simply be driven by the GAN models. Results show that a model trained on

real data shows similar performance on the data artificially generated by the

GAN.

4.1 Introduction

Applications of RL rely on the notion of sequential decision making [21]. The

goal is to learn optimal policies for selecting actions that maximize long-term

reward. Consequently, the effectiveness of such learned policies only become

apparent in the long run. Hence, lengthy experiments are needed to generate

suitable policies. Simulation environments give researchers the ability to develop

and rigorously test novel RL algorithms and methods and generate policies

before applying them in a real-world setting. Recent developments in RL rely

heavily on simulation environments as testbeds for the algorithms [321].

In the domain of e-Health, the focus of this paper, RL algorithms are the

appropriate choice for solving sequential decision problems such as sending

interventions to improve the health state of users. The application of RL

algorithms in e-Health has been limited by data availability, data reliability,

and privacy constraints. It could clearly benefit from a suitable simulation
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environment. Currently, however, none are available that include a realistic

simulation of human behavior. Due to discrepancies between the simulation

environments and the real world, the newly developed algorithms shown to work

well in simulation, or even policies learned in such simulations, can perform

poorly in real-life settings [57]. On that account, simulation environments should

be based on actual data to minimize the gap between simulation and reality.

However, sharing this data might lead to privacy issues if the environment is to

be made available to the community, which clearly is highly desirable.

In this paper, we propose to exploit GANs to develop behavioral models

that mimic human behavior as an approach to take simulation environments

for e-Health to the next level. This paper presents a first step in this endeavor:

we focus on GANs that are able to generate sensory values that mimic those of

real humans. We show that we can employ these techniques to develop models

that learn from real-world sensory data to synthesize realistic sensory data

for human behavior, a crucial first step in the development of a simulation

environment for this domain as e-Health applications are often driven by sensory

data of users. The approach can also help to remedy privacy issues: we use

privacy-sensitive data in a secure environment once to generate the GAN models,

and can then share the resulting model with the community as it no longer

contains the real users’ data. We embed the GANs into an existing simulation

environment (cf. [88]) that we extend and make more mature. This simulator

focuses on a health setting where users conduct certain activities and adapt

their activities based on interventions. To evaluate the performance of our

generative models and show that we meet the required level of realism, we

use an activity recognition model that can classify human activity from raw

sensory input, which is known to be highly accurate (cf. [53]) and observe the

difference in performance on the real and artificially generated data. All the

above-mentioned models make use of the Long Short-Term Memory networks

(LSTMs) [131] or variations thereof.

This paper is organized as follows. In Section 2 we present related work,

while Section 3 explains our simulation environment. Section 4 details how

we use GANs to generate behavior in the simulation environment. Section 5
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describes the experimental setup, and the results are presented in Section 6.

Finally, we present our conclusions.

4.2 Related Work

Limited work has been done in relation to generating realistic data related to

human behavior for simulation environments using GANs. [201] argues that

access to sensory data can be very beneficial in the area of e-Health for tasks

such as health monitoring and activity recognition. They also argue that this

type of data is very sensitive and contains information that needs to be protected.

They propose an approach using a replacement autoencoder along with a GAN

to remedy this. With the approach, they preserve the privacy of the data while

simultaneously allowing for the usage of realistic sensory data. Alzantot et al.

[4] used GANs to synthesize accelerometer data from mobile phones. They

showed that realistic accelerometer data can be generated using LSTM and

Mixture Density networks. The results presented by this work are promising

and shows that these methods can be very effective given a large set of training

data. Tseng et al. [340] use RL in combination with a simulation in the health

domain using GANs. They used deep RL techniques to develop automated

radiation protocols for patients with lung cancer. Historical treatment plans

where used to learn these protocols. They use a GAN to learn the characteristics

of the patients from a relatively small dataset and use it to generate more data.

This is required to make learning with deep RL viable. Secondly, they use a

deep neural network to reconstruct an artificial environment for radiotherapy.

They do this using both the original data as well as the synthetic data.
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4.3 Model-based Reinforcement Learning

More related approaches are classified under model-based RL. In model-based

RL, logged data is used to learn a model of the environment. Model-based RL

could potentially result in more sample-efficient learning compared to model-

free RL [171]. Existing research shows that the field of model-based RL is

not well standardized [171]. This makes comparing the performance of novel

algorithms relative to each other across domains difficult. Several approaches

towards model-based RL will be laid out in this section. Langlois et al [171]

categorized model-based RL algorithms into three groups, namely: Policy Search

with Backpropagation through the time dimension, Dyna-style algorithms,

and Shooting algorithms. We discuss algorithms from these categories along

with model-based RL algorithms that rely on GANs to learn a model of the

environment.

Probabilistic Inference for Learning Control (PILCO) is an example of model-

based RL where one relies on Gaussian Processes (GPs) to model the dynamics

of the environment [69; 70; 148]. This algorithm falls into the Policy Search

with Backpropagation through the time dimension category in [171]. Training

in PILCO consists of two steps, logging interactions with the environment

using the current policy and utilizing this data to improve this learned policy.

Although GPs are highly applicable in many domains, one of the potential

limitations is that GPs are known to not scale in high dimensional environments

or problems. This is something GANs suffer from to a lesser extent. On the

other hand, GANs require a large amount of data during training.

Model-Ensemble Trust-Region Policy Optimization (ME-TRPO) [166] is

an example of the Dyna-style algorithms categorized by [171]. This algorithm

uses RL ensembles to combat model bias. This is done by combining a set

of neural networks to model the dynamics of the environment. Training an

ensemble in ME-TRPO relies on the standard squared L2 loss while applying

a policy improvement step where the policy weights are updated using the

Trust-Region Policy Optimization (TRPO) algorithm [296] using experiences

generated by the learning model of the environment. ME-TRPO has shown
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that incorporating a KL-divergence constraint leads to good empirical results

on a significant number of challenging tasks within RL while outperforming

benchmarks based on earlier methods. Combining ME-TRPO with model-based

learning could lead to substantial improvement in the sample complexity of

real-world applications within the field of RL [171].

The third category is the so-called Shooting Algorithms [171]. These algo-

rithms are useful for model predictive control where an approximate solution

for the moving time horizon control problem with non-linear dynamics and

non-convex reward functions is needed (c.f. [171]). The moving horizon prob-

lems occurs when increasing the planning horizon will provide us with a more

accurate reward estimation, but it might result in performance drops caused by

to the curse of dimensionality and modelling errors (c.f. [171]). The popularity

of neural networks as function approximators has sped up progress in this area

of research. In Random Shooting [271; 275] the expected planning reward is

maximized by optimizing over a sequence of actions under the learned model of

the dynamics of the environment. The algorithm considers a certain number of

uniformly sampled candidate random sequences of actions and then evaluates

each of these sequences based on the learned model. Consequently, the action

sequence with the highest return is chosen and the first action is applied after

which re-planning at every time step takes place (c.f. [171]).

RL with adversarial training [192] is another example of model-based RL

that is found in the literature. SeqGAN extends GANs with a sequential data

generator suitable for RL problems where the reward signal is obtained by the

discriminator via a Monte Carlo sampling method. The generator network

has sequential actions as input and learns the underlying dynamics of the

policy using estimated cumulative reward signals. Using the adversarial training

approach, this algorithm reduces bias in the learned model and the variance

during training because it learns from both the interactions with the environment

and the logged experiences (c.f. [373]). This approach demonstrates a different

way of tackling model-based RL problems using promising and novel algorithms

such as GANs.
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Environment API

Simulation Environment

Observations and rewards Decisions

Experiences Policy learner

Decision Agent
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G
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Simulated 
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Figure 4.1: Simulation environment for RL algorithms in
the e-Health domain.

4.4 Simulation Environment

Generally, we want to simulate the real-world process of artificial people (users)

performing activities over time. These users generate experiences that can be

used by an RL driven agent to learn optimal policies. These policies are used

to make decisions at fixed points in time. The decisions that have to be made

are related to sending a specific intervention to a certain user. In this paper,

we further develop upon an earlier version of the simulation environment [88].

Figure 5.1 provides an illustration of this system. The environment API is a

communication layer that allows the learning agents to send interventions to

the users and observe data about these users (i.e. the state). This observed

data is used to learn optimal policies and use these policies to make decisions.

Let us turn a bit more formal. We define U as the set of users and

assume we have n users in our simulation environment: {u1, . . . , un}. Each

user can perform an activity out of a set of m activities Φ (Φ = {ϕ1, . . . , ϕm}).
Examples of activities are sleeping, eating, working and working out. The
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simulation environment runs in ticks, these are discrete steps of size δt. Users

perform one unique activity at any certain time point t of a simulation run

(activity : A × T → Φ). When a user is not performing an activity (idle) we

denote the activity with (none). In short, a simulation run is a sequence of

unique mappings of the activities space onto time points in T . Users generate

sequences of experiences 〈su, i, r, s′u, i′, r′, . . .〉 where at every time point δt, the

observable state of user u ∈ U is denoted by su ∈ S, the intervention by i ∈ I
and the observed scalar reward drawn from the reward function Ru by r .

In parallel, a learning and decision-making system is ticking along with the

simulation environment. The learning and decision making system interacts

with the simulation environment and has partial observability of the states.

Furthermore, this system can influence the environment through interventions

that are sent to users in the simulation environment. The learning system uses

the observed experiences to learn optimal policies. Furthermore, it uses the

observations to make decisions about intervening using the learned policies and

models.

User schedules are based on generic profiles that specify what activities

users perform, including a certain variability. Furthermore, user schedules

are adjusted based on the current schedule and responses of the user to an

intervention. For each user, a template schedule is created at the start of each

day. This schedule denotes the different activities the user will perform during

that day. For each activity ϕi, several parameter values are specified, see [88]

for more details.

Once activities are generated in the simulator, it is possible to generate the

proper observations for the RL algorithm (i.e. the observable state of the user

su). In this case, we assume that we cannot directly observe the activities, but

only their accompanying sensor values. As mentioned in the beginning, we use

GANs to generate appropriate values for these activities. How we do this will

be explained in the next section, which is the main contribution of this paper.

The rewards can be defined based on these observations.
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4.5 Using GANs to Generate Sensor Data

4.5.1 Generative Adversarial Networks

GANs [114] are a class of algorithms with two neural networks, a generator, and

a discriminator, that are competing in a zero-sum game. The generator, denoted

by G, generates samples x = G(z; Θ(G)). Here z denotes random noise and Θ(G)

the weights of the network. The adversary of the generator, the discriminator

D, has the task of distinguishing between sequences sampled from the training

data and sequences generated by the generative network. The discriminator

generates a probability, denoted by D(x; Θ(D)), indicating whether the sequence

is a real example drawn from the training data or whether it is a sequence

generated by the generator network.

4.5.2 Long-Short Term Memory Networks

We employ GANs to generate sequences of accelerometer data. Gated Recur-

rent neural networks are the most effective sequence models used in practical

applications deep learning techniques [113]. Given that the sequences of sensory

data are of highly temporal nature we deploy LSTM networks, a type of network

falling under the Gated Recurrent Neural Networks category.

4.5.3 Dataset

To develop a GAN that generates realistic sensory data, we need a realistic

dataset. We use the WISDM dataset [167] for this purpose. This data is

known as the Wireless Sensor Data Mining dataset and consists of labeled 3D

accelerometer data (x, y, and z) from real people captured while they performed

several activities humans engage in on a daily basis. There are 6 activities

included in this dataset and these are climbing stairs (upstairs and downstairs),

jogging, sitting, standing and walking.
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4.6 Experiments

The main goal of this paper is to show that we can generate realistic human

data using GANs. In our experiments, we focus on evaluating to what extent

the data that is generated differs from real data. This is our performance

criterion: that an independent model is not able to distinguish between the real

and generated data. Below, we detail how each of the components is set up.

4.6.1 Activity Classifier Setup

As a first step, we started out with the development of a classifier for daily

human activities which acts as the aforementioned independent model. The

sequence length is 160 data points which amount to 8 seconds worth of data.

As a preprocessing step, segments of length 160 data points were created with a

shifting window of 20 data points. The segments were labeled with the activities

that occurred at that moment. 80% of the WISDM data was randomly selected

for training and 20% of the data was used for testing. An LSTM network with 2

hidden layers was used. Each hidden layer has 64 hidden units. ReLu activation

was used along with a forget bias of 1 for the hidden layer. For the output

layer, Softmax activation was chosen along with a forget bias of 1. Softmax

cross entropy with logits with L2 regularization of 0.0015 was used as the cost

function. Adam optimizer with a learning rate of 0.0025 was selected. The

batch size during training is 1024. The choice of algorithm, network architecture

and parameters selected were based on [53] and [134].

4.6.2 Generative Adversarial Network Setup

For training the GAN, we use the Adam optimizer with a learning rate of 0.1

with a learning rate decay of 1e-10, a clip value of 1, β1 of 0.5 and β2 of 0.55. We

use a batch size of 24 for the real data and 1 for the synthetic data. Binary cross

entropy is used as the loss function and the accuracy is used as the metric of

choice. We describe further details about the generator and the discriminator in

the next two sections. The parameters selection and network architectures were
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chosen based on inspiration from different existing work in the area of generative

adversarial networks [4], [201]. During initial experiments, we employed a grid

search between different optimizers (SGD, Adam, and RMSprop) and activation

functions (tanh, sigmoid, linear and ReLu). The best performing combinations

were selected and are described below.

4.6.2.1 Generator

For the generator, we use a deep neural network that contains 1 hidden layer

and one output layer. The hidden layer is an LSTM layer with 64 hidden units.

We use a dropout rate of 0.5 for this layer along with a tanh activation function

and hard-sigmoid as the recurrent activation function. The output layer is

a fully connected layer with 3 output neurons (x, y, and z). The activation

function is the linear activation function. The Adam optimizer with identical

parameters to the ones selected for the GAN is used.

4.6.2.2 Discriminator

The discriminator is a deep neural network of 2 hidden layers and 1 output layer.

The first hidden layer is an LSTM layer with 32 hidden units, a dropout rate

of 0.5 along with a tanh activation function and hard sigmoid as the recurrent

activation function. The second hidden layer is a fully connected layer of 16

hidden neurons with a linear activation function and a dropout rate of 0.5. The

output layer is a fully connected layer with one neuron and the tanh activation

function. We use SGD as the optimizer with a learning rate of 0.01, a learning

rate decay of 1e-6, a momentum of 0.8 and Nesterov accelerated gradient descent.

Binary cross entropy was selected as the loss function and the accuracy is used

as the metric for tracking the accuracy of the model.
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Jogging Walking Downstairs Upstairs Standing Sitting

Convergence
iteration

3000 3200 7800 15475 2000 1180

Average prob
classification

0.97 0.85 0.89 0.20 0.07 0.21

Table 4.1: Overview of the performance of the generator
for different activities.

4.7 Results

4.7.1 Activity Classifier

Our results demonstrate that we can classify daily human activities with an

accuracy of 97.33% on the test set when using the independent classifier. These

results show that the training accuracy is slightly higher than the test accuracy

while the training loss is slightly lower than the test loss. The model stabilizes

after 40 epochs. The results also show that the algorithm misclassified a

relatively large number of samples from the activities Downstairs as Upstairs

and vice versa and Sitting as Standing. The activities Jogging, Standing, and

Walking have the highest accuracies.

4.7.2 Generative Adversarial Networks

To validate the performance of the generated sequences for the activities, we

rely on the independent activity classifier we developed earlier. Figure 4.2 shows

the probabilities that the generated sequences belong to any of the 6 activities

over time. The classifier classifies the generated Jogging sequences from the

beginning as either Walking or Jogging. Downstairs and Upstairs also occur

with relatively smaller probabilities. The probabilities for Standing and Sitting

are low in comparison with all other activities.
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Figure 4.2: Validating the generated data using the activity
recognition classifier.

Table 4.1 presents for each activity the iteration at which the GAN could

be considered as converged and the average classification accuracy for 500

iterations after convergence using the independent classifier. The activities

Jogging, Walking and Downstairs are classified by the classifier with the highest

average accuracies. Upstairs, Standing and Sitting have significantly lower

accuracies but are higher than random classification.

4.8 Conclusion

In this paper, we have introduced the first steps towards a realistic simulator for

health settings. Realistic simulators are needed as testbeds for RL algorithms

because of lack of data and inability to experiment extensively with real users

during the development phase of the algorithms. We present an approach

whereby existing data generated by real users is used to develop a GAN for

synthesizing human behavior. GANs allows us to solve data privacy issues as

well. In this first case, the generative model generates sensory data belonging

to activities a simulated user is performing at a certain point in time. Our

results show that we can employ GANs to develop generative models that learn

from actual data to generate sensory data belonging to behaviors of users. We
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validate our approach using an activity recognition classifier that was trained

and tested on a real dataset. The number of training iterations and training

samples needed to develop an accurate generative model prove to be in the

magnitude of a few thousand to a few ten thousands.
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Abstract - In many sequential decision making problems progress is pre-

dominantly based on artificial data sets. This can be attributed to insufficient

access to real data. Here we propose to mitigate this by using generative

adversarial networks (GANs) to generate representative data sets from real

data. Specifically, we investigate how GANs can generate training data for

reinforcement learning (RL) problems. We distinguish structural properties

(does the generated data follow the distribution of the original data), functional

properties (is there a difference between the evaluation of policies for generated

and real life data), and show that with a relatively small number of data points

(a few thousand) we can train GANs that generate representative data for

classical control RL environments.

5.1 Introduction

Machine learning has proven to be widely and efficaciously applicable in the

real-world. Many of these applications rely on vast amounts of data. However,

a great deal of real-world problems are sequential decision making problems in

nature where long-term dynamics of an environment must be taken into account

[321]. Typically, these problems are solved by RL using training data consisting

of sequences of observations, actions and rewards. RL as a field has made

ground-breaking advancements possible in many domains [362; 36; 224; 66; 350].

Generally, this progress is predominantly noticeable in artificial domains. State-

of-the-art results in RL are obtained with agents that learn to play games in

simulation environments such as OpenAI Gym [36] and Atari [224].

The application of RL to real-world scenarios has proven to be hard [80]. For

many real-world applications, it is not possible to develop policies directly but

instead these need to be learned from logs generated by a different behavioral

policy [80]. In these cases, we are training the new policy to improve upon an

existing policy. To learn and evaluate effective and optimal policies, large sets

of logged experiences are required [144; 80]. Such data should be sufficiently

representative for the problem at hand. Unfortunately, poor coverage of experi-

ences from the real-world is often observed, leading to insufficient representative
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data. It can be an onerous task to accumulate a wide range of historical logs

generated by a particular behaviour policy.

Generative models are not exempt from the limitations posed by the in-

sufficiency of representative training data. However, recent developments in

GANs [114] prove that these models are effective at synthesizing data at an

unprecedented realism. We study the use of GANs to synthesize experiences

based on a limited amount of data to help overcome the problems with RL

training data sketched above. Consequently, we pose our main research question:

is generative modeling able to generate representative training data

by synthesizing sequences of experiences for RL tasks?

In order to answer this question, we need means to operationalize the term

representative. We therefore introduce a framework to evaluate this property

of the data. Within this framework, we introduce two properties of data

representativity - the structural and functional representativity properties. To

measure the structural representativity, we compare the synthesized data to the

original sample and qualitatively evaluate the structural representativity of the

generative model. As a measure for functional representativity we compare the

difference in outcome of applying off-policy evaluation on real and generated

data. We experiment with a number of RL problems taken from the OpenAI

classic control suite [36]: CartPole and LunarLandar, and provide different

amounts of original data to the GAN and study the impact on each of the

criteria identified above.

This paper is organized as follows. First, we will discuss related work in

Section 2, followed by the explanation of our method in Section 3. In Section 4

we present our experimental setup. We present the results in Section 5. Section

6 concludes the paper.
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5.2 Related Work

Data representativity can be viewed from several perspectives - the ability to

generate the right data for the tasks at hand (i.e. structural representativity),

and the effectiveness of the synthesized data at improving this task (i.e. func-

tional representativity). We address these aspects one by one and we refer to

each part in the related work section.

Challenges in real-world Reinforcement Learning. State-of-the-art

developments in RL are frequently obtained with agents that learn to play

games [362; 350; 66] in simulation environments such as OpenAI Gym and

Atari. Although much work has been done in the area, limited work has

been done in the area intersecting generative models and RL for domains with

practical constraints. Furthermore, research has shown that applications of

RL in the real-world still have challenges to overcome. [Dulac-Arnold, et al.,

2019] mention that training off-line on data logged from a different behavior

policy and learning on a set of limited samples as some of the challenges to be

overcome [80].

GANs for sequential data. RL techniques [362; 321] are ideally suited

for sequential decision making problems [134]. In domains such as health care,

work has just begun to explore computational approaches. Typically, there

is lack of data in real-life applications which sometimes makes deep learning

driven RL techniques unsuitable [80]. Recently, work started exploring the use

of GANs [114] to generate data that can be utilized to resolve the issue with

lack of data.

GANs in Reinforcement Learning. [Tseng, et al., 2017] employed deep

RL techniques to develop automated radiation protocols for patients with

lung cancer using historical treatment plans [340]. They use a GAN to learn

the characteristics of the patients from a relatively small dataset. Secondly,

they use a deep neural network to reconstruct an artificial environment for

radiotherapy. The obtained model estimates the underlying Markov Decision

Process for adaptation of personalized radiotherapy patients’ treatment courses

[340]. Finally, they use a deep Q-network to choose the optimal dose during
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treatments. They showed that these techniques that partially rely on GANs are

feasible and promising for achieving results that are similar to those achieved

by clinicians. Contrary to our work, the GAN was not systematically tested for

its ability to generate representative data which could pose safety concerns in

the domain at hand.

[Liu, et al., 2019] combined RL and GANs in such a manner that a self-

improving process is built upon a policy improvement operator. The agent is

developed iteratively to imitate behaviors that are generated by the operator

(cf. [189]). [Antoniou, et al., 2017] demonstrated that conditional GANs can

be employed for data augmentation. This approach takes data from a source

domain and learns to take any data item and generalise it to generate other

within-class data items (cf. [7]). The main focus of this work is the computer

vision domain. Worth mentioning is that the GANs were not systematically

tested for their ability to generate representative data.

5.3 Method

In this section, we introduce a framework with properties to evaluate the

suitability of generated data using GANs for RL problems. We distinguish

between structural and functional properties. First, we introduce some formal

terminology based on Markov Decision Processes (MDP).

5.3.1 Preliminaries

Let M be a task in the real-world that can be modeled as an MDP. Define M as

〈S, A, T , R〉. S is a finite state space. The set of actions that can be selected

at each time step t is given by A. T :: S × A × S → [0,1] is a probabilistic

transition function over the states in S where selecting an action a ∈ A while

in s ∈ S at time t leads to the transition to the next state s′ ∈ S at t + 1.

R :: S × A → R is the reward function that outputs a scalar r = R(s, a) to

each state s ∈ S and action a ∈ A. States s ∈ S consist of features denoted

by the feature vector representation ~ψ(s) = 〈ψ1(s), ψ2(s), . . . , ψn(s)〉> of the

state s ∈ S. Problems that are considered Markovian can be modeled using
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RL algorithms. The goal in RL is to learn a policy π that determines which

action a ∈ A to take in a state s ∈ S, π :: S → A. The action a = π(s)

will lead to the transition to a new state s′ with a scalar reward r = R(s, a)

being obtained. This transition denotes an experience 〈s, a, r, s′〉. We define

a sequence of multiple experiences following each other in time as a trace. A

trace is denoted by ζ : 〈s, a, r, s′, a′, r′, s′′, a′′, r′′, . . .〉. Multiple traces observed

over time form a data set Z ∈ 〈ζ1, . . . ζk〉.

5.3.2 Reinforcement Learning

The goal in RL is to find a policy π∗ out of all possible policies Π :: S ×A→
[0,1] that select actions such that the sum of future rewards (at any time t)

is maximized. The value of taking action a ∈ A in state s of policy π, where

π(s) = a, is:

Qπ(s, a) = Eπ{
K∑
k=0

γkrt+k+1|st = s, at = a} (5.1)

where γ is defined as the discount factor that weights rewards occurring in

the future, and st and at are states and actions occurring at time t. Define

Q(s, a) as the expected long-term value of being in state s and selecting action

a. Taking the best action a in each possible state s ∈ S, a policy can be derived

from the Q-function, i.e.

π′(s) = arg max
a∈A

Qπ(s, a), ∀s ∈ S (5.2)

Off-Policy policy evaluation (OPE). Similar to testing models in the tra-

ditional machine learning setting, it is important to perform counterfactual

policy evaluation of RL policies before deploying them in the real-world. In this

setting, there is a dataset of traces Z generated by a behaviour policy πb, and a

fixed evaluation policy πe whose value-function Qπe we want to estimate using

the data set Z. The goal is to learn an estimator Q̂πe(Z) of Qπe such that the
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mean squared error is minimized [337]:

MSE(Q̂πe(Z), Qπe) := E{(Q̂πe(Z)−Qπe)2} (5.3)

5.3.3 Generating Experiences Using GANs

When employing RL techniques to learn a good estimate of the value-function

Qπ(s, a), a large amount of traces ζ are required [80]. The availability of a data

set Z that is representative is crucial for both off-policy learning and evaluation.

We employ generative models to demonstrate that experiences ζ : 〈s, a, r, s′〉
can be synthesized using GANs. In this work, we focus on generating traces of

experiences with a horizon length of one time step. In many decision making

problems this is considered sufficient.

Traditional GAN. GANs are a class of algorithms with two neural networks,

a generator, and a discriminator, that are competing in a zero-sum game [114].

The generator network, denoted by G, generates experiences ζG = G(z; Θ(G)).

Here z denotes random noise and Θ(G) the weights of the network. The

adversary of the generator, the discriminator network D, has to distinguish

between experiences Zπb sampled from the training data and experiences ZG

generated by the generative network. The discriminator generates a probability,

denoted by D(ζ; Θ(D)), indicating whether the experience is a real example

drawn from the training data or whether it is an experience generated by the

generator network. Here Θ(D) denotes the weights of the network.

The process of learning in GANs can be formulated as a zero-sum game.

Each network aims at maximizing its payoff function. The discriminator payoff

function is defined as follows:

v(θ(G), θ(D)) = E
ζ∼pdata

logD(ζ) + E
ζ∼pmodel

log(1−D(ζ)) (5.4)

where pdata denotes the distribution under which the training data was sampled

and pmodel the data sampled from the generator. The generator payoff function

on the other hand is denoted by −v(θ(G), θ(D)), so that at the moment of
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convergence of the GAN:

g? = argmin
G

max
D

v(G,D) (5.5)

Improved stability of learning. As an alternative, the Wasserstein GAN

was introduced by [8] to solve problems encountered during training of the

traditional GAN. WGAN improves the stability of learning by solving problems

related to mode collapse. Furthermore, the WGAN provides learning curves

that are useful for performing hyperparameter optimziation. To be able to

approximate the distribution of the experiences ζ from the data set Z, WGAN

replaces the discriminator network with a critic that outputs a metric of the

realness of the generated experience instead of predicting a probability of the

generated experiences being real of fake. To further increase the chance of

training generators that learn to generate experiences that are very realistic,

architectural features and training procedures explained in [288; 156; 236; 334]

were used when possible.

5.3.4 Evaluation Framework

Below, we present the components of our framework to evaluate the representa-

tivity of the data generated by the GAN.

Structural representativity property. Using a generator G(z; Θ(G)) we

can synthesize a set of experiences Z ∈ 〈ζ1, . . . ζk〉 each of them representing a

trace 〈s, a, r, s′〉. The states and next states are represented by the vector ~ψ(s)

consisting of the features 〈ψ1(s), ψ2(s), . . . , ψn(s)〉>. To evaluate the structural

representativity of the experiences ZG generated by a generative model G

we perform a qualitative investigation of the histograms of the original and

generated data both smoothed with a Gaussian filter.

Functional representativity property. We employ the weighted doubly ro-

bust estimator [17] for off-policy evaluation to quantify the functional properties

of our representativity framework. This estimator allows us to measure the

difference between the evaluation of policies for generated and real life data.

Ideally, these values would be identical, showing that there is no difference in

140



5.3. Method

usage of real or artificial data. The weighted doubly robust estimator is defined

as follows.

VDR := Q̂(s) + ρ(r − R̂(s, a)) (5.6)

where:
ρ :=

πe(a|s)
πb(a|s)

(5.7)

and
V̂ (s) :=

∑
a

πe(a|s)R̂(s, a) (5.8)

Here, R̂(s, a) represents an estimator for the reward function R, r the observed

reward and Q̂(s) an estimator for expected future reward for being in state s.

The doubly robust estimator is an unbiased estimator of Q̂πe
(s) that is known to

achieve accurate empirical and theoretical results. Contrary to the importance

sampling estimator [257] that only relies on the unbiased estimates, the doubly

robust estimator relies on an approximate model of the MDP M to decrease

the variance.

141



Chapter 5. Structural and Functional Representativity

5.4 Experimental Setup

Here we explain the experimental setup, including more detailed research

questions, and the way in which we go about answering them.
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Figure 5.1: WGAN training loss for CartPole with training
data sizes 1K, 3K, 5K, and 15K.
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Figure 5.2: WGAN training loss for LunarLander with
training data sizes 1K, 3K, 5K, and 15K.

5.4.1 Specific Research Questions

Given our framework, we try to answer the main research question: is gen-

erative modeling able to generate representative training data by

synthesizing sequences of experiences for RL tasks? and the following

specific questions:

− RQ1: Can we use GANs to learn to generate one-step horizon sequential

data suitable for RL tasks from relatively small samples?

− RQ2: Do generative models we developed for synthesizing sequential data

suitable for RL tasks prove to be structurally representative?

− RQ3: Do generative models we developed for synthesizing sequential data

suitable for RL tasks prove to be functionally representative?
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5.4.2 Evaluation Environments

We evaluate our proposed method on two problems from the commonly used

OpenAI classic control suite [36]. We selected CartPole and LunarLander

because they resemble real-world control problems. In the CartPole environment,

an observation represents the state of the pole consisting of 4 dimensions

~ψ(s) = 〈ψ1(s), ψ2(s), ψ4(s), ψ4(s)〉>. This environment has 2 actions, moving

left or right. In the LunarLander environment, an observation consists of 8

features ~ψ(s) = 〈ψ1(s), ψ2(s), . . . , ψ8(s)〉> where s ∈ S represents the state of

the ship. This environment has 4 actions, doing nothing, fire left orientation

engine, fire main engine and fire right orientation engine.

5.4.3 Behaviour Policies and Datasets

The original data sets in all our experiments are sampled from the environments

CartPole [36] and LunarLander [36]. The behaviour policies πb used to generate

experiences from these environments are trained using deep reinforcement

learning whereby online policy training was performed using the RL framework

Horizon [103]. For the CartPole environment we use the discrete DQN algorithm

and for the LunarLander environment we use the continuous action DQN

algorithm. For details about the implementation we refer to [103] as we reused

their architecture and other hyperparameter settings. As a dataset, we generate

around 20000 experiences under the behaviour policy πb for each of the two

environments Cartpole and Lunarlander. From each dataset we create subsets

with 1000, 3000, 5000, and 15000 experiences each. These datasets will be used

for training the GANs.
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Figure 5.3: Original (blue) and WGAN generated (green)
state features for CartPole with training data size 1K.
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Figure 5.4: Original (blue) and WGAN generated (green)
state features for CartPole with training data size 3K.
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Figure 5.5: Original (blue) and WGAN generated (green)
state features for CartPole with training data size 5K.
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Figure 5.6: Original (blue) and WGAN generated (green)
state features for CartPole with training data size 15K.
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Network Generator Discriminator

Hidden layers 1 1
Hidden neurons 750 500
Optimizer Adam Adam
Learning rate 1e-5 1e-5
Initialization Xavier Xavier

Table 5.1: Optimal parameters generator and discriminator
networks.

5.4.4 GAN Architecture and Hyperparameters

Considering the range of real-world applications our framework is applicable to,

it is important that the GANs have a robust architecture and show stability of

learning on the datasets from our case studies. We want to avoid to situation

where every single GAN needs a specific architecture and hyperparameter

tuning.

Wasserstein GAN. Regarding the type of GAN, we opted for the Wasserstein

GAN as described in Section 5.3.3 for its stability during training and relative

ease of performing hyperparameter tuning. Furthermore, given the fact that

the data to be generated are experiences consisting of a state, action, reward

and next state values, a generic feed forward neural network architecture is

selected. Our architecture consists of input units, a hidden layer with hidden

and bias units and output units for both the generator and the discriminator.

We performed a grid search for the number of hidden units in the hidden layer

for values between 50 and 1000 with step size 50 using the dataset Zπb
. We

chose the size of the input of the generator equal to the size of the experience

to be generated.

Optimal parameters. Based on literature we opted for Xavier initialization

[110] of the weights for its benefits on the speed of learning and stability.

We performed a grid search for the learning rate on the values 1e−1, 1e−2,

1e−3, 1e−4, and 1e−5. We experimented with the optimizers Adam, SGD and

RMSprop. All grid search experiments were run on the environments from
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Section 5.4.2 with stability of the loss of the WGAN as criterion. Table 5.1

shows the optimal parameters.

5.5 Results

Below we present the results related to the four research questions we have

identified.

5.5.1 Generating One-step horizon Sequential Data

Figures 5.1 and 5.2 show the training loss of the GANs for varying sizes of

data for CartPole and LunarLander. We let the models train until the learning

starts stabilizing. In a few occasions we can observe simultaneous spikes in the

generator loss and drops in the discriminator loss and vice versa.

5.5.2 Structural Representativity

We generate experiences using the generator networks and compare the distri-

bution of the synthesized experiences with the data that was used for training.

Figures 5.3, 5.4, 5.5, and 5.6 demonstrate such comparisons for the state features

of the CartPole environment. Figures 5.7, 5.8, 5.9, 5.10, 5.11, 5.12, 5.13 and

5.14 demonstrate such comparisons for the state features of the LunarLander

environment (the features ’first leg has contact’ and ’second leg has contact’

were excluded because these features are binary and the GANs learned to

generate one of the two values. As the size of data the GANs are trained on

increases, the distribution of the generated data moves closer to the distribution

of the original data. For the state feature Pole Velocity At Tip the GANs seem

to have difficulties capturing the distribution completely while for the other

features this seems less of a problem.
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Figure 5.7: Original (blue) state features for LunarLander
with training data size 1K.
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Figure 5.8: Generated (green) state features for LunarLan-
der with training data size 1K.
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Figure 5.9: Original (blue) state features for LunarLander
with training data size 3K.
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Figure 5.10: Generated (green) state features for LunarLan-
der with training data size 3K.
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Figure 5.11: Original (blue) state features for LunarLander
with training data size 5K.
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Figure 5.12: Generated (green) state features for LunarLan-
der with training data size 5K.
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Figure 5.13: Original (blue) state features for LunarLander
with training data size 15K.
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Figure 5.14: Generated (green) state features for LunarLan-
der with training data size 15K.
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We use the smoothed histograms of the generated data and the behaviour

data to qualitatively investigate the structural representativity of GANs when

generating sequential data. We do this for the different features representing

the state, action, next state and reward for the generated experiences. We

compare these features to the same features from the original behaviour dataset.

In the ideal situation the smoothed histogram from the generated data should

approach the smoothed histogram from the orgininal behaviour data as quickly

as possible. This would mean that the GAN needs a small amount of data to

learn a good representation of the data.

CartPole. We observe that for the CartPole environment it takes around

4K experiences for the smoothed histograms of the generated data to get closer

to the smoothed histograms of the original data. The steepest improvement

takes place between 1K and 3K training experiences. With 15K experiences

the the smoothed histograms of the generated data start approaching those of

the original data. Similar to what we have seen in the previous section, the

feature Pole Velociy At Tip seems to have the highest discrepancy in terms of

the smoothed histograms across all features after 15K training experiences. This

seems to be a logical outcome because this feature seems to have a relatively

high variance. We observe a similar behaviour for most features from the next

state.

LunarLander. We observe that for the LunarLander environment it takes

around 15K experiences for the smoothed histograms of the generated data to

get closer to the smoothed histograms of the original data. For some features

such as the Velocity values and Angle values, we observe that the smoothed

histograms of the generated data shift away from the smoothed histograms of

the original data. These features are represented by distributions with means

centered around 0 and low standard deviations. We observe a similar behaviour

for most features from the next state.
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Figure 5.15: Off-policy evaluation Mean Squared Error
for CartPole and LunarLander using the weighted doubly
robust evaluator.

5.5.3 Functional Representativity

As a measure for functional representativity of the GANS, we compare the

difference in outcome of applying off-policy evaluation on real and generated

data. For each GAN trained on the varying data sizes, we obtain the generator

network and generate experiences to be used for off-policy evaluation. For each

GAN that we train on the different data sizes, we generate experiences and

perform off-policy evaluation until we see that the off-policy evaluation metric

has stabilized (1K generated experiences without change). The value we observe

after the stabilization is used to calculate one MSE value. We repeat this for

all 4 sample sizes and we obtain the graph seen in figure 5.15.

CartPole. Figure 5.15 shows the CartPole MSE of the evaluation reward

compared to the perfect policy. With a perfect policy, a reward of 1 is obtained

during each experience. We observe an MSE value of almost 0.25 when using 1K

experiences to train the GAN (and the same amount of generated experiences

to evaluate it). With 3K experiences we see a large drop in the MSE to a value

of around 0.09. After this, the MSE gradually decreases to 0.075 for a data size

of 5K and 0.033 for a data size of 15K.
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LunarLander. Figure 5.15 shows the LunarLander MSE of the evaluation

reward compared to the policy from the logged data. With this behaviour

policy, we could calculate that an average reward of 0.255 was obtained during

each experience. We observe an MSE value of 0.065 when using 1K experiences

to train the GAN (and the same amount of generated experiences to evaluate

it). With 3K experiences we see a significant increase in the MSE to a value of

around 0.14. After this, the MSE gradually decreases to 0.065 for a data size of

5K and 0.062 for a data size of 15K. The MSE for the GAN trained on 1K

experiences seems to be an outlier as the off-policy evaluation value was very

close to 0. As we could see from the structural representativity property, the

GAN trained on 1K experiences does not seem to capture the dataset well yet.

Inspection of the generated data leads to the same conclusion where several

generated values are still very close to zero. With this information we can safely

treat the MSE for the GAN trained on 1K datapoints as an outlier.

5.6 Conclusion

In this paper, we have introduced a framework of properties to evaluate the

suitability of synthesized sequences of experiences for RL tasks using GANs.

We have introduced a framework of properties to evaluate the suitability of

the generated data. Here we distinguished structural and functional properties.

We tested our methods on standard RL benchmarks that have similarities

to real-world problems. We obtained historical logs from a behaviour policy

from literature and trained GANs on varying training data sizes. Using our

framework we showed that GANs start generating representative training data

with just a few thousand experiences.

To this end, we compared the distributions of the generated data and the

data obtained with the behaviour policies and showed that for the CartPole

environment the distribution of the generated data starts approaching the

distribution of the behaviour data after training on 3K to 5K experiences. For

the LunarLander environment –a significantly more complex problem– we see

similar behaviour, although it takes a slightly larger sample of training data for
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the distribution of the generated data to start approaching the distribution of

the behaviour data for this environment.

We used the weighted doubly robust off-policy evaluation and relied on the

MSE of the off-policy evaluation using the generated data. Ideally, the MSE

value would approach zero. With the CartPole environment, we demonstrated

that the MSE of the evaluations using generated data shows a steep drop in MSE

with just 3K experiences. After this amount of data the MSE keeps decreasing

gradually until it approaches zero. With the LunarLander environment we

empirically demonstrate the scalability of our framework.
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End-to-End Personalization
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Abstract - We introduce an end-to-end reinforcement learning (RL) solution

for the problem of sending personalized digital health interventions. Previous

work has shown that personalized interventions can be obtained through RL

using simple, discrete state information such as the recent activity performed.

In reality however, such features are often not observed, but instead could be

inferred from noisy, low-level sensor information obtained from mobile devices

(e.g. accelerometers in mobile phones). One could first transform such raw

data into discrete activities, but that could throw away important details and

would require training a classifier to infer these discrete activities which would

need a labeled training set. Instead, we propose to directly learn intervention

strategies for the low-level sensor data end-to-end using deep neural networks

and RL. We test our novel approach in a self-developed simulation environment

which models, and generates, realistic sensor data for daily human activities

and show the short-and long-term efficacy of sending personalized physical

workout interventions using RL policies. We compare several different input

representations and show that learning using raw sensor data is nearly as

effective and much more flexible.

6.1 Introduction

In the health domain, an ever-increasing amount of sensor data is collected

around patients. It originates from smartphones, smart watches and lots of other

devices. Such data can drive personalized recommendations and interventions to

improve the health state of patients. Experiments have shown that personalized

interventions are to be preferred over one-size-fits-all interventions [88; 121; 164;

309; 60; 222].

Obviously this newly available data is valuable, yet it does pose a challenging

learning problem. The sensor information consists of a large amount of raw

data and results in a very large state space for the personalization setting,

requiring a lot of data and feedback from individual patients to learn truly

personalized models when traditional learning methods are used. This is clearly

not desirable in real-world applications such as health-care where learning should
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be performed fast without bothering patients too much [222].

A solution to this problem is to transform raw sensor data into a more

digestible format by translating the raw state into a discrete or feature-based

version (see e.g. [88]). This approach resolves the complexity issues but also

means that information can be lost due to the transformation. On top of that,

it requires a dedicated model to make this translation, requiring either domain

knowledge or a labeled training set. Recently, developments within the field

of deep learning have fueled novel learning methods in reinforcement learning

(RL). While these methods are common in application areas with easy access to

simulation environments where a huge amount of data is available (Go, Atari

games, etc.) they are seldomly applied in a setting with limited data and

interaction with real humans. This raises the question whether it would be

feasible to apply deep RL techniques in such cases, and how beneficial they

could be by directly accessing the raw sensor data. From this frame of reference,

we outline the following research question: to what extent can we learn effective

policies for digital health interventions end-to-end from low-level sensor data

using deep RL?

Our first contribution is a framework in which we can experiment with

varying state representation and information, and explore good intervention

strategies. Our framework employs RL [321; 362] in an actor-critic setup,

which has a component for acting (i.e. sending interventions) and a component

that evaluates the current strategy. To cope with high-dimensional sensor

data state information, we employ deep neural networks [180; 294], including

those with extensions towards temporal data, the so-called long-short-term-

memory networks (LSTM ) [131]. Our second contribution is a comparison of

the intervention performance between different levels of state representations

using our framework. To make these comparisons we exploit a simulation

environment put forward in [87]. State representations range from unprocessed,

raw sensor data, to raw data augmented with high-level features. In addition,

we also experiment with settings in which a separate trained classifier first

interprets the raw sensor data and where the state information consists of a few

discrete activity features. We show that learning using low-level sensor data
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without additional interpretation steps is possible, is nearly as effective as with

those steps, and much more flexible with respect to sensor data.

6.2 Methods

We use RL to learn optimal policies for sending personalized health-related

interventions. Interventions are in our case the actions to be selected by the

RL algorithm (we use the terms interchangeably) and can for instance be

recommendation messages sent to a user on a mobile device. Our approach

relies on deep neural networks as the underlying algorithms. These algorithms

take raw sensor information as input and output actions that are sent to users.

In our specific case, these users are humans that use an application with the

goal of achieving a certain long-term goal (e.g. working out a certain amount of

time). In this section we start with a description of the problem at hand. Here

we build upon the modelling framework developed by [88].

6.2.1 User Model Definitions

The set of users is denoted U , where each u ∈ U can be modelled as a Markov

decision process (MDP) [362]. An MDP belonging to user u is defined as the

tuple < Su, I, Tu, Ru > where Su is a finite set of states for user u, I a set of

actions for u, Tu a stochastic transition function over the state of user u and

Ru is the reward function that assigns a scalar reward r to state-action pairs

su ∈ Su and i ∈ I as Ru :: Su × I → R. The function Tu defines how user u

moves (stochastically) from a state su ∈ Su to s′u ∈ Su after action i ∈ I defined

as Tu :: Su × I × Su → [0,1]. Conceptually, each user represents a sequential

decision making problem, in which our algorithm needs to find the best action

(intervention i ∈ I) for each user state su such that in the long run the total

reward obtained (each Ru(su, i)) for all encountered states, is maximized.
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6.2.2 Modeling Intervention Policies

The goal of this work is to learn a policy π that learns to select actions, i.e.

interventions that are personalized towards the various types of users in U . For

each user u ∈ U in state su ∈ Su, the policy π :: Su → I outputs intervention

i ∈ I, i.e. i = π(su). This action will lead (stochastically) to a transition of

user u from su to a new state s′u and results in a scalar reward r. An optimal

policy π learns to send interventions such that the cumulative future reward∑∞
k γkrk is maximized, where rk is the reward received at time step k, and γ

is a discount factor weighing rewards in the future. In the remainder of this

section this cumulative value is approximated for states su ∈ S and denoted

v̂(su).

The transition probability function Tu of user u relies on ∆t which denotes

the granularity of our modeling. After each ∆t there is a decision moment for

the policy, i.e. when an intervention decision is taken. ∆t can be set at various

levels of granularity, but several (practical) limitations need to be taken into

account when selecting a particular value. Having too many or too few decision

moments (i.e. possibility to send an intervention) can lower the performance

of the system. Especially the sampling frequency of the sensors needs to be

aligned in a smart way to ensure this. In addition, we may need to limit the

amount of sampling from sensors since this may drain batteries from the mobile

devices, but equally so because it may give rise to greater computational costs

which may not be outweighted by an increase in performance.

6.2.3 User State Representation

One of the most important aspects of our problem setup is the user state

representation su ∈ Su at any given moment. In any realistic domain it is

infeasible to represent all existing information about the current user state

(e.g. as an ideal representation Sreal), but it is feasible to assume that we

can deploy software on a mobile device that employs physical sensors on that

device to sample information about the current user state, or activity. Such

information could for example include data about the relative movement in a
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3D physical environment sensed by an accelerometer. We define the state Su

as the observable1 information from the real state Sreal of user u. We model

the state Su as a combination of Φ(su) and Z(su). Φ(su) represents the feature

vector representation:

~φ(su) = 〈φ1(su), φ2(su), . . . , φn(su)〉>

which consists of a summary of the state of user u over a certain previous period

of time ∆t, in a set of features, for example the time of day. Z(su) is comprised

of the vector ~Z(su) representing raw sensor data (e.g. X, Y and Z acceleration).

In short, Su is defined as the concatenation of Φ(su) and Z(su).

 
 
 
 

 
 
 
 
 
 
 

 
  

 
 
 
 
 

0 15 30 45 60  
minutes 

Sitting Jogging Sitting 

Figure 6.1: Sampling accelerometer data. User u performs
the activities: Sitting, Jogging and Sitting. ∆t is 60 min-
utes. There are 8 sampling moments (N=8) with a sam-
pling frequency of b of 40HZ and δt = 10 seconds. Sensor
data: blue is the X-direction, green is the Y-direction and
red is the Z-direction of the acceleration sensor data. This
illustrates an example setting. We describe our exact pa-
rameters later in this paper.

1Note that it is unknown whether these states fulfill the Markov property. In essence, our
state could be considered as part of an POMDP control problem. Nevertheless, we assume
that we are dealing with an MDP which is common practice in the RL community.
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6.2.4 Sampling Sensor Data

Our approach to obtain ~Z(su) relies on a sampling method that is both practical

but also rich enough to learn optimal policies. Given ∆t we define N sampling

moments. During one sampling moment n (with n = 1 . . . N) we measure the

sensor data for a duration δt (with δt ¡ ∆t) at a frequency of b HZ. This means

δt · b measurements of sensor values. Given the number of sensor values per

time point, a vector of length K results:

~Z(su) = 〈z1(su), z2(su), . . . , zK(su)〉>

After each period of ∆t the overall feature vector ~Z(su) is constructed from the

N samples, by concatenation. If the sampling frequency b of the sensor is higher

than the desired state size an aggregation approach is applied to compress the

amount of information (see e.g. [134]). Further details about this parameter

are described in Section 6.3. Figure 6.1 provides an illustration of this sampling

method.

6.2.5 Intervention Policies: Actor-Critic

To learn the intervention policies for users, we employ an actor-critic (AC)

RL algorithm. Procedure 8 provides pseudocode, in which two parameterized

functions, implemented as deep neural networks, are used. The first is called

actor and represents a probabilistic function π(a|s, θ) parameterized by θ used

to select actions. The second is called critic and is represented by the real-valued

function v̂(s,w), parameterized by w. For one user, the algorithm updates both

parameter vectors after each decision moment.

In our approach we augment the standard AC algorithm from [321] with

three things (cf. Procedure 8). First, we use a synchronous updating scheme

for all users in parallel. That means that Procedure 8 will contain an additional

loop over users u ∈ U and updates on parameters will be based on the gradients

with respect to the experience pairs of all users. Secondly, it has been shown

that methods with value approximation (i.e. the approximation of v̂) tend
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to have high variability [225]. One remedy for this problem is the use of

advantage functions instead of value functions [225]. Thus instead of learning

the standard value function approximation v̂(s) we employ the advantage

function A(s) = r + γv̂(s′u,w) − v̂(su,w), and thus we update our neural

network parameters w in the gradient direction of this quantity. This way,

the critic will learn to focus on the advantage an action has, and not on the

exact value, which is beneficial for learning since it displays lower variance,

cf.[225; 321; 315; 180]. Thirdly, we employ a so-called shared network design

in which the actor and critic share most of the deep neural architecture (and

parameters) except for the parameters of the last layer to either the action

output or the state-action value output.

Algorithm 8: Actor-critic algorithm for episodic tasks

1 One user u ∈ U
2 policy π(a|s, θ), value function v̂(s,w)
3 step sizes, α > 0, β > 0
4 policy π(a, s, θ)
5 initialize policy parameters θ and state-value weights w
6 true initialize su, the first state of the episode
7 I ← 1
8 su not terminal a ∼ π(·|su, θ) take action a, observe s′u, r
9 δ ← r + γv̂(s′u,w)− v̂(su,w) (if s′ is terminal, v̂(s′u,w) = 0)

10 w← w + βδ∇wv̂(su,w)
11 θ ← θ + αIδ∇θ log π(a|su, θ)
12 I ← γI
13 su ← s′u

In the shared network design, we employ layers representing long-short-

term-memory (LSTM ) networks to deal with the potential temporal patterns in

the raw sensor data. As Figure 6.2 shows the sensor data ~Z(su) goes through

these recurrent layers first, whereas other state information ~φ(su) does not.

The combined information then goes through two dense layers of neurons

(i.e. fully connected and parameterized) after which separate output layers

(separatately parameterized) for actor and critic are in place. Further details of

the implementation are described in Section 6.3.
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6.3 Experimental Setup

In this work we rely on RL to achieve end-to-end personalization of health

interventions based on sensed data from devices. We test our algorithm in a sim-

ulation environment that relies on a behavior engine and Generative Adversarial

Networks (GANs) [87] for generating low-level sensor data (accelerometer data).

To answer our main research question we formulated the following sub-questions

that outline our experiments:

− RQ1: Can we learn effective policies for health interventions directly from

low-level sensor data?

− RQ2: Can we enhance the speed of learning by adding an activity classifier

between the raw sensor data and the RL framework (simplifying the state

representation) and is the performance consistent?

− RQ3: How effective are the learned policies when an activity classifier is

not able to recognize the core activities performed by an individual and

we cannot exploit the sensor data?

− RQ4: How does the performance of learning directly from low-level sensor

data compare to the approach with the activity classifier?

6.3.1 Simulation Environment

As explained before, we use a simulation environment to serve as a testbed for

our RL algorithm in the (digital) health domain. This simulation environment

is taken from [88; 87]. In the simulation environment, users are present each

having particular demographic properties. Users conduct activities over time

(sleeping, sitting, walking upstairs and downstairs, walking, and jogging) and

can receive interventions in the form of messages to schedule a workout. Users

build up a certain fatigue when conducting physically demanding activities too

often. The goal of the intervention is to make sure that users reach a minimum

amount of physical activity per day ([361]) without the fatigue building up

too much. Users can be set to respond differently to interventions depending
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Figure 6.2: Shared network design.

on their demographics, their schedule during the day, their fatigue levels, and

the activity at the moment they receive the intervention. Also, fatigue can

build up differently per user. The goal of the RL algorithm is to figure out the

best timing of the intervention for these different users as fast as possible such

that they conduct sufficient physical activity. To generate the appropriate raw

sensor data accompanying the various activities, GANs that are pre-trained to

generate realistic sensor data for the activities in the simulation environment

are used (cf. [87]).

The key to establish a certain level of realism of user behavior is to generate

data that is close to real life data. We use data taken from US time keeping

research as a basis to determine the distribution and order of activities performed

during a day for three different profiles, namely an athlete, worker, and a retiree

(cf. [324]). Next to the daily activities, the other aspects in the simulator are
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also required to be set. Here, we use the following settings per profile (with

some stochasticity):

− the athlete type with an average age of 35 and a standard deviation of 5

years. This type has a good work-life balance and a 90% acceptance prob-

ability with a 5% standard deviation when a suggestion (i.e. intervention)

of an activity fits their schedule. This type has a 50% chance of working

out for a second time in one day. Their fatigue level starts building up

after 4 days of workout in a row.

− the worker type with an average age of 45 and a standard deviation of

5 years. This type has a tight schedule and a preference for planning

their daily activity 3 to 21 hours in advance. There is 80% acceptance

probability for recommendations with 5% standard deviation when an

intervention fits their schedule. Fatigue starts building up after 3 days

with workout in a row. This type has a 5% chance of working out for a

second time in one day.

− the retiree type with an average age of 65 and a standard deviation of

5 years. This type has ample free time and a preference for planning

their daily activity up to 6 hours in advance. There is 85% acceptance

probability for recommendations with 5% standard deviation when an

intervention fits their schedule. Fatigue starts building up after 2 days

with workout in a row. This type has a 5% chance of working out for a

second time in one day.

Users are generated based on one of these three profiles.

6.3.2 Varying State Representations

Our framework relies on two types of state representations: low-level sensor data

and a feature-based representation. The latter is the feature state representation

Φ(su) and is described in detail in [88]. The discrete features included in our

experiments are: day of the week, hour of the day, workout activity performed
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today and the fatigue level of the person. On top, the demographic feature age

can also be included. The low-level sensor data Z(su) contains the X, Y and

Z accelerometer information. For our experiments we opted for 12 sampling

moments (N=12) at equally spaced intervals with a sampling rate of 4HZ with

δt = 10 seconds. This corresponds to a measurement every 5 minutes with

480 data points for each of the three dimensions of the accelerometer at every

decision moment. We choose our decision moments at the end of every hour

which makes ∆t equal to 60 minutes. Figure 6.1 illustrates an example setting.

6.3.3 Experimental Settings

We conduct a number of experiments to answer our research questions. Table

6.1 provides an overview of the state representations included in each of our

experimental settings. Experiment 1 includes the accelerometer data which is

used as input for the LSTM layer along with the discrete features that are used

as input for the dense layer. In experiment 2 we drop the LSTM layers and use

the discrete features along with the dense layers to investigate the added value

of the sensor data. This resembles an activity classifier that is not able to detect

the activities that are of importance for the case at hand. In experiment 3 we

go back to the architecture from setting 1 and we add the age of the user to the

discrete state input. We do this to investigate the effect user traits can have on

the level of personalization. Finally, in experiment 4 we use an LSTM classifier

developed in [87] to classify the raw sensor data into one of the 6 activities:

sleeping, sitting, walking upstairs, walking downstairs, walking and jogging.

The resulting binary vector is used as input for the LSTM layer in this case. In

this new setting one can still speak of a temporal setting, but now considerably

more abstract in nature.

6.3.4 Algorithm Setup

Our framework relies on RL with a shared network design containing LSTM

layers along with dense layers. Figure 6.2 shows the architecture we have

designed. In Table 6.2 we describe the number of hidden cells in each LSTM
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State Experiment
1 2 3 4

Raw sensor data Yes No Yes No
Discrete features Yes Yes Yes Yes
Demographics No No Yes No
Classification of sensor data No No No Yes

Table 6.1: Different state representations in different ex-
perimental settings.

layer (if an input representation with a time dimension is used) and a dense

layer for each of the settings we are comparing. We performed preliminary

experiments to determine an architecture and hyperparameter setting that is

suitable. We focused here on the cumulative rewards with short simulation runs

of 7 days.

We use the stochastic gradient descent optimizer with a learning rate α

of 0.1, a decay parameter of 1e-6 and a momentum β of 0.9 for our network.

Furthermore, we use the categorical cross-entropy loss function for the actor

stream and the mean squared error for critic stream. The losses from the

two streams are weighted equally. The activation functions at each layer are

specified in Figure 6.2. To improve the stability of the learning we apply

batch normalization between all layers of the network. Several runs with

varying parameters, activation functions, optimizers and network structures

were performed and based on the obtained results the current setup was chosen.

Layer Experiment

1 2 3 4
LSTM 1 124 None 124 124
LSTM 2 124 None 124 124
Dense 1 12 12 12 12
Dense 2 6 6 6 6

Table 6.2: The number of hidden cells in each LSTM layer
and hidden neurons in each dense layer used in each ex-
periment.
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For the advantage actor-critic algorithm we choose a learning rate of 0.1

and γ of 0.95. At each decision moment the algorithm sees one new sample

from each user u ∈ U . We opted for flipping the selected binary action (i.e.

sending an intervention or not) in 5% of the time to help the algorithm with

exploring the large state space. The reward function used consists of multiple

components [88]: a positive reward when a suggestion is accepted by the user,

a negative reward when the suggestion is declined, a positive reward when the

suggestion is finished by the user and finally a small positive reward for each

second the user performs the suggested activity. At each decision moment the

sum of these components defines the total reward for the state of the user at

that moment. Table 6.3 shows the scalar rewards that were selected.

Reward component Reward

Suggestion accepted +5
Suggestion rejected -1
Performed suggestion for 1 second +0.0001
Suggestion finished +25
Fatigue level −0.1 ·min(7, fatigue)

Table 6.3: The reward function. The reward at each decision
moment (after ∆t) is the sum of five components.

During each experiment we simulate 50 humans during a period of 50 days.

For each experiment, 5 simulation runs are performed with random initialization

of the user state. The three profiles are practically equally represented in each

experiment.

6.4 Results

6.4.1 Average Reward per Decision Moment

Figure 6.3 shows the average hourly reward for the different experimental

settings. For each experiment we average the hourly rewards per person during

our simulation runs. We group the data based on the experimental setting
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to show the statistical difference. We use the Wilcoxon signed-rank test to

show statistical significance with a confidence level of 95%. Table 6.4 shows the

pairwise comparisons along with the P-values.

6.4.1.1 Sensor and Discrete States

In the setting with a state that consists of sensor data along with the discrete

features, we observe a mean average hourly reward of 0.28 (median = 0.34)

with a standard deviation of 0.25 across the 250 simulated humans (50 humans

x 5 simulation runs). We repeated this experiment with the addition of the

age in the state representation to test the added value of the availability of

information such as demographics or traits of the simulated humans has on the

level of personalization. We observe an average hourly reward of 0.38 (median

= 0.48) with a standard deviation of 0.20 across all simulated users in this

setting.

6.4.1.2 Discrete States

To test the added value of the sensor input, we experimented with a setting

where we drop the sensor data and only use the discrete state representation as

input. This resembles a classifier not able to detect key activities, essentially

ignoring the sensor data. In this setting, we observe a mean average hourly

reward of 0.02 (median = −0.12) with a standard deviation of 0.31 across all

simulated users in this setting.

6.4.1.3 Classification of Sensor Data and Discrete States

To compare the behavior of policies when an accurate classifier of activities is

available, we set up experiments with a state representation that contains the

classification output of the sensor data along with the discrete features. The

age demographic is not included in the state representation. We observe an

average hourly reward of 0.38 (median = 0.46) with a standard deviation of

0.19 across all simulated users in this setting.
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Figure 6.3: Box plot of the average hourly reward per sim-
ulated person for all settings.

6.4.2 Comparison of Experimental Settings

We return to our four research questions, and answer them based on the

experimental results.

6.4.2.1 Learning from Sensor Information

Sensor data sampled using an accelerometer could contain valuable information

for the personalization of health interventions. Being able to observe that

a human is sitting during a weekend while knowing that the person did not

work out yet during the current day could be a good indication for sending an

effective intervention. Hence, somehow sensor data should be exploited. To test

this hypothesis we compare the observed average hourly rewards of setting 1

(sensor and discrete states) and 2 (discrete states). The Wilcoxon’s singed-rank

shows that the means of the two settings are significantly different (P-value =

< 2.2e-16, significant). This leads to answering RQ1 positively. For RQ3 we can

say that learning without sensor data or recognized activities is less effective

compared to approaches where this information is exploited.
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Comparison W P-value

1 vs 2 45892 <2.2e-16
1 vs 3 24258 <1.5e-05
1 vs 4 24286 1.6e-05
2 vs 3 11833 <2.2e-16
2 vs 4 11518 <2.2e-16
3 vs 4 32046 0.6

Table 6.4: Pairwise Wilcoxon’s signed-rank test. 1. Sensor
and Discrete State. 2. Discrete State. 3. Sensor and
Discrete with Age State. 4. Sensor data Classifier and
Discrete State.

6.4.2.2 Using an Activity Classifier for Sensor Data

The availability of accurate activity classifiers of accelerometer data provide an

opportunity for simplifying the input state for the RL framework. This setting

shows a higher variance compared to the setting with sensor and discrete data

as state representation, but it does show a significantly better performance

compared to not using any sensor data at all. Hence, this leads to to answering

RQ2 positively. For RQ4 we do see a higher variance when an activity classifier

is used (setting 4) compared to setting 1, however the activity classifier case

does show a better performance compared to using the raw sensor data (P-value

= 1.6e-05, significant). When age is exploited together with the sensor data

however, performance does not differ significantly with the activity classifier

(P-value = 0.6).

6.4.3 Cumulative Rewards

For the setting Sensor and Discrete state we see that the cumulative reward

increases steadily during the first three days of the simulation. After this period

we see that there is a change in the rate of increase in cumulative reward

and the variance. For the setting Discrete state we see that the cumulative

reward decreases rapidly after the initial four days. After this period we also

see that there is a rapid increase in the variance of the cumulative reward.
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For the settings Sensor and Discrete state with age and Sensor with Classifier

and Discrete state we can observe that the policy learns to send interventions

seemingly fast. After three days of simulation we see that there is a change in

the rate of increase in cumulative reward and the variance.

6.5 Conclusion

In this paper, we developed a framework for end-to-end personalization of

health interventions using RL. Our framework relies on the advantage actor-

critic approach. We used a shared network design with LSTM and dense layers

as the underlying deep neural network. We varied the types of input ranging

from raw sensor data to discrete features and demographical information such

as age. We tested our approach in a simulation environment that is driven by

a behavioral engine and GANs for different types of simulated humans. We

varied the types of inputs to see the effect each type has on the quality of the

learned policy but also on the level of personalization.

Our results show that learning directly from sensor data leads to a significant

improvement compared to learning from the discrete feature representation.

Adding age to the state representation leads to a significant improvement

compared to learning directly from sensor data and the discrete features. Being

able to distinguish between the different types of simulated users (even when

there is overlap in age between the types) leads to improved learning. We also

show that adding an activity classifier between the raw sensor data and the RL

framework leads to a speedup of the learning, but results in a higher variance

between different experimental runs. As the answer on our research question we

can state that we can learn effective policies for health interventions end-to-end

from low-level sensor data using deep RL.

Our results demonstrate that we can learn personalized policies using an RL

framework. A natural continuation in future work would be the development of

a more fundamental approach that further improves on the stability, robustness

and the ability to learn faster in a variety of different situations where humans

are involved.
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Abstract - In recent years, reinforcement learning (RL) has gained traction

in the healthcare domain. In particular, RL methods have been explored for

haemodynamic optimization of septic patients in the Intensive Care Unit. Most

hospitals however, lack the data and expertise for model development, necessitat-

ing transfer of models developed using external datasets. This approach assumes

model generalizability across different patient populations, the validity of which

has not previously been tested. In addition, there is limited knowledge on

safety and reliability. These challenges need to be addressed to further facilitate

implementation of RL models in clinical practice. We developed and validated

a new reinforcement learning model for hemodynamic optimization in sepsis on

the MIMIC intensive care database from the USA using a dueling double deep Q

network. We then transferred this model to the European AmsterdamUMCdb

intensive care database. T-Distributed Stochastic Neighbor Embedding and

Sequential Organ Failure Assessment scores were used to explore the differences

between the patient populations. We apply off-policy policy evaluation methods

to quantify model performance. In addition, we introduce and apply a novel

deep policy inspection to analyse how the optimal policy relates to the different

phases of sepsis and sepsis treatment to provide interpretable insight in order

to assess model safety and reliability. The off-policy evaluation revealed that

the optimal policy outperformed the physician policy on both datasets despite

marked differences between the two patient populations and physician’s policies.

Our novel deep policy inspection method showed insightful results and unveiled

that the model could initiate therapy adequately and adjust therapy intensity

to illness severity and disease progression which indicated safe and reliable

model behaviour. Compared to current physician behavior, the developed

policy prefers a more liberal use of vasopressors with a more restrained use of

fluid therapy in line with previous work. We created a reinforcement learning

model for optimal bedside hemodynamic management and demonstrated model

transferability between populations from the USA and Europe for the first time.

We proposed new methods for deep policy inspection integrating expert domain

knowledge. This is expected to facilitate progression to bedside clinical decision

support for the treatment of critically ill patients.
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7.1 Introduction

7.1.1 Sepsis

Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated

host response to infection [310]. Sepsis induces haemodynamic changes, includ-

ing vasoplegia and capillary leak. If left untreated, this will result in shock,

organ failure and ultimately death. Indeed, sepsis is a leading cause of death

worldwide, with mortality rates as high as 20-30% for sepsis and up to 40-70%

for septic shock [310; 92]. This is especially alarming as sepsis incidence and

severity is increasing [348; 217].

A key aspect of sepsis treatment is hemodynamic support which relies pre-

dominantly on resuscitation of the circulation by administration of intravenous

fluids and the use of vasopressors to constrict blood vessels. Both therapies

are used to increase and maintain an appropriate level of blood pressure. In

septic patients, it is currently unknown what combination, sequence and dose of

fluid and vasopressor therapy is adequate or optimal during the course of their

treatment. No agreement on clinical practice exists and current guidelines are

the subject of substantial debate [200; 205; 352; 252; 15; 207; 204; 206]. Thus,

hemodynamic optimization in patients with sepsis or septic shock remains a

major clinical challenge, especially in individual patients.

The idea of using reinforcement learning (RL) for this challenge was first

presented in 2016 by Komorowski et al. who proposed a discrete MDP to

suggest optimal treatment of critically ill patients in the intensive care [160].

Subsequently, they externally validated a discrete state space non-recurrent

autoencoder reinforcement learning model that demonstrated mortality was

20% instead of up to 80% if the treatment sequence and combination patients

received matched those recommended retrospectively by the model [158]. These

results show great potential.

It is clear that the ultimate goal of developing RL models for sepsis is to

apply them at the bedside to guide the treatment of an individual patient

with sepsis. However, many hospitals lack the expertise and the large magni-

tude of intensive care patient data required to develop these models. Thus,
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developing new and different RL models for each hospital is cumbersome and

hardly feasible. This implies that transferability of RL models that have been

developed on readily available patient data is of pivotal importance and clinical

performance over different populations in different clinical settings needs to be

assessed. Additionally, safety and reliability have to be investigated prior to

implementation in clinical practice [117; 157; 215], while techniques that enable

clinical experts to gain insight into the RL models to study these aspects are

lacking.

In this paper, we therefore develop a novel RL model for the treatment of

sepsis on a large public clinical database from the USA, transfer this model to

our local European population and evaluate its clinical applicability. Moreover,

we introduce a novel deep policy inspection method to qualitatively explore

model behavior by incorporating domain knowledge. This framework provides a

model agnostic evaluation method of the optimal policy in relation to expected

disease onset, progression and treatment and is expected to help evaluate

reinforcement learning models in healthcare.

7.2 Background and Related Work

The Markov Decision Process (MDP) [26; 27; 135] is a conceptual framework

where an Agent (physician) iteratively interacts with a State (e.g. current

state of the patient) by performing an Action (e.g. a medical intervention) and

receives a reward (e.g. survival) and the next State (of the patient).

The full MDP is defined by the tuple [S, A, R, P, P0, γ] with P0 as the

initial state distribution. P(s,a,s’) is the transition probability distribution from

state (s ∈ A) to the next state (s′ ∈ S) given the performed action (a ∈ A)

and γ ∈ (0, 1) is the discount factor that balances short term with long term

rewards. R is the reward and a reward function R(s,a) needs to be specified.

The value of any state under the policy π can be defined with the following
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formula:

V π(s) = R(s, π(s)) + γ
∑
s‘

P (s, a, s‘)V π(s‘) (7.1)

where policy π(s) selects the action. The value function under the optimal

policy π∗ is defined as follows:

V π∗(s) = max
a

R(s, a) + γ
∑
s‘

P (s, a, s‘)V π∗(s‘) (7.2)

Equation 2 defines the optimal value of state s as the sum of the reward from

taking the best possible action a in state s plus the discounted future reward

from following the optimal policy π∗. Here, V π
∗
(s′) is the value of the next

state after taking action a under optimal policy π∗.

From the optimal state value function (equation 7.2) we derive the optimal

state-action value function, also called Q function, which denotes how good it

is for an agent to perform a chosen action in a state under the optimal policy

π∗. The value function relates to the optimal policy π∗ using the Q function:

V π∗(s) = arg max
a

Qπ∗(s, a) (7.3)

To develop reinforcement learning models from retrospective datasets, the

value function of the optimal policy has to be learned independently of the

agent’s action. This is called off-policy learning. Q-learning is a popular method

for off-policy learning where policy is learned by finding optimal function Q∗

with an iterative (i) update at each time step t where Qt+1 will converge to Q∗

as i approaches infinity with some theoretical guarantees [218] by solving the

following equation:

Qπt+1(st, at) = Qπt (s, a) + αt[R(s, a) + γmax
a′

Qπt (s′, a′)−Qπt (s, a)] (7.4)
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The Q function in equation 7.4 is updated after each step according to a

learning rate α ∈ (0, 1) where a factor close to 0 means the agent learns very

slowly and a factor 1 means the agent completely ignores prior knowledge. In

practice, a small learning rate is used until converges and is assumed to be Q∗.

7.2.1 Related Work

Schaefer et al. summarized the use of MDP’s for modeling medical treatment of

the last decades up to 2004 [291]. Reinforcement learning has since been evalu-

ated for a number of medical applications such as heparin dosing, chemotherapy

drug dosage, regulation of analgesia and blood glucose regulation [372].

Komorowski et al. proposed a discrete MDP to suggest optimal treatment of

critically ill sepsis patients in the intensive care [160]. Subsequently, Komorowski

et al. developed a discrete state space non-recurrent autoencoder reinforcement

learning model [158] which they subsequently validated using data from 79,073

patients with sepsis from 128 hospitals in the USA, contained in the semi

publicly available eICU Research Institute database.

Raghu et al. expanded on Komorowski’s initial work by proposing a Dueling

Double Deep Q network Q-learning model with a continuous state space [266].

Since then, Raghu et al. introduced a continuous reward function [265] and

evaluated model based reinforcement learning for this domain [264]. Peng et al.

explored a mixture model approach using a Deep Q-Network model restricted

in action space by similarly seen action from physicians. They showed that for

patients with higher severity of illness relying on the model’s policy may be

undesirable because the model did not learn a good policy for these patients

due to a lack of data [250]. Li et al. developed an Actor Critic model with a

continuous action space using a Partially observable OMDP (POMDP) [178]

but lacks an appropriate model performance metric. Yu et al. used deep inverse

RL to derive an optimal reward function and exposed features that should

be considered for reward function formulation [372]. Most recently, Lu et al.

explored the effect of different MDP formulations on model behavior [194] and

Li et al. trained an actor critic model that incorporated state distribution
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correction into the policy gradient estimate [175].

Section 7.2.2 provides an overview of developed RL model and MDP designs

for sepsis including strengths and limitations. Among the different approaches,

Deep Q learning has been most extensively explored and used for modeling.

Almost all papers share the same action space. Many different (latent) state

space representations have been explored with no design being clearly superior.

The reward functions used are either terminal or a continuous reward which

introduces new hyperparameters for optimization.

Recent papers also explored methods for model evaluation [118; 116; 175;

194]. Lu et al. performed a sensitivity analysis of a Deep Q learning model and

showed that learned policies are sensitive to input features, time discretization,

reward function, and random seeds [194]. Gottesman et al. evaluated how

different ways to summarize a history, describe variance of statistical estimators

and assess confounders in more ad-hoc measures can result in unreliable, even

misleading estimates of the quality of a treatment policy [118]. They also

introduced influence analysis, a method to identify transitions in the data which

are highly influential on the estimated policy value and proposed incorporating

domain experts in the evaluation process by assessing agreement with expert

intuition [116]. These methods, however, do not relate model behavior to the

expected disease progression and rely strongly on off -policy evaluation or expert

opinion. This prompted us to develop deep policy inspection to better facilitate

this particular aspect of model evaluation.
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7.2.2 Related Work Overview

1. A Markov Decision Process to suggest optimal treatment of severe infec-

tions in intensive care. Komorowski et al. 2016 Dec [160].

− Data: MIMIC-III.

− Model: SARSA.

− State space: Discretised state space.

− Action space: 25 unique actions based on a 5 by 5 binning proce-

dure of maximum vasopressor dose and sum of intravenous fluids per

4 hour time interval.

− Reward: Terminal reward at the end of each trajectory based on

90-day mortality.

− Evaluation: Empirical evaluation.

− Highlights and limitation: First implementation and description

of the problem setting. However, no (off-policy) method applied to

quantify model performance.

2. Continuous State-Space Models for Optimal Sepsis Treatment - a Deep

Reinforcement Learning Approach, Raghu et al. 2017 May [267].

− Data: MIMIC-III.

− Model: Dueling DDQN.

− State space: Ordinary and Sparse Auto-Encoders were used for

latent state space representation. The latent state representations

are used as input for the model.

− Action space: as paper [160].

− Reward: Terminal reward at the end of each trajectory based on

in-hospital mortality.

− Evaluation: Doubly Robust off-policy evaluation [143].
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− Highlights and limitation: Introduced a latent representation of

a continuous state space and introduced the fully connected Dueling

Double Deep Q Network using Prioritised Experience Replay. The

(latent) state space reduces dimensionality but also reduced model

interpretability. Furthermore, it may cause unwanted overfitting of

the model to the underlying dataset.

3. Deep Reinforcement Learning for Sepsis Treatment, Raghu et al. 2017

Nov [265].

− Data: MIMIC-III.

− Model: Dueling DDQN.

− State space: Continuous state space based on 4h aggregated fea-

tures based on physiological parameters.

− Action space: as paper [160].

− Reward: Intermediate reward based on changes in SOFA scores

and lactate combined with a terminal reward for survival based on

ICU mortality.

− Evaluation: as paper [267] and empirical evaluation.

− Highlights and limitation: Introduced a continuous state space

and a non-terminal reward function. The reward function requires

two hyperparameter which were tuned to help model training. How-

ever, An assumption is made that the reward function is causily

correlated with desired clinical outcomes.

4. Learning to Treat Sepsis with Multi-Output Gaussian Process Deep Re-

current Q-Networks, Futoma et al. 2018 Feb [99].

− Data: MIMIC-III.

− Model: Multi-Output Gaussian Process Deep Recurrent Q-Networks.

− State space: partially observable MDP (POMDP).

− Action space: as paper [160].
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− Reward: Terminal reward at the end of each trajectory based on

mortality within 30 days of onset of sepsis.

− Evaluation: Empirical evaluation.

− Highlights and limitation: Introduced the use of a Multi-output

Gaussian process (MGP) as a preprocessing step that is jointly

learned with the reinforcement learning model to interpolate and to

impute missing physiological time series values used by the down-

stream reinforcement learning algorithm, while importantly main-

taining uncertainty about the clinical state. This imputation method

has not been evaluated in an external dataset and may cause undue

overfitting of the model on the underlying dataset.

5. The Actor Search Tree Critic (ASTC) for Off-Policy POMDP Learning

in Medical Decision Making, Li et al. 2018 May [178].

− Data: MIMIC-III.

− Model: Actor-Critic.

− State space: partially observable MDP (POMDP).

− Action space: continuous action spaces (e.g. milliliter of medicine

dripped per hour).

− Reward: Terminal reward at the end of each trajectory based on

mortality, either hospital or 90-day mortality, whichever is available.

− Evaluation: Empirical evaluation.

− Highlights and limitation: Introduced a continuous action space

and introduced an actor critic model using a POMDP state space.

Due to the continuous action space, conventional off policy evaluation

methods cannot be used to asses model performance.

6. Model-Based Reinforcement Learning for Sepsis Treatment, Raghu et al.

2018 Nov [268].

− Data: MIMIC-III.
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− Model: the REINFORCE Policy Gradient algorithm (PG) and the

Proximal Policy Optimization algorithm (PPO).

− State space: Environment model using LSTM and Bayesian neural

network for latent state space representation.

− Action space: as paper [160].

− Reward: as paper [265].

− Evaluation: Per-Horizon Weighted Importance Sampling (PHWIS),

Per-Horizon Weighted Doubly Robust (PHWDR).

− Highlights and limitation: First implementation of model based

methods in this setting. Explored different environment (state space)

models and compared two policy search algorithms for model based

reinforcement learning. The quality of the off policy evaluation

now relies heavily on the environmental model which may cause

overoptimism in the policy evaluation.

7. The Artificial Intelligence Clinician learns optimal treatment strategies

for sepsis in intensive care, Komorowski et al. 2018 Dec [159].

− Data: MIMIC-III and E-ICU.

− Model: Tabular Q-learning.

− State space: The state space was discretised by k-means + +

clustering of the patients’ data resulting in 750 discrete mutually

exclusive patient states.

− Action space: as paper [160].

− Reward: as paper [160].

− Evaluation: HCOPE method, WIS, and bootstrapping to estimate

the true distribution of the policy value.

− Highlights and limitation: First paper to perform external val-

idation using a large multi hospital dataset. The state space was

discretised into clusters which reduced model interpretability and

may impact clinical applicability in a single center.
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8. Improving Sepsis Treatment Strategies by Combining Deep and Kernel-

Based Reinforcement Learning, Peng et al. 2018 Dec [250].

− Data: MIMIC-III.

− Model: Dueling DDQN.

− State space: patient states are encoded recurrently using an LSTM

autoencoder representing the cumulative history for each patient.

− Action space: as paper [160].

− Reward: The change in the negative mortality logodds of mortality

between the current observations and the next observations.

− Evaluation: weighted doubly robust (WDR) estimator (Thomas

2016).

− Highlights and limitation: mixture-of-experts (MoE) approach

was used to create a policy which switches between a kernel based

policy (which is derived directly from clinician actions) and a DDQN

based policy. The mortality predictor f(o) itself was a two-layer

neural network with 64 and 32 units for each layer and L1-regularized

gradients. Convergence to a stable reproducable reward function

is not guarenteed. furthermore, no evidence is provided that the

intermediate decrease in risk of mortality is causily correlated with

desired clinical outcomes.

9. Optimizing Sequential Medical Treatments with Auto-Encoding Heuristic

Search in POMDPs, Li et al. 2019 May [179].

− Data: MIMIC-III.

− Model: Actor-Critic using auto-encoding heuristic search.

− State space: partially observable MDP (POMDP).

− Action space: as paper [160].

− Reward: as paper [160].
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− Evaluation: Weighted importance sampling with bootstrapped

confidence intervals.

− Highlights and limitation: Paper demonstrates that including

heuristics reduces the number of patient variables required to out-

perform clinicians’ behavior policy.

10. Deep Inverse Reinforcement Learning for Sepsis Treatment, Yu et al. 2019

June [372].

− Data: MIMIC-III.

− Model: Dueling DDQN.

− State space: as paper [265].

− Action space: as paper [160].

− Reward: Developed several reward functions based on 7 potential

features most important during the treatment process.

− Evaluation: not applicable.

− Highlights and limitation: A deep inverse RL with Mini-Tree

(DIRL-MT) model is proposed to infer the best reward functions from

a set of presumably optimal treatment trajectories using retrospective

real medical data. This method provides insight into features highly

correlated with desirable outcome in the training dataset but the

exact ’best reward function’ that is derived may be overfitted to the

dataset.

11. Optimizing Medical Treatment for Sepsis in Intensive Care: from Rein-

forcement Learning to Pre-Trial Evaluation, Li et al. 2020 Mar [175].

− Data: MIMIC-III.

− Model: Global Actor Critic model.

− State space: Summarized the state history information through an

RNN as a partially observable MDPs (POMDPs).

− Action space: as paper [160].
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− Reward: as paper [178].

− Evaluation: Weighted importance sampling (WIS), Weighted doubly-

robust (WDR) and averaging the state value across all encountered

initial states upon estimating a state value function using Retrace.

− Highlights and limitation: Introduces a novel method to account

for state distributional shift during training by optimizing the policy

in the vicinity of the clinicians’ compound policy. Conducted a

pilot study to compare the optimal policy to decision by intensivists.

However, collecting re-evaluations by intensivist on past decision for

model evaluation is time consuming and labor intensive.

12. Is Deep Reinforcement Learning Ready for Practical Applications in

Healthcare? A Sensitivity Analysis of Duel-DDQN for Sepsis Treatment,

Lu et al. 2020 May [194].

− Data: MIMIC-III.

− Model: Dueling DDQN.

− State space: as paper [178] however the state space is aggregated

by two different time periods: 1 hour and 4 hours.

− Action space: as paper [160].

− Reward: as paper [160].

− Evaluation: Empirical evaluation.

− Highlights and limitation: Explored different state space time

period binnings, different reward functions and evaluated model

performance for different clinical subgroups.
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7.3 Methods

We developed and validated a reinforcement learning model with data from two

different intensive care databases. These were:

− The Multiparameter Intelligent Monitoring in Intensive Care (MIMIC)-III

v1.4 database [147], a de-identified database of 61,532 admissions to the

intensive care unit from 2001–2012 from the Beth Israel Deaconess Medical

Center in Boston, Massachusetts, USA. This database is freely available

from mimic.physionet.org.

− AmsterdamUMCdb, our local de-identified database containing data re-

lated to 23,556 intensive care unit admissions from 2003-2016 in Amster-

dam UMC, Amsterdam, The Netherlands. A further de-identified version

of this database is freely available at www.amsterdammedicaldatascience.nl.

From these databases, we derived two datasets. One from the MIMIC database

to develop our RL model on, the other from the AmsterdamUMCdb database for

external validation of the derived model. The exact patient inclusion procedure

is explained in appendix A.

As in previous work, the RL model was developed on septic patients from

24 hours prior to the onset of sepsis up to 48 hours thereafter. This time

frame allows the model to learn how patients deteriorate as sepsis evolves. We

performed a hold-out validation to assess model performance.

To investigate model transferability we use a different dataset and a different

trajectory timeframe. In clinical practise, decision tools for sepsis can only

be used by physicians once they are aware of the onset of sepsis. The patient

trajectories used in model development before the onset of sepsis are in a

clinically non-actionable time frame. Therefore, after careful deliberation with

clinical experts, we decided to assess model performance as if it were implemented

from the start of admission to the ICU if a patient is suspected of having sepsis.

Thus, performance is evaluated in a setting more closely resembling clinical

practise to assess clinical applicability and better estimate potential model

benefit if implemented.
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7.3.0.1 Data and Code Availability Statement

Code for cohort selection, data cleaning, model development and model evalua-

tion are available for replication. The final model and off-policy data described

in this paper are also provided. Code and data are available at GitHub [281].

7.3.1 MDP Formulation

Each dataset consists of a set of trajectories H and each patient has a trajectory

h := (s0, a0, r0, ..., st−1, at−1, rt−1, sT ) with:

− S, a finite set of states where each state is a vector of features for each 4

hour time period from start to end of the trajectory.

− A, the finite set of actions available at any state ’s’ based on the unique

combination of maximum vasopressor dose prescribed and sum of intra-

venous fluids given, discretized by quartiles derived from the MIMIC

cohort.

− R, the reward received at terminal state ’S’. Survival yields a positive

reward of +15 and death leads to a penalty of -15.

Each patient has a finite trajectory h up to 72 hours (18 states). For the

MIMIC cohort each trajectory starts 24 hours prior to the onset of sepsis (as

defined by Singer et al. [310] up to 48 hours after. For the AmsterdamUMCdb

cohort, the patient trajectories start at admission to the ICU up to 72 hours

after admission. Although the time frame is different, we maintain an equal

maximum trajectory length for both cohorts as the trajectory length affects the

quality of the off-policy policy evaluation method.

7.3.1.1 State Space

When working with MDPs the Markov property is of utmost importance. It

states that the reward and state transition distributions are conditional only on

the current state and all following states are independent of past states. When

the state transition probabilities are unknown the MDP is assumed to have
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this attribute: the Markov assumption. The goal is to design a state space,

with features that are a representation of physiological processes, that is closest

to satisfying the Markov assumption. We followed the steps of Raghu et al.

and extracted parameters, such as vital signs and laboratory values, from the

MIMIC database. Each state represents a 4 hour time window. Parameters

were aggregated using mean or sum where appropriate over these time windows

to create the state space features [266; 265]. These steps were also performed

for the AmsterdamUMCdb database for all available parameters. We chose a

final state space feature set using parameters that were available in both the

MIMIC and AmsterdamUMCdb database. This resulted in a final state space

design containing 43 features. A full list of parameters is available in appendix

B. Missing data in the state space features were imputed for each patient using

k-nearest neighbours based on the features from the 3 nearest states in the

patient trajectory followed by min max normalisation based on the training

dataset feature distribution.

7.3.1.2 Action Space

As Komorowski et al. [160], we discretized the sum of intravenous fluids as

ml/4 hours (IV) and maximum vasopressor as dose/4 hours (VP) into per-

drug quartiles and included a case of no drug given as bin 0. The individual

combination of actions is then defined by a 5x5 action matrix as shown in figures

6 and 7. However, 4 of the bins from the 5x5 action matrix, corresponding

to the no IV and the non-zero VP doses, are empty. These are impossible

actions as even vasopressors are fluids and thus if vasopressors are administered,

fluid dose is always non-zero. We opted to remove them from the final action

space which resulted in a final action space of 21 (instead of 25) unique actions.

The same action space was then created for the AmsterdamUMCdb dataset by

performing the same binning procedure using the quartiles derived from the

MIMIC dataset.
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7.3.1.3 Reward Formulation

The reward used for this evaluation is the same as by Raghu et al. [266]: a sparse

reward of +15/-15 at the end of a patient trajectory based on a different but

comparable outcome due to limitations in data availability, namely in hospital

mortality (MIMIC) and ICU mortality (AmsterdamUMCdb).

While continuous reward functions have been proposed, we chose to evaluate

model transferability under a sparse reward function. The difficulty with

evaluating a reward function with intermittent rewards (see table 1) is that the

reward function, such as the one proposed by Raghu et al. [265] is strongly

driven by laboratory measurement frequency and underlying feature distribution.

Furthermore, it requires additional hyper parameters that may be very dataset

specific and would require supportive evidence that the constructed reward

function is correlated with clinical desirable outcomes. Fortunately, the allure

of reinforcement learning is that it can learn under sparse reward settings.

7.3.2 Model Architecture and Training

While many model architectures have been introduced, in this work we focused

on the first continuous state space model as introduced by Raghu et al. [266].

This model design does not require discretization [160; 158] or encoding [250]

of the state space greatly simplifying model design and potentially preventing

overfitting [381].

The model architecture is a Dueling Double-Deep Q Network (DQN for

brevity) [359; 303], has two hidden layers of size 128 and includes batch normal-

ization [139] and Leaky-ReLU activation [367]. The input layer has 43 nodes,

each corresponding to a state space feature. The output layer has 21 nodes, each

corresponding to the Q-value of each possible action from the action matrix.

This architecture differs from previous work by having less input layers (due

to using less features in the state space) and less output nodes (due to the

exclusion of impossible actions).

Training was performed using Prioritized Experience Replay [293]. For

consistency, during training, we applied the same model regularization term
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(5) and target network clipping (at +/- 15) as Raghu et al. The MIMIC

dataset was split into a 70% training set and a 30% validation set. The entire

AmsterdamUMCdb dataset was used for evaluation. Batch normalization was

used for training. Models were implemented with PyTorch [245] and Adam

[154] was used for optimization.

7.3.3 Patient Cohort Evaluation

We performed an explorative data analysis prior to model development to assess

the uniformity of the patient populations. Baseline demographics of the datasets

are compared. The well-known SOFA score [349] at admission, which predicts

ICU mortality, is used as an assessment of disease severity. Also, we explored

the (dis)parity between the state space of the datasets using a technique called t-

Distributed Stochastic Neighbor Embedding (T-SNE). T-SNE is a dimensionality

reduction technique suited for the visualization of high-dimensional datasets

[195]. Lastly, we also explored the action space. The 21 unique actions of the

MDP in this study were conceived by a binning procedure. To investigate if this

binning procedure is transferable across datasets we compared the intravenous

fluid and vasopressor distribution of the physician’s policy of the MIMIC and

AmsterdamUMCdb datasets.

7.3.4 Off-policy Policy Evaluation

Off-policy policy evaluation (OPE) is a method that provides a statistical

assessment of a behavioural policy on a retrospective dataset, even if the

proposed policy was not followed [337]. This form of analysis is extremely useful

in the medical domain as using an unevaluated reinforcement learning model,

or learning on the fly, as in on-policy reinforcement learning, could expose

patients to bad decisions and recommend dangerous actions which could lead

to undesirable outcomes.

OPE is a method that compares two policies. Therefore, a behavioural

policy b , i.e. a model of physician behaviour as observed in the data, is

needed for evaluation besides an optimal policy e that we want to evaluate.
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The quality of this behavioural policy b, a measure of how well the physician’s

policy captures the physician’s real behaviour rather than the quality of the

physician’s performance, is crucial as even small absolute errors in the estimated

behaviour policy can induce an error of up to 50% in the estimated off-policy

value [264; 118]. To create the behavioural policy of the physicians, we used

a recommended method, associated with low error [264; 118], a K-Nearest

Neighbours model. While we have all historical actions for each state, for OPE

we also need an action probability over all actions for each state. We therefore

selected 300 closest neighbouring states to find the probability distribution of

physicians actions for each state based on the Euclidean distance of the state

features with some state features up weighted. The upweighted features for this

analysis were those that are frequently used by physicians in clinical practice to

assess haemodynamic treatment, as in Raghu et al. [266].

To compare the behavioural policy b to the optimal policy e, two OPE

estimators were used: the Stepwise Weighted Importance Sampling (WIS) and

the Weighted Doubly Robust (WDR) estimator [58]. Both have been previously

used in OPE for reinforcement learning in sepsis [266; 250]. The WIS estimator

is constructed using an importance sampling ratio to adjust for the difference

in probability of a trajectory under the behavioural policy b compared to the

evaluation policy e. The importance weight is defined as follows:

ωit =
ρit∑I
j=1 ρ

j
t

(7.5)

with

ρit =

t∏
t‘=0

πe(a
Hi

t‘ |s
Hi

t‘ )

πb(a
Hi

t‘ |s
Hi

t‘ )
(7.6)

Where I is the number of patients, t is the time step, Hi refers to the ith state

in the patient trajectory. The WIS return of the optimal policy e on dataset D

can be calculated with the following formula:

WIS(D) :=

I∑
i=1

T∑
t=0

γtωtir
Hi
t (7.7)
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The WIS estimator provides an unbiased but highly variant assessment of

model performance and its quality is dependent on the size of the dataset and

diversity in actions. Furthermore, the variance increases with the length of the

trajectory under evaluation, also called the “curse of horizon”, analogous to

the well-known “curse of dimensionality” [187]. This limits the applicability

of the WIS estimator. The WDR estimator is a variant on the WIS estimator

but with additional parameters to reduce the variance. It uses an estimated

value V and action-value function as control covariates in the off-policy policy

estimation.

WDR(D) :=

I∑
i=1

T∑
t=0

γtωtir
Hi
t −

I∑
i=1

T∑
t=0

γt(witQ̂
πe(sHi

t , aHi
t )− wit−1V̂

πe(sHi
t ))

(7.8)

To construct these control covariates, an MDP model was derived from each

dataset separately. These models were different from the MDP model used to

construct the optimal policy. We followed the recommendations of Raghu et

al. and used a Random Forest Fitted Q iteration (RF-FQI) algorithm using 80

trees over 100 iterations as this led to stable results [264; 118].

Model performance was assessed by comparing the WIS and WDR estimator

returns of the physician behavioural policy b policy to the DQN optimal policy
e on the validation portion of the MIMIC dataset and full AmsterdamUMCdb

dataset. Bootstrapping was used to obtain confidence intervals of the WIS and

WDR estimators.

7.3.5 Deep Policy Inspection

For a reinforcement learning model to be used in a real-world setting, such

as clinical practice, there are auxiliary criteria, such for safety, reliability and

robustness to ascertain whether the developed algorithm has reached desired

levels of performance. These criteria are difficult to quantify and therefore,

criteria of interpretability are often used as fall-back [78]. We also take such an

approach, and aim to evaluate whether the optimal policy is reasonable from
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the perspective of the physicians. Often however, such an analysis is done either

using a highly generic approach which does not take the specifics of the medical

domain into account, or through ad hoc methods that precisely fit the specific

task at hand, but do not generalize beyond the task. In this paper, we introduce

a middle ground and developed a Deep Policy Inspection method to relate

model behavior to expected disease progression and treatment. The goal of this

novel method is to provide a model agnostic evaluation setup for reinforcement

learning models that compares the optimal policy to the physicians (historical)

policy.

To apply deep policy inspection we adhere to the following prerequisites:

First, the disease in question (here sepsis) has an onset, escalation, stabilization

(or further escalation and death), and recovery. In order to explain our method

better, we include a formalization of all the different aspects of our method

based on our previously introduced RL terminology. Let us consider the state

space of the MDP. We assume that doctors can identify certain parts of the

state space that coincide with these phases. Hereby, these areas in the state

space can be partly overlapping between phases. We define these subsets as

follows:

Sonset ⊂ S, Sescalation ⊂ S, Sstabilization ⊂ S, Srecovery ⊂ S.

Typically, these follow each other in sequence, so explicit temporal constraints

can also be added with respect to the order of the states over time if desired. For

the sake of brevity we do not do that here. On top, we assume an operator ρs

that expresses disease severity over states, ρs: S x S→ [0,1], where a 1 indicates

that the first state is more severe than the second state. Similarly, we assume

that we can provide a categorization of actions, namely whether treatment is

taking place for the specific disease (opposed to no treatment), and we assume

that we can create an ordering of actions based on the intensity of treatments.

Formally, we define an operator ρa that indicates whether an action is more

intense than another actions: ρs: A x A → [0,1], where a 1 indicates that the

first action is more intense than the second action. Furthermore, we define Φ: A

→ [0,1] indicating whether action is a treatment for the disease (1) or not (0).
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While the optimal pathway (in terms of actions) is unknown, the treatment

distribution over time follows a predictable and clinically interpretable pattern.

Secondly, clinical expertise (prior knowledge) can be used to explain the relative

changes in treatment distribution over time, even by a clinician not involved in

the original decision making.

To structure this analysis we consider the following clinical questions that

can be applied in the medical domain to any policy in relation to a particular

disease and treatment combination and provide a formalization:

A) Does the physician/model recognize disease onset and initialize therapy

correctly? Formally we capture this by:

w tst ⊆ Sonset ∧ Φ(at) (7.9)

i.e. an action which is a treatment step for the disease is selected during a

state that is defined as part of the onset phase.

B) Does the physician/model capture disease severity and adjust therapy

intensity?

∀t1, t2, t2 > t1 : (St1, St2 ⊆ Sescalation ∧ ρa(at2, at1) (7.10)

So in case of two escalation states that follow each other in time, and the

state of the patient is worsening, the action chosen in the more severe state

should be the action with higher intensity.

C) Does the physician/model de-escalate therapy when the patient recovers?

This is specified as follows:

∀t1, t2, t2 > t1 : (St1 ⊆ Sescalation ∧ St2 ⊆ Srecovery → ρa(at1, at2) (7.11)

Stating that treatment intensity is lower during the recovery phase compared

to the escalation phase.

While we have now formally defined these criteria to make them very explicit,

we operationalize these by visualizing the action distribution over time and

use clinical expertise to investigate how physician behavior differs from model
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behavior in relation to the three questions to keep it sufficiently insightful for

the clinical experts.

For sepsis, we operationalized our approach by dividing the treatment of

sepsis into three clinically recognized phases. Prior to the onset of sepsis, there is

a stable phase, in which no haemodynamic therapy is required. This is followed

by a rescue phase when the patient often quickly deteriorates and treatment

is typically initialized. Treatment in this phase often consists of high doses of

IV fluids and vasopressors, if deemed necessary. The rescue phase is normally

followed by a treatment optimization and de-escalation phase with a decrease

in therapy intensity.

To evaluate if the optimal policy is able to recognize disease onset, we

explored how the timing of treatment initialization by the optimal policy related

to the defined onset of sepsis. Furthermore, we investigated how the optimal

policy action distribution develops over the course of the trajectories, providing

insight into the ability of the model to capture disease progression and adjust

therapy intensity. We assess model robustness and reliability by investigating

the performance of the optimal policy in the external AmsterdamUMCdb patient

population.

Additionally, we investigated how the state-action Q-values of the physician’s

actions assigned by the optimal policy’s DQN model correlate with the reward.

While Q-values cannot be directly interpreted, Q-values can be used as a measure

of model transferability. We investigated if Q-values are well correlated to the

probability of survival, i.e. the reward, especially in the AmsterdamUMCdb

dataset and used this to investigate the model’s understanding of the disease.

Specifically, we used this analysis to assess if the model’s MDP is a good

approximation of the true physiological processes. If the state dynamics of the

MDP are indeed Markovian, the DQN model Q-values should be well calibrated

to the reward regardless of patient population or policy followed.
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Table 7.1: Baseline demographics of both AmsterdamUM-
Cdb and MIMIC datasets.

Dataset
AmsterdamUMCdb MIMIC

Patients 4047 7335

Patient
characteristics
at start of
trajectories

Age, mean (SD) 63.8 (15.9) 65.6 (16.4)
Male gender, n (%) 2516 (62.2) 4334 (59.1)
Weight, mean (SD) 77.1 (23.8) 82.9 (28.2)
Shock Index, mean (SD) 0.8 (0.3) 0.8 (0.2)
Sirs score, mean (SD) 2.2 (1.0) 2.9 (0.9)
Sofa score, mean (SD) 9.6 (3.0) 5.5 (3.1)
Bilirubin, mean (SD) 18.9 (32.4) 30.4 (67.5)
APTT, mean (SD) 51.4 (31.5) 35.1 (19.3)
INR, mean (SD) 1.7 (0.8) 1.4 (0.8)
Albumine, mean (SD) 18.0 (5.9) 32.6 (7.2)
Creatinine, mean (SD) 139.0 (138.8) 132.7 (137.4)
Hemoglobin, mean (SD) 6.7 (1.4) 7.2 (1.4)
Heartrate, mean (SD) 94.3 (21.8) 88.2 (18.5)
Leucocytes, mean (SD) 14.5 (10.9) 12.6 (11.3)
Lactate, mean (SD) 3.0 (3.1) 2.2 (1.8)

7.4 Results

We present the results of this study by comparing the patient populations, the

state spaces, the optimal policy model performance and DQN model calibration

and finally perform an extensive empirical evaluation of the optimal policy

across datasets.

7.4.1 Datasets Comparison

Baseline demographics of both datasets are shown in table 7.1. We used

the SOFA score at the predefined onset of sepsis to compare patient cohort

illness severity as visualized in figure 7.1. There is a clear difference in patient

populations. The MIMIC dataset contains a right skewed distribution of SOFA

scores, while the AmsterdamUMCdb dataset appears more normally distributed

with a higher mean SOFA score. This indicates that the MIMIC dataset contains

a patient population in better physical condition.
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7.4.2 State Space Comparison

We performed a T-SNE analysis on the MIMIC and AmsterdamUMCdb features

of the state space, see figure 7.2. The state space of the MIMIC dataset is much

more diverse with large areas that have no overlap with the AmsterdamUM-

Cdb dataset. There appear to be clusters of state spaces in the T-SNE high

dimensional state space features distribution for the patient population between

the MIMIC and AmsterdamUMCdb dataset. From this analysis we can deduce

that an optimal policy developed on the MIMIC dataset could perform well on

the AmsterdamUMCdb dataset but the reverse is not likely the case.

Figure 7.1: Histograms of the SOFA (disease severity)
scores at the start of the trajectory for patients in the
MIMIC and AmsterdamUMCdb datasets.

7.4.3 Action Space Binning

We investigated whether the binning procedure as derived from the MIMIC

dataset is adequate for the AmsterdamUMCdb dataset. Table 7.2 shows the

202



7.4. Results

Figure 7.2: T-SNE analysis of the state space of the MIMIC
and AmsterdamUMCdb datasets. Each dot represents a
single state of a patient and the position on the X and the
Y axis represents the similarity of each state relative to all
other states.
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IV fluid (IV) and Vasopressor (VP) bins and what dose range corresponds to

each action. Figure 7.3 shows how the distribution of individual IV and VP

dose combinations relative to their action bin. Note that the bins are based

on the fluid and vasopressor quartiles of the MIMIC dataset (figure 7.3 left)

and are applied to the AmsterdamUMCdb dataset (figure 7.3 right). The

AmsterdamUMCdb dataset shows a higher density of larger IV fluid doses

while lacking the lower range of fluid bins. The coloured line on the bottom of

both plots correspond with the use of IV fluids without any vasopressor dose.

Furthermore, the actions at the outer end of the spectrum (lowest non zero

doses and the highest IV or VP dose) show a wide range of IV and VP dose

combinations indicating high variability in actual fluid and vasopressor dose

given. This may limit clinical applicability.

Table 7.2: Dose ranges for IV fluids and vasopressors that
comprise the action space

Dose ranges for each state (4h time period) Action 0 Action 1 Action 2 Action 3 Action 4
IV fluids (IV) in milliliters 0 >0-40 40-205 205-635 >635
Maximum Vasopressor dose (VP) in ug/kg/h 0 >0-0.110 0.110-0.225 0.225-0.450 >0.450

Figure 7.3: IV and VP dose combinations of the state space
of the MIMIC and AmsterdamUMCdb datasets on a natural
log scale. Each dot represents the unique action applied
in that state. The action binning procedure is applied in
colour coding.
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7.4.4 Off-policy Policy Evaluation

To quantify model performance we compared the optimal model policies to

the physician policies. Each dataset has a separately derived physician policy

and a separately derived Q and V covariates for the WDR estimation. Thus,

the optimal policy and physician returns cannot be directly compared across

datasets but rather compared to the baseline physician policy. Table 7.3 shows

the results of the model on the MIMIC validation and AmsterdamUMCdb

evaluation dataset. It is clear that a substantial improvement is seen on the

MIMIC validation dataset but only a modest improvement for the Amsterda-

mUMCdb dataset. While both the WDR and WIS returns of the physician

policy across datasets are comparable, this does not equate equal performance

of the physicians policies. In both the MIMIC and AmsterdamUMCdb datasets

the WDR returns are more conservative than the WIS returns, perhaps due

to a decrease in performance estimation variance. The smaller improvement of

the OPE returns of the optimal policy in the AmsterdamUMCdb dataset may

be explained by the different clinical settings or difference in patient popula-

tion. Unfortunately, such distinction cannot be made based on off-policy policy

evaluation.

Table 7.3: Physician policy and optimal policy mean (con-
fidence interval) off-policy WDR and WIS returns

Off-policy policy evaluation
MIMIC

(validation dataset)
AmsterdamUMCdb
(evaluation dataset)

WDR WIS WDR WIS
Physician policy (baseline) 2.297 (2.287-2.308) 2.292 (2.286-2.302) 2.378 (2.366-2.389) 2.368 (2.357-2.379)
Optimal policy 10.419 (9.942-10.894) 11.207 (10.616-11.799) 2.676 (2.499-2.852) 3.371 (3.189-3.554)

7.4.5 Model Calibration

The Q-values distribution of the optimal policy DQN model can be used to

assess how the Q-values relate to the reward and thus mortality, especially

in an external population. We expect to see Q-values within the range of

the predefined returns (+15/-15) as they should correlate at any time with

the minimum and maximum ‘future expected discounted reward’. Figure 7.4
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shows the Q-value distribution that the DQN models assigns to the physician’s

actions independent of the position of the state in the trajectory and under the

assumption that the optimal policy is followed thereafter.

Figure 7.4: Combined plot showing the distribution and
calibration of physician action Q-values. The left axis cor-
responds to the blue line showing the smoothed (blue) and
unsmoothed (grey) average percentage of patients survival
for the binned Q-values. Q-values are shown on the X axis
and the histogram follows the right axis.

In the MIMIC training and validation datasets, most states are assigned

Q-values with a high probability of survival. Because only a few states get

very low Q-values, more variability in survival is seen in that region. The

distribution appears well calibrated with high survival with low variability in

the higher range of Q-values. From this calibration plot we can deduce that the

DQN model is able to accurately predict which patients are likely to survive at

any state. This good calibration of the DQN models Q-values is expected in

the MIMIC training dataset and is well maintained in the MIMIC validation

dataset. Model calibration persists in the AmsterdamUMCdb dataset with a

less skewed distribution of the Q-values. From this finding we can infer that

the DQN model is reasonably able to model the sepsis disease process and that

the features of the state space likely provide sufficient information to the DQN

model to capture the disease process in the MDP.
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7.4.6 Empirical Analysis of the Optimal Policy

To evaluate model interpretability and provide insight into model behaviour

we also performed a qualitative analysis by comparing the physician’s action

with the recommended optimal policy’s actions in detail. We start with an

overall view of the action distribution of the physician’s taken actions and

optimal policy recommended actions as shown in figure 7.5. The main finding

is a noticeable different action distribution in the MIMIC datasets between the

optimal policy and physician’s actions, clearly showing a reduction of actions

with high IV fluids and while more often recommending higher vasopressor

doses. The optimal policy clearly seems to prefer vasopressor therapy over fluid

therapy.

It is important to note the expected absence of actions in the lower 4 non-

zero vasopressor dose bins corresponding to no IV fluid dose due to the IV fluid

aggregation method used, which differs from Komorowski et al. [158]. While

shown here, these were not possible actions for neither the physician nor the

optimal policy.

Figure 7.5: Action matrix of the physician and optimal
policy on full trajectories of all three datasets: MIMIC
training and validation and the AmsterdamUMCdb evalua-
tion dataset.
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The MIMIC dataset‘s most frequent action is action 0/0, namely: no

fluids and no vasopressor therapy while in the AmsterdamUMCdb dataset

the most frequent fluid intake corresponds to IV bin 3. This difference may

be explained partly by the chosen patient cohorts as well as the inclusion

of the 24 hours pre-sepsis time frame in the MIMIC dataset which is absent

in the AmsterdamUMCdb dataset. Therefore, to better compare the action

distribution between the MIMIC and AmsterdamUMCdb dataset in the clinical

applicable timeframe, we also compare the two comparable clinically actionable

time periods of the trajectories, namely the first 48 hours after the defined onset

of sepsis, see figure 7.6. Note the sizable reduction of action count of action

zero (IV0/VP0 corresponding to no fluid or vasopressor dose) for the physician

and optimal policy in both the MIMIC training and validation dataset while

little difference is seen in the AmsterdamUMCdb dataset.

Of particular interest is action IV4/VP1 which is not often picked by

the optimal policy in the MIMIC training or validation dataset but often

recommended in the AmsterdamUMCdb dataset and is closer to the physicians

policy in the AmsterdamUMCdb dataset. Furthermore, while the optimal

policy frequently recommends the action 0 (IV0/VP0) in the actionable time

period in the MIMIC datasets, the optimal policy extremely rarely recommends

that action in the AmsterdamUMCdb dataset. These findings may indicate

that the optimal policy adequately exploits the features in the state, capturing

the characteristics of the patient to infer the best action and generalizes to a

different patient population.

7.4.7 Deep Policy Inspection

We applied deep policy inspection and related physician and model behavior to

disease onset and evaluate if the model initialized treatment correctly. We also

investigate model behavior in relation to disease progression.
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Figure 7.6: Action matrix of the physician and optimal
policy for the overlapping 48 hour after onset of sepsis time
period of the MIMIC (excluding first 24 hours) training
and validation dataset and AmsterdamUMCdb (excluding
last 24 hours) evaluation dataset.

7.4.7.1 Physician and Optimal Policy Treatment Initiation

To investigate the DQN models ability to capture disease onset, we compared

the actions between the physician and optimal policy over the course of the

trajectories. For the MIMIC dataset, we decomposed the action space back into

their original action components (IV and VP) and split each component into a

binary option: treatment (IV1-4) versus no treatment (IV0). We then compared

the physician’s treatment to the optimal policy recommended treatment, see

figure 7.7ab. For the AmsterdamUMCdb dataset we transformed the action

space relative to the baseline action (IV3/VP0) action, see figure 7.7c. In the

MIMIC train and validation dataset figures we see that only a small subset

of patients receive any treatment in the first 18 hours of the trajectories, the

stable phase prior to the onset of sepsis. Note that the AmsterdamUMCdb

dataset does not have a stable phase. Thus, the subset of states where we

would expect the action zero followed by a potential initial rise in fluid and

vasopressor action is naturally missing. The percentage of patients who receive

any fluid dose seems similar in the MIMIC train and validation datasets while
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in the AmsterdamUMCdb test dataset the optimal policy recommends less use

of fluid therapy (relative to the baseline IV fluid dose). From this illustration

two important aspects of the model can be evaluated. First, the optimal policy

recommends initiation of treatment around the same time period as the physi-

cians, indicating that the model captures the onset of sepsis. Additionally, there

appears to be a clear increase in the use of vasopressor therapy recommended

by the optimal policy although this analysis does not distinguish between dose

ranges.

Figure 7.7: Physician and optimal policy treatment initia-
tion plot. The X-axis is the time period of the trajectories
where the hour 0 indicates the onset of sepsis. The Y-axis
shows the percentage of patients on therapy. The lines
show the average percentage of patients on therapy (green
for IV and red for VP) with 95% confidence interval shown
in grey.

7.4.7.2 Disease Progression Analysis

We developed and visualised the distributions of the original action components,

the fluid and vasopressor doses, over the course of the trajectories using a

density plot, see see figures 7.8 and 7.9. The darker colours correspond to

higher doses of IV fluids (green) and vasopressors (red). Each figure contains a

density plot for the training and validation (MIMIC database) and evaluation

(AmsterdamUMCdb) datasets for both the physician’s actions (top row) as

well as the optimal policy (bottom row). Note that the optimal policy can

only be shown compared to the historical actions and the action distribution
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may change if the optimal policy would have been followed. Nonetheless, this

analysis facilitates in depth reasoning about the nature of policy behaviour.

We can see in Figure 7.8 that the physician’s fluid treatment in the MIMIC

training and validation datasets in the stable phase (prior to the onset of sepsis),

up to ±-18 hours is very consistent for all patients, namely do nothing. In the

rescue phase of sepsis, as treatment is initiated, a rise of patients on IV fluid

therapy is observed. Therapy starts on average around the ±-18hour mark and

consists of a distribution of IV fluids doses while only a minor subset of patients

(<25%) receive any vasopressor therapy. In contrast, the optimal policy clearly

prefers to resuscitate patients with on average lower IV fluid doses, evident by

the decrease of the high dose density area. In the MIMIC datasets, the optimal

policy recommends treating a higher percentage of patients with vasopressor

therapy and recommends that more patients would remain on vasopressors until

the end of the trajectory, as seen in figure 7.9.

In the AmsterdamUMCdb dataset, the optimal policy more often recom-

mends patients receive up to the maximum dose of vasopressor from the initial

stages of haemodynamic treatment of and is most pronounced in the first 12

hours of admission, which would correspond to the rescue phase, but overall

recommends a more conservative use of vasopressor therapy. In the rescue

phase, based on the action distribution, the optimal policy appears to prefer

to treat more patients with high doses of vasopressors followed by aggressive

fluid resuscitation. For the optimization and de-escalation phase the optimal

policy seems to prefer a strategy of less fluids and lower maximum vasopressor

dose compared to the physician policy while maintaining a higher number of

patients on a low but non-zero maximum vasopressor dose for the duration of

the trajectory.
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Figure 7.8: Physician and optimal policy IV action distribution for patient trajectories. The X-axis
is the time period of the trajectories where the hour 0 indicates the onset of sepsis. The Y-axis
shows the percentage of patients on therapy. The areas show the average amount of patients on
therapy and darker colors indicate higher doses.
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Figure 7.9: Physician and optimal model VP action distribution for patient trajectories. The
X-axis is the time period of the trajectories where the hour 0 indicates the onset of sepsis. The
Y-axis shows the percentage of patients on therapy. The areas show the average amount of patients
on therapy and darker colours indicate higher doses.
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7.5 Discussion

For the first time, we developed a RL model on a public dataset to personalise

haemodynamic therapy for septic ICU patients and showed model transferability

to a different patient population in a different ICU setting from a different

continent. For both populations, our model was able to learn an optimal policy

and show better off-policy performance than physicians. We have developed our

deep policy inspection method, tailored towards the medical domain. It showed

relevant insights into model behaviour in relation to disease onset, severity

and progression. It confirmed the optimal policy was able to capture disease

dynamics over time.

Different ICUs in different countries are known to treat different and also

heterogeneous patient populations [259]. This may not be surprising as the

delivery of ICU care is complex which makes it difficult to standardize ICU

processes [235; 364]. In addition, there are wide differences in ICU organisation,

including admission criteria, number of beds, volume of admissions, technological

capabilities and staffing [366].

These phenomena are clearly reflected both by the differences in SOFA score

and by the T-SNE analysis of the state space between the two clinical datasets,

different but overlapping data distributions and are likely mostly driven by

the differences in patient case mix between the US and Europe. This clearly

implies that achieving model transferability is a non-trivial task. Nonetheless,

we were able to develop an optimal policy that showed better than physician

performance in off-policy policy evaluation.

Building on the work by Komorowski et al. [158], we confirmed that the

most notable difference between the physician behaviour and optimal policy in

the MIMIC dataset is a strong preference for the optimal policy to recommend

lower IV fluid doses accompanied by higher vasopressor. Although based on

retrospective data only, this finding may have profound clinical importance.

Importantly, we introduce deep policy inspection, a novel method to provide

deeper insight into model safety and policy behaviour. First, this method

showed that the optimal policy clearly initializes treatment around the onset of
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sepsis and not before that, just like physicians. This indicates that the model

doesn’t recklessly expose patients to unnecessary treatment and indicates that

the optimal policy has learned to actually differentiate sick from healthy patients

and correctly initiate treatment. Second, deep policy inspection allowed us to

investigate how the model adapts to disease progression. The optimal policy

behaved differently in the AmsterdamUMCdb patient population. The fact that

the model often recommends taking no action for the MIMIC dataset but rarely

for the AmsterdamUMCdb dataset indicates that the model can identify that

patients are no longer in the stable phase, thus adapting to disease progression.

Furthermore, the optimal policy rarely recommends the highest IV dose for

the MIMIC dataset but frequently does so for the AmsterdamUMCdb dataset

which may indicate that the model adapts to a population with higher disease

severity and adjusts therapy intensity. Furthermore, The good calibration of

the Q function with mortality in the AmsterdamUMCdb dataset suggests that

the MDP state space captures the disease process and the state value function

models reflects the state dynamics in MDP adequately enough to assume the

MDP is sufficiently Markovian.

Apart from showing model transferability, this paper has two important

strengths. One of these is combining OPE with deep policy inspection, thereby

assessing model performance, safety and reliability. A second strength of this

paper is the experimental setup. We chose to select a patient population and

trajectories that would match the clinical setting in which the model would be

implemented. Thus, model performance in the AmsterdamUMCdb datasets

more closely resembles actual model potential.

There are some important differences with previous work that need to be

discussed. We evaluated a DQN model, similar to previous work [118; 250; 266;

265] and opted to use a non-discretized state space. In this state space design,

the inputs are directly related to a clinical parameter which facilitates model

interpretability and may also help model transferability. Furthermore, we did

not restrict the optimal policy to remain close to physician behaviour as Peng et

al. [250] did as this limitation may obscure potential pathways that the optimal

policy has learned and could lead to better outcomes. In clinical practice, the
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physician and clinical care team would serve as the safety boundary. Future

work may also explore other model designs [178; 179; 268].

There are several limitations to this study. First, The MIMIC dataset

consists of a concatenation of two original electronic health record systems:

CareVue and MetaVision. Due to the way the IV fluid input data was recorded

in the CareVue database, we chose to exclude all those patients from our

cohort. This could limit model transferability across used EHRs. However, we

believe this limitation will not impair future model development as most current

electronic patient record systems capture intravenous fluid intake with sufficient

detail and granularity.

Secondly, while we were able to develop a model with decent transferability,

it required experimenting with combinations of several hyper parameters and we

frequently encountered models that were “robustly overfitted” [381]. Guidelines

for developing reinforcement learning algorithms for healthcare are still in

development and there are still plenty of “pitfalls” [117]. The hyper parameters

used for final model development were chosen among a range of options and some

parameters, such as learning rate, had a significant influence on model training

and a variety of different final policy behaviours were observed. Our final

model was chosen among several others with similar WDR and WIS returns

but with poor model calibration that did not initialize treatment correctly.

These findings underline the importance of deep policy inspection using clinical

domain knowledge, besides off-policy evaluation methods, for the assessment of

safety and reliability.

As the field of reinforcement learning is growing quickly with model archi-

tectures soon available in abundance, it is important that future work focuses

on addressing the state space. Designing the MDP state space features and

developing methods to assess which set of state space features is sufficient for

good policy performance. Ideally, the least number of parameters are used

as they reduce data dependency, reduce diagnostic and labour burden on the

patient and healthcare system and may support a wider range of (non-ICU)

patients.
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7.6 Conclusion

We created a reinforcement learning model optimal bedside haemodynamic

management for critically ill patients with sepsis. We developed the model

on a public dataset from the USA and showed that it has adequate off policy

performance in a markedly different external European patient population in a

setting that resembles clinical practise. Our deep policy inspection indicated safe

and reliable model behaviour in a real-world clinical setting. This paper brings

reinforcement learning closer to a clinical decision support system for bedside

haemodynamic treatment optimization. As optimal policies differ markedly from

current clinical practice, this could have a major clinical impact on morbidity

and mortality.

7.7 Data Preprocessing

To select an appropriate patient cohort for model training and evaluation, for

each dataset a selection procedure was applied.

7.7.1 MIMIC Cohort

For the MIMIC cohort, we closely adhered to the steps of Komorowski and

Raghu [160; 266; 265], given our primary goals of assessment of transferability.

This implies that we extracted patients fulfilling the Sepsis-3 criteria as defined

by Singer et al. [310] using the public MIMIC-CODE repository [146], even

though these criteria are heavily debated regarding their clinical usefulness

[42; 290].

Singer devised two clinical triggers to define sepsis: suspected infection

and organ failure [310]. Suspected infection is defined as the acquisition of

a microbiology culture and the start of antibiotic therapy. Organ failure is

quantified by an increase in sequential organ failure assessment score (SOFA

score) ≥2. As Raghu, following the Sepsis-3 criteria [310; 265], onset of sepsis is

defined as the earliest event between the time of microbial sampling and start

of antibiotic treatment. Antibiotics must have been administered within 72
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hours after microbial sampling or sampling must have occurred within 24 hours

of the start of antibiotic treatment. This proxy definition of onset is used as an

approximation in the absence of more sensitive markers.

The MIMIC database is sourced from two electronic health records (EHR)

that were in use during different time periods, MetaVision and CareVue. Di-

verging from previous work, after careful review we opted to select patient data

from MetaVision only. Data recorded in CareVue did not contain satisfactory

start time and end time of the intravenous (IV) fluid infusions. Therefore, it

was not possible to aggregate intravenous fluid intake accurately by 4 hour time

windows, which would lead to an unacceptable distortion of the action space.

7.7.2 AmsterdamUMCdb Cohort

For the AmsterdamUMCdb cohort, we included patients based on clinical

criteria. While these criteria deviate from the Sepsis-3 criteria, this allows

for selection of a validation cohort that contains patients for which clinicians

are most likely to use the model for decision support. We included patients

based on three clinical triggers: firstly, we used the well-known SIRS criteria.

We chose the SIRS score instead of the more recent SOFA score or qSOFA

score for its higher sensitivity [142; 261; 122] to identify sepsis. Secondly, we

used the start or continuation of antibiotic therapy (excluding prophylactic

regimens) at ICU admission as evidence of a suspected infection. Thirdly, an

elevated lactate concentration >2 mMol/L or administration of vasopressors was

used as evidence of haemodynamic instability. We applied an 8 hour window

surrounding time of ICU admission for these criteria to be met. The criteria

closely resemble the criteria for septic shock and are also similar to the older

definition of severe sepsis [310; 33]. For this cohort, we define the time of

admission to the ICU in the AmsterdamUMCdb cohort as the onset of sepsis.
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7.8 State Space Features

Name Unit Category Type Description Aggregation method Normalization physician policy weight

Gender - demographic Binary Gender (Male/Female) - binary

Age years demographic continuous Age in years - linear 2

Height cm demographic continuous Height in cm - linear 1

Art PH - laboratory continuous Arterial Ph mean linear 1

INR - laboratory continuous The international normalised ratio mean log 1

LEU E9/L laboratory continuous White blood cell count mean linear 1

Trombo E9/L laboratory continuous Blood trombocyte count mean linear 1

PaCO2 mmHg laboratory continuous Arterial carbon dioxide partial pressure mean linear 1

PaO2 mmHg laboratory continuous Arterial oxygen partial pressure mean linear 1

ALAT IE/L laboratory continuous Blood Alanine transaminase levels mean log 1

Albumine g/L laboratory continuous Blood Albumine levels mean linear 1

ANION GAP mmol/L laboratory continuous Arterial blood gass Anion Gap mean linear 1

APTT seconds laboratory continuous Activated partial thromboplastin time mean linear 1

Art BE mmol/L laboratory continuous Arterial blood gass Base Excess mean linear 1

ASAT IE/L laboratory continuous Blood Aspartate transaminase levels mean log 1

Bicarbonaat mmol/L laboratory continuous Blood Bicarbonate levels mean linear 1

Bili umol/L laboratory continuous Blood Bilirubin levels mean log 1

Calcium mmol/L laboratory continuous Blood Calcium levels mean linear 1

Chloride mmol/L laboratory continuous Blood Chloride levels mean linear 2

Creat umol/L laboratory continuous Blood Creatinine levels mean log 1

Glucose mmol/L laboratory continuous Blood glucose levels mean linear 1

HB mmol/L laboratory continuous Blood Hemoglobin levels mean linear 1

Ion Ca mmol/L laboratory continuous Blood ionized calcium levels mean linear 1

Kalium mmol/L laboratory continuous Blood Potassium level mean linear 1

Lactate mmol/L laboratory continuous Blood lactate levels mean linear 2

Magnesium mmol/L laboratory continuous Blood Magnesium level mean linear 1

Natrium mmol/L laboratory continuous Blood Sodium level mean linear 1

Ureum mmol/L laboratory continuous Blood ureum levels mean log 1

Shock Index bpm/mmHg score continuous Heart rate / Systolic blood pressure formula linear 1

PF ratio mmHg score continuous Ratio of arterial oxygen partial pressureÿto fractional inspired oxygen mean linear 2

Sirs score - score Integer Systemic inflammatory response syndrome score at start of trajectory - linear 1

Sofa score - score Integer Sequential Organ Failure Assessment score at start of trajectory - linear 2

Ventilator - treatment Binary Started on ventilator treatment within 24 hours of admission / sepsis onset - binary 1

FiO2 Fraction treatment continuous Fraction of inspired oxygen mean linear 1

Max VP mcg/kg/min treatment continuous Maximum (noradrenaline-equivalent) vasopressor dose of previous state max log 1

Total IV ml treatment continuous Total IV fluid dose of previous state sum log 1

Running total IV ml treatment sum continuous Aum of all IV fluids administrated to the patient up to the current state cumulative sum log 1

SpO2 % vitals continuous Saturation mean log 1

HeartRate bpm vitals continuous Heart rate mean linear 1

RespRate bpm vitals continuous Respiratory rate mean linear 1

Temp Celcius vitals continuous Temperature mean linear 1

Weight kg vitals continuous Bodyweight mean linear 2

total UP ml vitals continuous Urine production (4h) sum log 2

DIA mmHg vitals continuous Diastolic blood pressure mean linear 2

MAP mmHg vitals continuous Mean arterial pressure mean linear 2

SYS mmHg vitals continuous Systolic blood pressure mean linear 1

Running total UP ml vitals sum continuous Sum of all urine production of the patient up to the current state cumulative sum log 1

Table 7.1: Table of all state space features including data
type, aggregation and normalization method as well as the
Winkowski weight used in the development of the physician
behavior policy using K Nearest Neighbour.
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Abstract - While reinforcement learning (RL) has proven to be the approach

of choice for tackling many complex problems, it remains challenging to develop

and deploy RL agents in real-life scenarios successfully. This paper presents

pH-RL (personalization in e-Health with RL), a general RL architecture for

personalization to bring RL to health practice. pH-RL allows for various

levels of personalization in health applications and allows for online and batch

learning. Furthermore, we provide a general-purpose implementation framework

that can be integrated with various healthcare applications. We describe a

step-by-step guideline for the successful deployment of RL policies in a mobile

application. We implemented our open-source RL architecture and integrated it

with the MoodBuster mobile application for mental health to provide messages to

increase daily adherence to the online therapeutic modules. We then performed

a comprehensive study with human participants over a sustained period. Our

experimental results show that the developed policies learn to select appropriate

actions consistently using only a few days’ worth of data. Furthermore, we

empirically demonstrate the stability of the learned policies during the study.

8.1 Introduction

Reinforcement learning (RL) has seen tremendous successes in recent years,

principally due to the many breakthroughs made in deep learning (DL) [321; 226;

307; 158; 350]. The field has witnessed these breakthroughs in high-dimensional

control tasks, e.g., complex games Atari and Go and continuous control tasks

such as MuJoCo, and openAI gym [36]. In many of these tasks e.g., Atari

and board games such as Go, Chess, and Shogi, superhuman performance

was achieved [307; 226; 224]. We can attribute these successes to the rise of

deep reinforcement learning (DRL) fueled by novel algorithms such as deep

Q-network (DQN), the availability of powerful computing hardware, and the

nature of the problems at hand that allows one to obtain large samples from

the task environment and to perform exploration as one wishes.

Many practical limitations arise in societal domains such as healthcare,

making these benefits listed above fade away [80; 86; 88; 73]. Such limitations
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are the inaccessibility to large samples of data, the unavailability of environments

to train and evaluate algorithms in, the limitations on the data caused by privacy

laws, and safety concerns (e.g., unsafe actions and exploration), explainability,

and legal responsibility [80; 73]. As a consequence, the applicability of DRL in

many practical tasks remains limited. In many practical tasks where RL has

been shown to perform well such as advertisement campaign optimisation, there

is ample data available, interactions with users are not costly and safety does not

play a big role. In healthcare tasks, all these factors play an equally important

role. Therefore, there is a need for structural solutions through standardized

frameworks and architectures to overcome the abovementioned obstacles and

challenges. Consequently, we pose the following research questions and try to

answer them with a real-life experiment:

− How can we integrate RL into e-Health mobile applications?

− Can we learn policies quickly that provide personalized inter-

ventions?

This paper presents a general RL architecture (pH-RL) for personalization

with the goal of bringing RL to health practice. We propose an RL architecture

that allows for adding a personalisation component to applications in healthcare

such as mobile applications for mental health. pH-RL allows for different levels

of personalisation, namely: pooled (one-fits-all approach), grouped (cluster-level

personalisation) and separate (hyper-personalisation on user level). Furthermore,

pH-RL allows for online and offline (batch) learning. We describe a step-by-step

guideline for the successful deployment of RL policies in a mobile application.

We implement our open-source RL framework and integrate it with the

MoodBuster mobile application for mental health. MoodBuster is a research

platform developed to treat psychological complaints online through mobile

and web applications. These applications allow for interventions through daily

messages and notifications to increase adherence to the online therapeutic

modules, which is assumed to increase clinical effectiveness. We employ a

default control policy approach based on prior knowledge coupled with random
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exploration in pH-RL. Next, we apply clustering techniques on the traces of

states and users’ rewards to find an appropriate segmentation of the experiences.

Then, we apply online batch RL coupled with exploration driven by the learned

policies on each cluster of users. We then perform a comprehensive study with

human participants over a sustained period. Our experimental results show that

the developed policies learn to select appropriate actions consistently using only

a few days’ worth of data. Finally, we empirically demonstrate the stability of

the learned policies during the study.

8.2 Related Work

RL as a solution architecture for real-world problems has seen a significant

increase in the last few years ranging from games to advertising and healthcare.

This learning paradigm has seen applications in various areas. In this related

work section, we discuss general real-world applications architectures of RL and

specific Health applications and architectures for personalization.

8.2.1 Reinforcement Learning Applications

Much effort is put into the use of RL for various applications. A successful

applications of RL in the last decade was using deep RL to play Atari games

[226]. This approach relies on Q-learning with convolutional neural networks

to successfully learn control policies for playing Atari games using low-level

high-dimensional sensory data as input. These policies surpassed human-level

performance in several cases. Also related, [307] combined deep learning with

RL to develop policy and value networks that play Go at a superhuman level.

These networks learn from extensive amounts of self-play made possible by a

well-defined environment with comprehesive rules. In a more recent application,

RL has proven to be an effective solution to a real-world autonomous control

problem involving the navigation of super-pressure balloon in the stratosphere

[24]. This problem is characterized by its complexity, forecast errors, sparse

wind measurements, and the need for real-time decision-making. This work
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uses data augmentation and a self-correcting design to tackle RL issues, usually

by imperfect data. As mentioned in Section 1, all these examples do not suffer

from the many limitations one encounters with problems in healthcare.

8.2.2 Reinforcement Learning for Clinical Applications

A literature review has shown that the number of applications of RL has been

increasing [73]. Applications in healthcare range from treating patients with

Sepsis at the Intensive Care Unit to sending personalized messages in e-Health

mobile applications. There is strong evidence that suggests that current practices

at the ICU are not optimal while the best treatment strategy remains unknown.

(Komorowski et al.) used RL to develop policies that are on average more

reliable than human clinicians [158]. This approach provides individualized

treatment decisions that are interpretable by clinicians. Similarly, [289] used RL

to develop policies for individualized treatment strategies to correct hypotension

in Sepsis. More recent work showed that these developed policies for optimizing

hemodynamic treatment for critically ill patients with Sepsis are transferable

across different patient populations [282]. Furthermore, this work proposes an

in-depth inspection approach for clinical interpretability. In a strictly regulated

area such as healthcare, these examples are considered very innovative. However,

structural solutions are needed. Our pH-RL standardized architecture and the

corresponding generic framework allow us to bring online and offline RL for

personalization to health practice.

8.2.3 Reinforcement Learning for Personalization in e-

Health Applications

More and more real-world applications using RL for personalization in e-Health

are found in literature [73]. Work by [88] focuses on developing RL policies

coupled with clustering techniques for personalizing health interventions. They

show that clustering using traces of states and reward and developing policies

based on these clusters leads to improved personalization levels while speeding-

up the learning time of the approach. In a later work, [86] demonstrates
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that this approach leads to improved personalization levels when applied on

state representations consisting of raw sensor data obtained from mobile apps.

Similarly, k-means clustering and RL were combined to develop policies across

similar users for the purpose of learning better policies [393]. Clustering methods

were also used to effectively learn personalized RL policies in health and wellbeing

[121].

8.2.4 Personalization Architectures for e-Health Mobile

Applications

A wealth of mobile apps exist that support people in their daily lives. We

can use these apps for mental coaching, health interventions, fitness apps, and

various other purposes. Although these applications can take various types

of information into account, such as location, and historical behavior, they

still rely on rule-based approaches and do not achieve high effectiveness and

efficaciousness of medical treatment. Reinforcement learning-driven personaliza-

tion has proven to be a practical approach for many health settings, including

e-health and m-health [74]. Furthermore, clinical support systems could rely

on the same techniques to achieve high effectiveness and officiousness of med-

ical treatments. Related work shows a lack of publications that propose RL

architectures for personalization. [120] presents a reference architecture that

enables self-adaptation of mobile apps for e-Health. Although this architecture

proposed a non-rule-based approach for self-adaptation, it does not specify

machine learning techniques to achieve personalization. This architecture relies

on MAPE (Monitoring, Analysis, Planning and Execution) loops that operate

at different levels of granularity meant for different purposes. (Hoffman et al.)

proposed a research framework for distributed RL (Acme) [133]. This framework

aims at simplifying the process of developing RL algorithms in academia and

industry.
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8.3 pH-RL - A Framework for Personalisation

with RL

This section introduces our reinforcement learning personalization architecture

for mobile applications in e-Health. We start by framing the problem definition.

Then we introduce our framework for personalization with RL. Finally, we

present our pH-RL framework for personalization in e-Health.

8.3.1 The RL Architecture for Personalization

Figure 8.1 shows the pH-RL framework for personalization of interventions

in e-Health applications using RL. This section starts with a definition of the

system’s different components and the environment it is interacting with to

learn personalized policies.

8.3.1.1 Users of the Mobile Applications

Users are the people that utilize the e-Health application to get help with

achieving a specific health goal. These users own a smart device that can run

the e-Health application. They install the e-Health applications and continue

to sign-up to be able to use the application. We ask these users to provide

information about their demographics, preferences, health issues and treatment

goals to form the initial clusters. After the sign-up phase, the users start

generating data used by the pH-RL framework to personalize the interventions

further. The e-Health applications send these interventions to help the users

achieve their treatment goals.
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8.3.1.2 Smart Device

This device can be any computer that can host applications and have an interface

to interact with the users. Mobile phones and smartwatches are the most natural

types of smart devices used to host e-Health applications. These devices contain

sensors that allow the pH-RL framework to obtain potentially very granular

data about the users’ behavior continuously. We can use this information to

infer contextual information about the users’ state without having to ask them

to provide this information at all times explicitly. Additionally, smart devices

contain interfaces in the form of a screen or voice that allows the users to

receive interventions from the e-Health applications and provide feedback to

the application.

8.3.1.3 State

In RL settings, a state contains information about the user at a certain point

in time t. We capture this information through the e-Health application.

Throughout this paper, we operationalize a state following the RL definition

in this section. To model a real-world problem as an RL problem, one has

to design a Markovian state representation. In pH-RL, a state s ∈ S is

made up of features represented by the feature vector representation ~ψ(s) =

〈ψ1(s), ψ2(s), . . . , ψn(s)〉>. A feature can indicate the occurrence of a certain

activity, the number of times a user performed a certain activity during a

specified period, or any other feature that provides useful information about

the user’s behavior. In pH-RL, we perform binning to transform any continuous

feature into a discrete representation.

8.3.1.4 Interventions

E-Health applications running pH-RL are used by people to help them with

a health-related goal. The application gathers data from the user’s smart

device and sends it to our pH-RL framework, which returns an action a ∈ A
presented to the user in the form of interventions. The most natural way of

providing a user with an intervention is via notifications of mobile applications
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or smartwatches. The main goal in pH-RL is to provide users with interventions

that are relevant at the right moment. This hypothesis is that personalized

interventions will lead to a higher long-term adherence level to the user’s goal.

8.3.1.5 Rewards

The pH-RL framework gathers data from the users through the e-Health appli-

cation. Behavioral change data from the users about the effect of interventions

(either direct or indirect) is used as a feedback mechanism (e.g. the reward sig-

nal) by the RL algorithm in pH-RL to learn personalized policies. For instance,

the direct reward can be users providing ratings about their moods a few times

per day in a mental health application. Indirect rewards can be the amount of

activity measured after receiving the intervention. Rewards play an essential

role in pH-RL and should be defined carefully to represent the problem at hand

well.

8.3.2 Preliminaries and Problem Statement

8.3.2.1 Reinforcement Learning

We model a real-world problem M as a Markov Decision Process (MDP ).

Therefore, we consider the task M to be Markovian and therefore it can be

modelled using RL algorithms. In this section we borrow the RL terminology

from [88]. We define M to be 〈S, A, T , R〉 where S is a finite state space, and

A the set of actions that can be selected at each time step t. There exists a

probabilistic transition function T :: S × A × S → [0,1] over the states in S.

When at time t in current state s an action a is selected, a transition is made

to a next state s′ ∈ S at t + 1. R :: S × A → R is the reward function and

outputs a scalar r = R(s, a) to each combination of state s ∈ S and action

a ∈ A. The feature vector representation ~ψ(s) = 〈ψ1(s), ψ2(s), . . . , ψn(s)〉>

defines the features that form the states s ∈ S. Our aim when modelling task

M as an RL problem is to learn a policy π. With the policy π :: S → A we can

determine which action a ∈ A to take in a state s ∈ S such that the long term

expected cumulative reward is maximized. Selecting action a = π(s) will result
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in a transition to state s′. Here, a reward r = R(s, a) will be obtained. Taking

an action while in a state and transitioning to a new state forms an experience

〈s, a, r, s′〉. A trace is a sequence of experiences in a particular order. Denote a

trace by ζ : 〈s, a, r, s′, a′, r′, s′′, a′′, r′′, . . .〉. Multiple transitions over time result

in multiple experiences. The combination of experiences over time form a data

set Z ∈ 〈ζ1, . . . ζk〉.
Reinforcement learning aims at learning the best policy π∗ out of all possible

policies Π :: S ×A→ [0,1]. π∗ selects actions with the aim of maximizing the

the sum of future rewards (at any time t). We assign a value for taking action

a ∈ A in state s of policy π π(s) = a as follows:

Qπ(s, a) = Eπ{
K∑
k=0

γkrt+k+1|st = s, at = a} (8.1)

Here γ is the discount factor that gives weights to future rewards. st and at

define the states and actions at time t. Denote Q(s, a) as the expected long-term

value of state s after taking action a. If we select the best action a in each

possible state s ∈ S, a policy can be derived from the Q-function, i.e.

π′(s) = arg max
a∈A

Qπ(s, a), ∀s ∈ S (8.2)

8.3.2.2 Cluster-Based Policy Improvement

One-fits-all approaches are based on the assumption that users belong to one

group, and therefore, one policy is learned across all these users. This approach

has been shown to perform sub-optimally in e-Health applications because

people, in general, have different preferences and are characterized by non-

identical transition and reward functions [88].

In the pH-RL framework, we mitigate this issue and propose to group

users with similar behavior using clustering techniques [88; 86]. Clustering

algorithms such as K-medoids and K-means have been shown to perform well on

similar problems in e-Health [88; 86; 121]. We compare the behavioral traces of

users consisting of states and rewards, and we use the Dynamic Time Warping

(DTW) algorithm to calculate the distance between two users. Several other
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distance metrics, such as the Euclidean distance, have been explored in e-Health

literature. Although metrics are considered valid approaches for calculating

distances between two traces, DTW is more accurate because it measures the

similarity between two different users’ traces. It does so by finding the optimal

match between two potentially similar traces that are out of phase where the

Euclidean distance would have found these two traces to be very different. We

define the traces of u consisting of states and rewards as: 〈su, r, s′u, r′, s′′u, r′′, . . .〉.
Define the group of users to be targeted by our framework as U and ΣU

as all the traces generated by these users. The experiences (excluding the

actions) generated by user i during day d are defined as Σ′ui,d . We calculated

the similarity between two users u1 and u2 as:

SDTW (u1, u2) =

D∑
d=0

dtw(Σu1,d ,Σu2,d). (8.3)

We apply a clustering method to obtain clusters k of users based on their

traces where k and ΣU1 , . . . ,Σ
U
k is a partitioning of ΣU , and let U1, . . . Uk be the

partitioning of U [88]. In a one-fits-all approach, we would utilize all experiences

of U to learn one Q-function. In pH-RL, we learn a distinct Q-function QΣU
i

and

policy πΣU
i

for each user set Ui based on all the traces in ΣUi . Note that these

steps are done in addition to our previous setup, which allows for a comparison

between a policy for U and subgroup policies.

8.3.3 Framework Implementation and Algorithm Setup

In this section, we discuss the framework implementation and our algorithmic

setup. Furthermore, we discuss in detail our design choices for the state, actions,

and rewards as can be seen in figure 8.1. Our proposed pH-RL architecture

can be applied across many personalization tasks in mobile applications. In

this section, we demonstrate an instance implementation of pH-RL for mental

health using the MoodBuster platform.
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Feature Definition

Day Part A numerical encoding for part of day (0: morning, 1: afternoon, and 2: evening).

Number Rating The cumulative number of ratings inputted by the user.

Highest Rating The highest rating inputted by a user during the current day.

Lowest Rating The lowest rating inputted by a user during the current day.

Median Rating The median rating inputted by a user during the current day.

SD Rating The standard deviation of the ratings inputted by a user during the current day.

Number Low Rating The number of low (1 and 2) ratings inputted by a user during the current day.

Number Medium Rating The number of medium (3, 4, and 5) ratings inputted by a user during the current day.

Number High Rating The number of high (6 and 7) ratings inputted by a user during the current day.

Number message Received The number of messages received by a user during the current day.

Number Message Read The number of messages read by a user during the current day.

Read All Message Indicator if a user reads all messages during the current day.

Table 8.1: State features, actions and reward definitions.

233



Chapter 8. pH-RL: A Personalization Architecture to Bring Reinforcement
Learning to Health Practice

8.3.3.1 State

We designed features (i.e. ~ψ(su)) to represent the state of a user. Table 8.3.3

shows an overview of the features. These feature were designed to capture the

behaviour of the users on the mobile application and their mood ratings.

8.3.3.2 Action

We use four actions that the policy can select. Action 0 represents: send no

message, action 1 represents sending an action of type: encouraging, action 2

represents sending an action of type: informing, and action 3 represents sending

an action of type: affirming. Once the action is selected, we further decide from

which sub-group of actions to select based on the user’s mood. All messages and

categories, including the splits based on mood, can be found in the appendix.

To make sure we do not send the same message multiple times during a day,

we randomly select a message from the set of possible messages that were not

previously selected during the same day.

8.3.3.3 Reward

Adherence can be measured by how often users are using the MoodBuster

application. Therefore, the reward function is a combination of two components

weighted equally. The first component measures the fraction of messages received

during a day up until the current daypart. The second component measures

the number of ratings inputted by a user during a day until the current day.

8.3.3.4 Least Squares Policy Iteration (LSPI)

We perform training using (batch) online learning with the LSPI algorithm

because of its ability to generalize well on relatively small datasets. Every time

the policies for the different clusters of users are updated with a new batch

of data, we export a policy for inference of actions. We use the exact basis

function transformation of our features by first binning each of the features

into four bins, increasing our features by a factor of 4. We use a policy with

the LSTDQ Solver, a discount factor of 0.95, an exploration rate of 0.1, the
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tie-breaking strategy first wins, max iterations of 25, and stopping criterion ε of

0.00001. These hyper-parameters are based on various experiments from earlier

work in this area [88; 86].

8.3.3.5 Technical Implementation of the pH-RL System

We utilize Amazon Web Services to run our pH-RL system. Our setup consists of

an S3 bucket to store RL experiences safely and securely. pH-RL is implemented

as an open-source Python package [85]. The code is deployed on an AWS EC2

instance (t2.large). The scripts for performing batch training (once a day),

clustering (once during the entire experiment), inference, or sending a message

(three times every day) are run with a time-based job scheduler (cronjob). We

make secure connections with the restful API of MoodBuster to make read calls

to retrieve data and post calls to send messages.

8.4 Real-world Performance Evaluation

To evaluate the proposed pH-RL framework, we conducted a real-world exper-

iment with a mobile application for mental health. This experiment’s main

aim is to demonstrate the feasibility of applying the pH-RL framework for per-

sonalization in e-Health applications and provide easy-to-follow guidelines for

successful integration and deployment of RL models in real-world applications.

We integrated our pH-RL framework into the MoodBuster platform to provide

personalized messages and answer our first research question.

8.4.1 Personalized Motivational Feedback Messages

We designed a real-world experiment to improve adherence to an online course

for low mood with personalized motivational feedback messages. The pH-

RL framework is used to select the most appropriate messages to send to a

user to maximize adherence to the course. We consider three categories of

messages based on existing research [297]. Informing messages aim at providing

informative messages to help the user understand the MoodBuster platform
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and the online course. Encouraging messages try to encourage users to perform

a specific action. Affirming messages offer emotional support or encouragement.

We further split the encouraging and affirming categories based on the user’s

mood into the following three groups: positive, neutral mood, negative, neutral

mood, and mood unavailable.

8.4.2 MoodBuster

MoodBuster is a research platform that has been developed to treat or prevent

psychological complaints online. Treatments on MoodBuster take place in

connection with research projects. The platform gives access to two types of

applications: a web application for patients, a web portal for practitioners, and a

mobile and web application that can measure information such as the Ecological

Momentary Assessment (mood and user state measurements) [223; 262]. The

platform can be used to treat patients as part of a guided online treatment or

as a prevention and self-help tool. Furthermore, MoodBuster can be used as

part of guided online treatments or blended treatment (face-to-face therapy

combined with online treatment). In this work, we use the cognitive behavioral

therapy treatment for depression on the MoodBuster platform. This treatment

consists of 6 (guided and unguided) online modules containing readable and

watchable material to guide the user through the module to perform exercises and

assignments. The cognitive-behavioral therapy treatment for depression helps

the user better understand depression, stimulate positive thinking, stimulate

behavioral change through enjoyable activities and physical exercise.

8.4.3 Participants

We conducted this experiment with 30 participants from our research depart-

ments at the Vrije Universiteit Amsterdam, students, and friends. All these

participants were not selected based on having depression. Furthermore, we

informed these users that we performed this study to test our pH-RL framework

for personalization. Henceforth, they should use this application with the intent

that it is part of a test case.
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8.4.4 Setup of Runs

We train our policies using batch learning. We set the intervention moments

when the application sends messages at 10:00, 14:00, and 21:00. We perform

random exploration during the first week of the experiment by sending three

random interventions a day. After week one, we perform clustering to find our

clusters and train our policies using all available data from the start of the

experiment. Phase 2 of the experiment runs for an additional two weeks using

actions from the learned policies. We update our policies in batch at the end of

every day at 23:59.

8.5 Results

In this section, we present the results related to the experiment laid out in

section 4. We experimented with 30 participants to test our integration of the

pH-RL framework for personalization in e-Health with the MoodBuster mobile

application for depression. We instructed the participants to use and interact

with the application to generate data We do not assume any of the participants

to have any symptoms of depression, and therefore we do not expect the app

to lead to any significant changes in the participants’ mood. Our main aim is

to present, implement and test the pH-RL architecture in an e-Health setting

and demonstrate that we can learn policies quickly that provide personalized

interventions.

8.5.0.1 Inactive Participants

During the experiment, a fraction of all participants were entirely dormant

and showed no activity. Inactive users reflect actual real-life usage stats of

mobile applications. The experiences of these users are still included in the

data set provided used to develop the models. During the whole experiment, 6

participants showed barely any activity and were excluded (entered a rating

or read a message at least once for maximum of two days). Furthermore, an

additional eight users became inactive during weeks 2 and 3 of the experiment.
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During the data analysis, we reported different results that include and exclude

these users. In this experiment users becoming inactive is not the results of the

interaction with the application.

8.5.1 Exploration Phase

Developing RL policies requires a data set consisting of many experiences. At

the start of our experiment, we lack such data. As a solution, we implemented

a default policy to be used during the experiment’s initial phase for one week.

During this phase, random exploration was applied, resulting in the data

presented in figure 2. From the figure on the right, we can see that around 70%

of the messages were read throughout the first week. Furthermore, we observed

that around 75% of the users rated their mood at least once per day during the

first week with a drop on Friday and Saturday.
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Figure 8.2: Week 1 action distributions (left), number of
ratings per day (middle) and fraction of messages read
(right).

8.5.2 Learning Phase

After phase 1, we trained the first policy and started using it. We update the

policy with new data at the end of every day. Here we do include data from all

8 participants that became inactive after week 1. Using the obtained results we

answer the second research question in this section. Figure 3 (middle) shows

how often users rated their mood per day. On average, at least 45% of the

participants rated their mood at least once per day. Finally, we see from figure
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3 (right) that around 50% of the users read all their messages per day. Figure 3

(left) shows the distribution of actions for all dayparts. We can see that the

policy started favoring ”Informing” messages around 50% of the time. As we

move forward in time, the policy starts favoring encouraging messages more

often. This is in line with what we hypothesized based on existing research

[16; 297]. On day 7 of the second week, the policy decides not to send a message

in around 40% of the cases. Overall the policy favors the actions in the following

order: ”encouraging”, ”informing”, ”affirming”, and ”sending no message”.
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Figure 8.3: Week 2 and 3 action distributions (left), number
of ratings per day (middle) and fraction of messages read
(right).

To further understand how the policy is personalizing towards specific

attributes in the state space, we created the visualization that shows the action

distributions of the policies per daypart in figure 4. In figure 4 (left), we can

see that the policy started favoring ”informing” messages in the morning but

quickly changed to a strategy with ”encouraging” messages. In the afternoon,

we see similar behavior with more ”affirming” messages. On day 14 of the

experiment, the policy does not send any messages in the afternoon. Finally,

the evening strategy is to mostly send ”encouraging” messages during the first

two days and then switch to a strategy dominated by ”informing” messages in

the evening. These findings are in line with existing research [297].
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Week 1 Week 2 Week 2* Week 3 Week 3*

All day parts 0.98 ± 0.79 0.83 ± 1.02 1.20 ± 1.06 0.77 ± 0.98 1.16 ± 1.01

Morning 0.66 ± 0.57 0.62 ± 0.78 0.87 ± 0.81 0.54 ± 0.64 0.81 ± 0.65

Afternoon 1.1 ± 0.80 0.87 ± 1.0 0.87 ± 0.81 0.83 ± 1.01 1.25 ± 1.03

Evening 1.2 ± 0.87 1.00 ± 1.19 1.46 ± 1.22 0.93 ± 1.16 1.40 ± 1.19

Table 8.2: The average reward per user per daypart for
weeks 1, 2, and 3. Week 2* and Week 3* are with inactive
users excluded.

8.5.2.1 Rewards

Figure 5 and Table 8.2 show the observed rewards during weeks 1, 2, and 3.

Furthermore, we also consider statistics and make comparisons after excluding

all inactive users after week 1. We can see that the average reward per day

part per user drops as time proceeds. One of the main reasons that a certain

number of users stopped using the app after week 1 was because some were

instructed to do so. Furthermore, other users stopped using the app once they

felt they have performed enough testing. When we exclude users that dropped

out, the average reward increases again. Furthermore, we observe that users

obtain higher rewards consistently in the evening. Our hypothesis has to do

with the fact that people have more time to check their phones during these

moments of the day. From figure 5, we also see that the maximum reward per

user per day part increased after week 1.
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Figure 8.4: Week 2 and 3 action distributions morning
(left), afternoon (middle) and evening (right).
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Figure 8.5: The box plots of the average daily reward per
day part for weeks 1, 2 and 3.

8.6 Discussion

This paper presented a general reinforcement learning architecture for person-

alization in e-Health mobile applications (pH-RL). This architecture utilizes

traces of states and rewards obtained from users to form clusters with k-means

and the Dynamic Time Warping distance function. We built and integrated

our architecture with the MoodBuster application for mood support. We ran

an experiment with human participants for three weeks. Our results show

that the pH-RL architecture can learn policies that consistently converge and

provide the users with the right actions. Based on the observed reward values,

we can conclude that pH-RL leads to increased adherence to the MoodBuster

application. We ran our experiment for a period of two weeks. This resulted in

a significant amount of user experiences. Given the number of users, we opted

for training one policy across these users. In future work, it would be of great

importance to experiment with a larger number of participants to find large

enough clusters. Furthermore, the experiment can be ran for a longer period

of time to evaluate the behaviour of the architecture during a longer period of

time. Finally, including user specific features that describe their characteristics

and preferences to the state space could result in better performance of the

policies.
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8.8 Appendix

We use personalized motivational feedback messages to improve adherence to

an online course for low mood. We define three groups of messages inspired by

[229].

8.8.1 Encouraging

8.8.1.1 Positive neutral mood

− It seems like you’re on the right track! Keep up the good work!

− Good to see that you are doing well. Good luck continuing Moodbuster

Lite.

− You are making a lot of progress! You can be proud of yourself!

8.8.1.2 Negative neutral mood

− It is good that you take part in Moodbuster Lite. You can commend

yourself for that!

− Good that you are still rating your mood on a regular basis! Keep up the

good work!

− It’s great that you are making time for yourself to improve your mood!

8.8.1.3 Mood unavailable

− It may sometimes be difficult to engage in a training like Moodbuster

Lite, but you can do it!

242



8.8. Appendix

− Good that you started with Moodbuster Lite this is already a first step.

− It may be difficult to always keep the training and mood ratings on mind,

but it’s great that you already started.

− Don’t give up if you haven’t rated your mood.

8.8.2 Informing

− Don’t forget to set a reminder in order to not forget about your scheduled

pleasant activities.

− Do you know you can always review the material of sessions if you need

it?

− In your calendar, you can see the activities which you planned in the past.

− It is good to track what pleasant activities you did.

− Do not forget to rate your mood three times per day.

− Did you forget what pleasant activities to do? You can always check your

notes on the website.

− It is sometimes helpful to re-read the content of the training to refresh

your knowledge.

− Reminders may help you to not forget about the pleasant activities.

− It’s good to keep track of what pleasant activities you do and how your

mood is.

8.8.3 Affirming

8.8.3.1 Positive neutral mood

− Good to see that you are doing well.

− Even if you don’t rate your mood at some point, don’t worry, it may be

hard to always think about it.
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− I am happy to see that you feel well.

8.8.3.2 Negative neutral mood

− It is very common to sometimes have low mood, so do not worry if that

happens.

− It may be difficult to always keep the training and mood ratings on mind,

but it is important for your well-being.

− Many people sometimes feel sad, this is nothing to worry about.

− It must be complicated to engage in this training, so it’s completely fine

if you sometimes feel that way.

− Struggling to find the time to do the scheduled pleasant activities is

completely normal, so do not worry if it ever happens to you.

8.8.3.3 Mood unavailable

− Don’t get discouraged if you forget to rate your mood sometimes, it’s

normal.

− It is completely normal to sometimes feel demotivated.

− If you keep forgetting to do the pleasant activities? It will be ok! Don’t

give up!

− Do you often feel tired? That can easily happen when doing a training

like this!

− It can be hard to think constantly about rating your mood.

− Struggling to find the time to do the scheduled pleasant activities is

completely normal, so do not worry if it ever happens to you.

− It must be complicated to engage in this training, so it’s completely fine

if you sometimes feel that way.
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9
Conclusion

Our research aimed to investigate whether RL can be used in an efficient and

efficacious manner for personalization in real-world e-Health applications. To

make this research possible, we set out to develop a realistic open-source simula-

tion environment for e-Health problems. To bridge the simulation environment’s

reality gap, we relied on generative models to generate low-level sensor data. We

evaluated this generated data using a framework we developed to test the data’s

structural and functional representativity. Using this realistic simulator, we

tested various RL algorithms for personalization. We embedded our proposed

methods for personalization into a mobile application for mental health support.

Furthermore, we utilized RL techniques for various health applications, such as

personalized treatment policies for Sepsis patients.
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9.1 Discussion

We performed a systematic literature review (SLR) to provide an overview

and categorization of RL applications for personalization in various domains,

including the healthcare domain. The SLR looked at RL settings, solution

architectures, and evaluation strategies used for personalization. Overall, we

observed an increase in the usage of RL for personalization over time. RL has

proven to be an appropriate learning paradigm for tailoring and personalization

towards individuals using data. Furthermore, RL techniques rely increasingly

on real-life data for evaluation. Looking at the growth in the number of

applications, we concluded that the ratio of real-life evaluations is not increasing

at the same pace. Correspondingly, we did not observe an increase over time in

the relative number of applications that compare different approaches. These

conclusions are signs of limitations in the field at hand, possibly caused by the

fast pace of growth over the last decade. Such trends are worrisome because

comparisons with other approaches or between RL algorithms would lead to a

better understating of the advantages of the proposed methods. Consequently,

we concluded that the lack of standardized simulation environments and datasets

for personalization offers ample opportunities and a solution to the limitations.

In the remainder of our research, we addressed these shortcomings.

To test whether RL can be used efficiently and efficaciously, we introduced

a cluster-based RL methodology to personalize e-Health interventions. The

focus on optimizing long-term health behaviors characterizes this problem along

with the limited amount of time available to collect users' experiences. Our

proposed approach identified similarities in behaviors by forming clusters of users

that require similar policies. As an illustration, our methods addressed users’

disengagement from e-Health applications while providing a high personalization

level. We relied on dynamic time warping to compare trajectories of user

behaviors and create suitable clusters of users. We also needed to investigate

further whether our clustering approach is applicable in any particular real-

world scenario that is not well-defined. We compared online and batch RL

while considering three different learning settings: one policy per individual,
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one policy across all users, and one policy per cluster of users. To evaluate our

methods, we introduced a self-developed e-Health simulation environment for

RL problems.

Furthermore, we compared our approach with an existing e-Health inter-

vention benchmark. We concluded that batch learning outperforms online

learning for the setting at hand. We demonstrated that our proposed clustering

approach for RL finds near-optimal clusters of users and leads to significantly

better policies measured in terms of cumulative reward and faster learning time

than settings where policies are learned per individual or across all users. In

conclusion, our proposed approaches proved to be highly applicable in several

e-Health specific applications and could be generalized to other scenarios where

personalization using RL is the right approach. In real-life scenarios, users’

behavior is expected to change over time, leading to varying optimal clusters.

This requires the clustering to be updated, which might influence the learning

algorithms’ efficiency and efficacy. Further research is needed to investigate the

influence of behavioral change caused by these algorithms on their efficiency

and efficacy over a sustained period. A dynamic clustering approach where the

clusters are updated more frequently might be needed to tackle this limitation.

To mitigate the lack of training data for RL in e-Health, we proposed

generating sensor data using generative adversarial networks (GANs). Our

simulation environment uses these generative models to synthesize human

behavior data in low-level sensor data such as measurements by accelerometers

on mobile devices. To our best knowledge, simulation environments for e-

Health problems are not available in the literature. Furthermore, this approach

to synthesize data for RL problems is rarely encountered in literature. Our

approach helps bridge the reality gap in our self-developed simulator and

construct richer state spaces where RL algorithms can learn directly from raw

data. In essence, one can use real data to drive the simulator. However, this

poses limitations in real-life scenarios where data availability and privacy play

an essential role. After training a generative model, we can throw away the

original data, and data generated by the GANs can drive the simulator. To

validate the performance of the GANs, we trained a classifier on a holdout set
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from the original dataset and calculated a classification error of the classifier on

the generated sequences. Although we managed to bridge the reality gap, the

developed simulator’s realism is hard to quantify without conducting experiments

in the real world. Transfer learning from the simulator to real-world settings

would help quantify and uncover any reality gaps. More related approaches

are classified under model-based RL. In model-based RL, interactions with

environment are used to develop a model of it. These models are considered to

be sample efficient in terms of learning.

Using this more realistic simulator driven by a behavioral engine and GANs,

we proposed a framework for end-to-end personalization of health interventions

using RL. We relied on the advantage actor-critic approach along with a shared

network architecture with LSTMs and dense layers. We experimented with

varying input data types such as raw sensor data or discrete features and

demographical information or combinations thereof. We showed that learning

directly from sensor data leads to a significant improvement compared to

learning from the discrete feature representation. Furthermore, we observed that

adding features to the state space, such as the user's age, leads to a significant

improvement in the level of personalization measured through the observed

reward. Whether the composition of the state space we have proposed contains

enough information to learn appropriate policies for real-world applications is

hard to tell without a real-world experiment. Furthermore, it is also hard to

tell whether the Markov property of the state space is met at all times.

We introduced a framework of properties to evaluate the suitability of syn-

thesized sequences of experiences for RL tasks using GANs. We proposed two

properties, namely: the structural and functional representativity properties.

We utilized the standard RL benchmark for control problems that are similar

to the real world. Using logs from a behavioral policy, we trained GANs on

varying training data sizes. We demonstrated that with only a few thousand

experiences, we could train GANs to generate representative data. We compare

the smoothed histograms of the generated data with the original data for the

structural representativity property. We performed an off-policy evaluation

for the functional representativity property using the weighted doubly robust
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estimator and investigated the difference between evaluating policies for gen-

erated and real-life data. Although we tested our approach on a complex RL

environment, it remains unclear whether it is directly applicable in complex

real-world scenarios. Furthermore, this approach needs to be extended to gener-

ate sequential data for longer horizons that encompass long-term effects. More

complex neural architectures are required for the generative models and an

off-policy evaluation approach that can handle the sequential nature of the data

to achieve this goal.

In the final set of experiments, we applied RL for personalization in several

real-world scenarios. The first application was the hemodynamic optimization

of patients with Sepsis at the Intensive Care Unit. Due to the lack of data

and expertise to develop models, hospitals would need to reuse existing models

developed using data from a different patient population. We proposed and

validated a novel RL model for hemodynamic optimization in Sepsis. We

initially developed the model on the MIMIC intensive care database from the

USA. The dueling DDQN algorithm was the RL algorithm of choice. To test

model generalizability across different patients’ populations, we transferred this

model to the European AmsterdamUMCdb intensive care database. To evaluate

the models’ safety and reliability, we employed the T-Distributed Stochastic

Neighbor Embedding and Sequential Organ Failure Assessment techniques. We

applied off-policy policy evaluation methods to evaluate the performance of the

developed models. Additionally, we introduced and applied a novel deep policy

inspection method to analyze how different Sepsis and Sepsis treatment phases

relate to the optimal policy. Consequently, we obtained interpretable insights

to be able to assess model safety and reliability. We showed that the optimal

policy outperformed the physician policy on both datasets through off-policy

policy evaluation, demonstrating model transferability between populations.

Our deep policy model inspection method resulted in insightful results. The

policy initiates therapy adequately and regulates therapy intensity to illness

severity and disease progression. These assessments are indications of model

safety and reliability. Although the policies’ overall behavior has been validated

and has proved to perform well, it remains unclear whether the policy will keep
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the same level of performance when it is presented with states that have not been

encountered yet in the training dataset. Furthermore, more experiments with

datasets from other hospitals need to be conducted to ensure this approach’s

generalizability.

The second application was applying RL to improve adherence to internet-

based interventions using RL. The goal here is to improve adherence to an

online course for low mood with personalized motivational feedback messages.

The application is used to rate mood, plan activities, write down thoughts,

and contact a therapist. Our contribution to the application is a general

RL personalization architecture that provides personalized messages that lead

to better adherence to the online course. The results we obtained with our

initial experiments involving actual humans were positive. The learning and

convergence speed of the algorithm is high, which confirms the efficiency of the

learning. As for the efficacy of the policies, we observed that learned policies

are in line with the behavior expected by experts. However, this needs to be

validated in a proper clinical trial that will take place in the future.

9.2 Research Questions

In this section, we return to our main research questions and answer them.

1. How can RL be used for personalization in e-Health? RL proves

to be an appropriate approach for many personalization problems across

different domains, including healthcare. Real-life data is used for eval-

uation. However, the lack of standardized simulation environments for

personalization makes it hard to apply online RL.
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2. How can we improve the learning efficiency and efficacy of

(deep) RL methods for e-Health applications? We proposed a

cluster-based RL approach to find similarities between users. Learning

policies on users’ clusters leads to improved learning efficiency and efficacy

overall but especially in the initial stages. Furthermore, we propose an

end-to-end deep RL approach that learns directly from raw sensor data.

This approach is more realistic for real-life e-Health scenarios because

sensor data can be obtained relatively easily from mobile devices.

3. How can we ameliorate the lack of appropriate and sufficient

data for sequential decision-making problems? We developed an

e-Health simulation environment for RL that is driven by generative

models. We demonstrated that we could develop RL algorithms and

use the simulator as a test-bed for these novel algorithms. Then, we

demonstrated empirically that the proposed algorithms tested in our

simulation environment show high efficacy in real-world health scenarios.

Furthermore, we proposed an approach to synthesize experiences for

RL problems using a small set of initial data. Finally, we proposed a

framework to assess the representativity of the generated data.

4. How applicable and accurate are RL methods when applied in

real-world health scenarios? We demonstrated through empirical

evidence that we could apply (deep) RL to develop highly personalized

policies in both online and offline real-world health scenarios.

9.3 Future Work

While our proposed learning efficient personalization approaches using RL

resulted in highly personalized policies, we believe that there are still points for

improvement. Below we list a few ideas for future work:

1. A natural continuation in future work would be to investigate further and

improve the stability, robustness, and the ability to learn personalized
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policies faster. Furthermore, incorporating the clustering approach for

segmenting users into the RL loop and reassessing the clusters we find

could lead to policies that would take users’ behavioral change over time

into account. Finally, comparing our methods to established algorithms

and heuristics in literature would be of great added value.

2. Expanding the simulation environment with more modes of information

driven by generative models would further bridge the reality gap. Ulti-

mately, developing a generative model that would replace the simulator is

a significant step towards developing realistic simulators for e-Health.

3. Regarding the representativity properties, expanding the framework to

support any horizon length would be advisable. This would tie in well with

the previous point where we mention developing a simulation environment

for e-Health entirely driven by generative models.

4. When it comes to bringing RL solutions to the real world, safety plays

an important role. This research sheds light on the safety and reliability

of our proposed methods. However, a more fundamental framework

through more focused research on this area is needed. We looked into

developing safe policies by providing a deep policy inspection framework.

However, unsafe exploration during online learning can go undetected if

not accounted for.

5. Being able to transfer a model built in simulation to the real world is a great

idea to speed up the learning during the initial phases of the deployment

process. Furthermore, investigating whether and how available data can

be used to pre-train RL models more efficiently is an excellent avenue for

future research.

6. Finally, it would be of great added value to perform experiments with the

purpose of investigating how much better RL-driven interventions work

compared to traditional approaches in real-world scenarios.
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[42] Carneiro, A. H., P. Póvoa, and J. A. Gomes (2017, January). Dear sepsis-3,

we are sorry to say that we don’t like you. Rev Bras Ter Intensiva 29 (1),

4–8.

[43] Casanueva, I., T. Hain, H. Christensen, R. Marxer, and P. Green (2015).

Knowledge transfer between speakers for personalised dialogue management.

In Proceedings of the 16th Annual Meeting of the Special Interest Group on

Discourse and Dialogue, pp. 12–21.

[44] Castro-Gonzalez, A., F. Amirabdollahian, D. Polani, M. Malfaz, and M. A.

Salichs (2011). Robot self-preservation and adaptation to user preferences

in game play, a preliminary study. 2011 IEEE International Conference on

Robotics and Biomimetics.

267



Bibliography

[45] Cella, L. (2017). Modelling user behaviors with evolving users and catalogs

of evolving items. Adjunct Publication of the 25th Conference on User

Modeling, Adaptation and Personalization - UMAP ’17 .

[46] Chakraborty, B. and S. A. Murphy (2014). Dynamic treatment regimes.

Annual Review of Statistics and Its Application 1 (1), 447–464.

[47] Chan, J. and G. Nejat (2011). A learning-based control architecture for an

assistive robot providing social engagement during cognitively stimulating

activities. 2011 IEEE International Conference on Robotics and Automation.

[48] Chawla, N. V. and D. A. Davis (2013). Bringing big data to personal-

ized healthcare: a patient-centered framework. Journal of general internal

medicine 28 (3), 660–665.

[49] Chellappa, R. K. and R. G. Sin (2005). Personalization versus privacy:

An empirical examination of the online consumer’s dilemma. Information

technology and management 6 (2-3), 181–202.

[50] Chen, J. and Z. Yang (2003). A learning multi-agent system for personal-

ized information fiftering. Fourth International Conference on Information,

Communications and Signal Processing, 2003 and the Fourth Pacific Rim

Conference on Multimedia. Proceedings of the 2003 Joint .

[51] Chen, X., Y. Zhai, C. Lu, J. Gong, and G. Wang (2017). A learning model

for personalized adaptive cruise control. 2017 IEEE Intelligent Vehicles

Symposium (IV).

[52] Cheng, Z., Q. Zhao, F. Wang, Y. Jiang, L. Xia, and J. Ding (2016).

Satisfaction based q-learning for integrated lighting and blind control. Energy

and Buildings 127, 43–55.

[53] Chevalier, G. (2017). Lstm human activity recognition. GitHub repository .

[54] Chi, C.-Y., R. T.-H. Tsai, J.-Y. Lai, and J. Y.-j. Hsu (2010). A rein-

forcement learning approach to emotion-based automatic playlist generation.

268



Bibliography

2010 International Conference on Technologies and Applications of Artificial

Intelligence.

[55] Chi, M., K. VanLehn, D. Litman, and P. Jordan (2010). Inducing effective

pedagogical strategies using learning context features. Lecture Notes in

Computer Science, 147–158.

[56] Chiang, Y.-S., T.-S. Chu, C. D. Lim, T.-Y. Wu, S.-H. Tseng, and L.-C. Fu

(2014). Personalizing robot behavior for interruption in social human-robot

interaction. 2014 IEEE International Workshop on Advanced Robotics and

its Social Impacts.

[57] Christiano, P. F., Z. Shah, I. Mordatch, J. Schneider, T. Blackwell, J. Tobin,

P. Abbeel, and W. Zaremba (2016). Transfer from simulation to real world

through learning deep inverse dynamics model. CoRR abs/1610.03518.

[58] Chu, W., L. Li, L. Reyzin, and R. Schapire (2011). Contextual bandits

with linear payoff functions. In Proceedings of the Fourteenth International

Conference on Artificial Intelligence and Statistics, pp. 208–214.

[59] Claeys, M., S. Latre, J. Famaey, and F. De Turck (2014). Design and

evaluation of a self-learning http adaptive video streaming client. IEEE

Communications Letters 18 (4), 716–719.

[60] Curry, S. J., C. McBride, L. C. Grothaus, D. Louie, and E. H. Wagner

(1995). A randomized trial of self-help materials, personalized feedback, and

telephone counseling with nonvolunteer smokers. Journal of consulting and

clinical psychology 63 (6), 1005.

[61] Da Silveira, G., D. Borenstein, and F. S. Fogliatto (2001). Mass customiza-

tion: Literature review and research directions. International journal of

production economics 72 (1), 1–13.

[62] Daltayanni, M., C. Wang, and R. Akella (2012). A fast interactive search

system for healthcare services. 2012 Annual SRII Global Conference.

269



Bibliography

[63] Daskalaki, E., P. Diem, and S. G. Mougiakakou (2013a). An actor–critic

based controller for glucose regulation in type 1 diabetes. Computer Methods

and Programs in Biomedicine 109 (2), 116–125.

[64] Daskalaki, E., P. Diem, and S. G. Mougiakakou (2013b). Personalized

tuning of a reinforcement learning control algorithm for glucose regulation.

2013 35th Annual International Conference of the IEEE Engineering in

Medicine and Biology Society (EMBC).

[65] Daskalaki, E., P. Diem, and S. G. Mougiakakou (2016). Model-free ma-

chine learning in biomedicine: Feasibility study in type 1 diabetes. PLOS

ONE 11 (7), e0158722.

[66] David Silver, e. a. (2016). Mastering the game of go with deep neural

networks and tree search. Nature 529, 484–503.

[67] De Paula, M., G. G. Acosta, and E. C. Mart́ınez (2015). On-line policy

learning and adaptation for real-time personalization of an artificial pancreas.

Expert Systems with Applications 42 (4), 2234–2255.
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[77] Deshmukh, A. A., Ürün Dogan, and C. Scott (2017). Multi-task learning

for contextual bandits. In NIPS.

[78] Doshi-Velez, F. and B. Kim (2017, February). Towards a rigorous science

of interpretable machine learning.

[79] Duan, Y., X. Chen, R. Houthooft, J. Schulman, and P. Abbeel (2016).

Benchmarking deep reinforcement learning for continuous control. In Inter-

national Conference on Machine Learning, pp. 1329–1338.

[80] Dulac-Arnold, G., D. Mankowitz, and T. Hester (2019). Challenges of

real-world reinforcement learning.

[81] Durand, A. and J. Pineau (2015). Adaptive treatment allocation using

sub-sampled gaussian processes. In 2015 AAAI Fall Symposium Series.

271



Bibliography

[82] El Fouki, M., N. Aknin, and K. E. El. Kadiri (2017). Intelligent adapted

e-learning system based on deep reinforcement learning. Proceedings of the

2nd International Conference on Computing and Wireless Communication

Systems - ICCWCS’17 .

[83] el Hassouni, A. (2020a, May). alielhassouni/rl-multi-agent-simulation- for-

e-health: Release of the Reinforcement Learning multiagent simulation for

e-health.

[84] el Hassouni, A. (2020b, May). heartsteps-gaussian-generative-model: Re-

lease of the Gaussian generative model for the HeartSteps dataset.

[85] el Hassouni, A. (2021, March). alielhassouni/ph-rl: A personalization

architectureto bring rl to health practice.

[86] el Hassouni, A., M. Hoogendoorn, A. E. Eiben, M. van Otterlo, and

V. Muhonen (2019). End-to-end personalization of digital health interventions

using raw sensor data with deep reinforcement learning: A comparative study

in digital health interventions for behavior change. In 2019 IEEE/WIC/ACM

International Conference on Web Intelligence (WI), pp. 258–264. IEEE.

[87] el Hassouni, A., M. Hoogendoorn, and V. Muhonen (2018). Using generative

adversarial networks to develop a realistic human behavior simulator. In

N. Oren, Y. Sakurai, I. Noda, T. Cao Son, T. Miller, and B. Savarimuthu

(Eds.), PRIMA 2018 Principles and Practice of Multi-Agent Systems, Lecture

Notes in Computer Science, pp. 476–483. Springer/Verlag.

[88] el Hassouni, A., M. Hoogendoorn, M. van Otterlo, and E. Barbaro (2018).

Personalization of health interventions using cluster-based reinforcement

learning. In N. Oren, Y. Sakurai, I. Noda, T. Cao Son, T. Miller, and

B. Savarimuthu (Eds.), PRIMA 2018 Principles and Practice of Multi-Agent

Systems, Lecture Notes in Computer Science, pp. 467–475. Springer/Verlag.

[89] Fan, H. and M. S. Poole (2006). What is personalization? perspectives

on the design and implementation of personalization in information systems.

272



Bibliography

Journal of Organizational Computing and Electronic Commerce 16 (3-4),

179–202.

[90] Feng, J., H. Li, M. Huang, S. Liu, W. Ou, Z. Wang, and X. Zhu (2018).

Learning to collaborate. Proceedings of the 2018 World Wide Web Conference

on World Wide Web - WWW ’18 .

[91] Fernandez-Gauna, B. and M. Grana (2014). Recipe tuning by reinforcement

learning in the sands ecosystem. 2014 6th International Conference on

Computational Aspects of Social Networks.

[92] Fernando, S. M., P. M. Reardon, B. Rochwerg, N. I. Shapiro, D. M. Yealy,

A. J. E. Seely, J. J. Perry, D. P. Barnaby, K. Murphy, P. Tanuseputro, and

K. Kyeremanteng (2018, August). Sepsis-3 septic shock criteria and associated

mortality among infected hospitalized patients assessed by a rapid response

team. Chest 154 (2), 309–316.

[93] Ferretti, S., S. Mirri, C. Prandi, and P. Salomoni (2014a). Exploiting

reinforcement learning to profile users and personalize web pages. 2014

IEEE 38th International Computer Software and Applications Conference

Workshops.

[94] Ferretti, S., S. Mirri, C. Prandi, and P. Salomoni (2014b). User centered

and context dependent personalization through experiential transcoding. 2014

IEEE 11th Consumer Communications and Networking Conference (CCNC).

[95] Ferretti, S., S. Mirri, C. Prandi, and P. Salomoni (2016a). Automatic web

content personalization through reinforcement learning. Journal of Systems

and Software 121, 157–169.

[96] Ferretti, S., S. Mirri, C. Prandi, and P. Salomoni (2016b). On personal-

izing web content through reinforcement learning. Universal Access in the

Information Society 16 (2), 395–410.

[97] Ferretti, S., S. Mirri, C. Prandi, and P. Salomoni (2017). On personal-

izing web content through reinforcement learning. Universal Access in the

Information Society 16 (2), 395–410.

273



Bibliography

[98] Fournier, L. (1994). Learning capabilities for improving automatic trans-

mission control. Proceedings of the Intelligent Vehicles ’94 Symposium.

[99] Futoma, J., A. Lin, M. Sendak, A. Bedoya, M. Clement, C. O’Brien, and

K. Heller. Learning to treat sepsis with multi-output gaussian process deep

recurrent q-networks, 2018. In URL https://openreview. net/forum.

[100] Gao, A. Y., W. Barendregt, and G. Castellano (2017). Personalised human-

robot co-adaptation in instructional settings using reinforcement learning.

In IVA Workshop on Persuasive Embodied Agents for Behavior Change:

PEACH 2017, August 27, Stockholm, Sweden.

[101] Garcıa, J. and F. Fernández (2015). A comprehensive survey on safe

reinforcement learning. Journal of Machine Learning Research 16 (1), 1437–

1480.

[102] Garivier, A. and E. Moulines (2011). On upper-confidence bound policies

for switching bandit problems. In International Conference on Algorithmic

Learning Theory, pp. 174–188. Springer.

[103] Gauci, J., E. Conti, Y. Liang, K. Virochsiri, Y. He, Z. Kaden,

V. Narayanan, X. Ye, Z. Chen, and S. Fujimoto (2018). Horizon: Face-

book’s open source applied reinforcement learning platform.

[104] Gaweda, A., M. Muezzinoglu, G. Aronoff, A. Jacobs, J. Zurada, and

M. Brier (2005a). Incorporating prior knowledge into q-learning for drug

delivery individualization. Fourth International Conference on Machine

Learning and Applications (ICMLA’05).

[105] Gaweda, A. E. (2009). Improving management of anemia in end stage renal

disease using reinforcement learning. 2009 International Joint Conference on

Neural Networks.

[106] Gaweda, A. E., M. K. Muezzinoglu, G. R. Aronoff, A. A. Jacobs, J. M.

Zurada, and M. E. Brier (2005b). Individualization of pharmacological anemia

management using reinforcement learning. Neural Networks 18 (5), 826–834.

274



Bibliography

[107] Gentile, C., S. Li, and G. Zappella (2014). Online clustering of bandits.

In International Conference on Machine Learning, pp. 757–765.

[108] Ghahfarokhi, B. S. and N. Movahhedinia (2013). A personalized qoe-

aware handover decision based on distributed reinforcement learning. Wireless

Networks 19 (8), 1807–1828.

[109] Ginsburg, G. S. and J. J. McCarthy (2001). Personalized medicine: revolu-

tionizing drug discovery and patient care. TRENDS in Biotechnology 19 (12),

491–496.

[110] Glorot, X. and Y. Bengio (2010). Understanding the difficulty of training

deep feedforward neural networks. In Proceedings of the thirteenth interna-

tional conference on artificial intelligence and statistics, pp. 249–256.

[111] Glowacka, D., T. Ruotsalo, K. Konuyshkova, k. Athukorala, S. Kaski, and

G. Jacucci (2013). Directing exploratory search. Proceedings of the 2013

international conference on Intelligent user interfaces - IUI ’13 .

[112] Goldberg, Y. and M. R. Kosorok (2012). Q-learning with censored data.

The Annals of Statistics 40 (1), 529–560.

[113] Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep Learning. The

MIT Press.

[114] Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, and Y. Bengio (2014). Generative adversarial nets. In

Advances in neural information processing systems, pp. 2672–2680.

[115] Gordon, G., S. Spaulding, J. K. Westlund, J. J. Lee, L. Plummer, M. Mar-

tinez, M. Das, and C. Breazeal (2016). Affective personalization of a social

robot tutor for children’s second language skills. In Thirtieth AAAI Confer-

ence on Artificial Intelligence.

[116] Gottesman, O., J. Futoma, Y. Liu, S. Parbhoo, L. A. Celi, E. Brunskill,

and F. Doshi-Velez (2020, February). Interpretable Off-Policy evaluation in

reinforcement learning by highlighting influential transitions.

275



Bibliography

[117] Gottesman, O., F. Johansson, M. Komorowski, A. Faisal, D. Sontag,

F. Doshi-Velez, and L. A. Celi (2019, January). Guidelines for reinforcement

learning in healthcare. Nat. Med. 25 (1), 16–18.

[118] Gottesman, O., F. Johansson, J. Meier, J. Dent, D. Lee, S. Srinivasan,

L. Zhang, Y. Ding, D. Wihl, X. Peng, J. Yao, I. Lage, C. Mosch, L.-W. H.

Lehman, M. Komorowski, M. Komorowski, A. Faisal, L. A. Celi, D. Sontag,

and F. Doshi-Velez (2018, May). Evaluating reinforcement learning algorithms

in observational health settings.

[119] Greenberg, I., M. J. Stampfer, D. Schwarzfuchs, I. Shai, and D. Group

(2009). Adherence and success in long-term weight loss diets: the dietary

intervention randomized controlled trial (direct). Journal of the American

College of Nutrition 28 (2), 159–168.

[120] Grua, E. M., M. De Sanctis, and P. Lago (2020). A reference architecture

for personalized and self-adaptive e-health apps. In European Conference on

Software Architecture, pp. 195–209. Springer.

[121] Grua, E. M. and M. Hoogendoorn (2018). Exploring clustering techniques

for effective reinforcement learning based personalization for health and

wellbeing. In 2018 IEEE Symposium Series on Computational Intelligence

(SSCI), pp. 813–820. IEEE.

[122] Gunn, N., C. Haigh, and J. R. Thomson (2016, December). Triage of sepsis

patients: Sirs or qsofa – which is best? Emerg. Med. J. 33 (12), 909–910.

[123] Hansen, P. G., L. R. Skov, and K. L. Skov (2016). Making healthy choices

easier: regulation versus nudging. Annual review of public health 37, 237–251.

[124] Harper, F. M., X. Li, Y. Chen, and J. A. Konstan (2005). An economic

model of user rating in an online recommender system. Lecture notes in

computer science 3538, 307.

[125] Hemminghaus, J. and S. Kopp (2018). Adaptive behavior generation for

child-robot interaction. Companion of the 2018 ACM/IEEE International

Conference on Human-Robot Interaction - HRI ’18 .

276



Bibliography

[126] Herland, M., T. M. Khoshgoftaar, and R. Wald (2014). A review of data

mining using big data in health informatics. Journal of Big data 1 (1), 1–35.

[127] Hester, T. and P. Stone (2012). Learning and using models. In M. Wiering

and M. Van Otterlo (Eds.), Reinforcement learning, Volume 12, pp. ”120”.

Springer.

[128] Hill, D. N., H. Nassif, Y. Liu, A. Iyer, and S. Vishwanathan (2017). An

efficient bandit algorithm for realtime multivariate optimization. Proceedings

of the 23rd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining - KDD ’17 .

[129] Hiraoka, T., G. Neubig, S. Sakti, T. Toda, and S. Nakamura (2016).

Learning cooperative persuasive dialogue policies using framing. Speech

Communication 84, 83–96.

[130] Hochberg, I., G. Feraru, M. Kozdoba, S. Mannor, M. Tennenholtz, and

E. Yom-Tov (2016). A reinforcement learning system to encourage physical

activity in diabetes patients. arXiv preprint arXiv:1605.04070 .

[131] Hochreiter, S. and J. Schmidhuber (1997, November). Long short-term

memory. Neural Comput. 9 (8), 1735–1780.

[132] Hofferth, S. L., S. M. Flood, and M. Sobek (2015). American time

use survey data extract builder: Version 2.5 [dataset]. College Park, MD:

University of Maryland and Minneapolis, MN: University of Minnesota. doi 10,

D060.

[133] Hoffman, M., B. Shahriari, J. Aslanides, G. Barth-Maron, F. Behbahani,

T. Norman, A. Abdolmaleki, A. Cassirer, F. Yang, K. Baumli, et al. (2020).

Acme: A research framework for distributed reinforcement learning. arXiv

preprint arXiv:2006.00979 .

[134] Hoogendoorn, M. and B. Funk (2017). Machine Learning for the Quantified

Self: On the Art of Learning from Sensory Data. Springer.

277



Bibliography

[135] Howard, R. A. (1960). Dynamic programming and markov processes.

136.

[136] Huajun, Z., Z. Jin, W. Rui, and M. Tan (2008). Multi-objective rein-

forcement learning algorithm and its application in drive system. 2008 34th

Annual Conference of IEEE Industrial Electronics.

[137] Huang, S.-l. and F.-r. Lin (2005). Designing intelligent sales-agent for

online selling. Proceedings of the 7th international conference on Electronic

commerce - ICEC ’05 .

[138] Ie, E., C.-w. Hsu, M. Mladenov, V. Jain, S. Narvekar, J. Wang, R. Wu,

and C. Boutilier (2019). Recsim: A configurable simulation platform for

recommender systems. arXiv preprint arXiv:1909.04847 .

[139] Ioffe, S. and C. Szegedy (2015, February). Batch normalization: Acceler-

ating deep network training by reducing internal covariate shift.

[140] Jaradat, S., N. Dokoohaki, M. Matskin, and E. Ferrari (2016). Trust

and privacy correlations in social networks: A deep learning framework.

2016 IEEE/ACM International Conference on Advances in Social Networks

Analysis and Mining (ASONAM).

[141] Jawaheer, G., M. Szomszor, and P. Kostkova (2010). Comparison of

implicit and explicit feedback from an online music recommendation service.

In proceedings of the 1st international workshop on information heterogeneity

and fusion in recommender systems, pp. 47–51. ACM.

[142] Jiang, J., J. Yang, J. Mei, Y. Jin, and Y. Lu (2018, July). Head-to-head

comparison of qSOFA and SIRS criteria in predicting the mortality of infected

patients in the emergency department: a meta-analysis. Scand. J. Trauma

Resusc. Emerg. Med. 26 (1), 56.

[143] Jiang, N. and L. Li (2015). Doubly robust off-policy value evaluation for

reinforcement learning. arXiv preprint arXiv:1511.03722 .

278



Bibliography

[144] Jiang, N. and L. Li (2016). Doubly robust off-policy value evaluation for

reinforcement learning. In International Conference on Machine Learning,

pp. 652–661.

[145] Jin, Z. and Z. Huajun (2011). Multi-objective reinforcement learning

algorithm and its improved convergency method. 2011 6th IEEE Conference

on Industrial Electronics and Applications.

[146] Johnson, A. E., D. J. Stone, L. A. Celi, and T. J. Pollard (2018, January).

The MIMIC code repository: enabling reproducibility in critical care research.

J. Am. Med. Inform. Assoc. 25 (1), 32–39.

[147] Johnson, A. E. W., T. J. Pollard, L. Shen, L.-W. H. Lehman, M. Feng,

M. Ghassemi, B. Moody, P. Szolovits, L. A. Celi, and R. G. Mark (2016,

May). MIMIC-III, a freely accessible critical care database. Sci Data 3,

160035.

[148] Kamthe, S. and M. Deisenroth (2018). Data-efficient reinforcement learn-

ing with probabilistic model predictive control. In International conference

on artificial intelligence and statistics, pp. 1701–1710. PMLR.

[149] Kaptein, M. and A. van Halteren (2013). Adaptive persuasive messag-

ing to increase service retention: using persuasion profiles to increase the

effectiveness of email reminders. Personal and Ubiquitous Computing 17 (6),

1173–1185.

[150] Kardan, A. A. and O. R. Speily (2010). Smart lifelong learning system

based on q-learning. 2010 Seventh International Conference on Information

Technology: New Generations.

[151] Kastanis, I. and M. Slater (2012). Reinforcement learning utilizes prox-

emics. ACM Transactions on Applied Perception 9 (1), 1–15.

[152] Kaufman, L. and P. J. Rousseeuw (1987). Clustering by means of medoids.

statistical data analysis based on the l1 norm. Y. Dodge, Ed , 405–416.

279



Bibliography

[153] Khribi, M. K., M. Jemni, and O. Nasraoui (2008). Automatic recommenda-

tions for e-learning personalization based on web usage mining techniques and

information retrieval. In Advanced Learning Technologies, 2008. ICALT’08.

Eighth IEEE International Conference on, pp. 241–245. IEEE.

[154] Kingma, D. P. and J. Ba (2014, December). Adam: A method for

stochastic optimization.

[155] Kober, J. and J. Peters (2012). Reinforcement learning in robotics: A

survey. In M. Wiering and M. Van Otterlo (Eds.), Reinforcement learning,

Volume 12, pp. ”596–597”. Springer.

[156] Kodali, N., J. Abernethy, J. Hays, and Z. Kira (2017). On convergence

and stability of gans.

[157] Komorowski, M. (2019, September). Artificial intelligence in intensive

care: are we there yet? Intensive Care Med. 45 (9), 1298–1300.

[158] Komorowski, M., L. A. Celi, O. Badawi, A. C. Gordon, and A. A. Faisal

(2018a, November). The artificial intelligence clinician learns optimal treat-

ment strategies for sepsis in intensive care. Nat. Med. 24 (11), 1716–1720.

[159] Komorowski, M., L. A. Celi, O. Badawi, A. C. Gordon, and A. A. Faisal

(2018b). The artificial intelligence clinician learns optimal treatment strategies

for sepsis in intensive care. Nature medicine 24 (11), 1716–1720.

[160] Komorowski, M., A. Gordon, L. A. Celi, and A. Faisal (2016). A markov

decision process to suggest optimal treatment of severe infections in intensive

care. Adv. Neural Inf. Process. Syst..

[161] Konda, V. R. and J. N. Tsitsiklis (2000). Actor-critic algorithms. In

Advances in neural information processing systems, pp. 1008–1014.

[162] Koukoutsidis, I. (2003). A learning strategy for paging in mobile en-

vironments. 5th European Personal Mobile Communications Conference

2003 .

280



Bibliography

[163] Krakow, E. F., M. Hemmer, T. Wang, B. Logan, M. Arora, S. Spellman,

D. Couriel, A. Alousi, J. Pidala, M. Last, and et al. (2017). Tools for

the precision medicine era: How to develop highly personalized treatment

recommendations from cohort and registry data using q-learning. American

Journal of Epidemiology 186 (2), 160–172.

[164] Kranzler, H. R. and J. R. McKay (2012). Personalized treatment of

alcohol dependence. Current psychiatry reports 14 (5), 486–493.

[165] Kreyenbuhl, J., I. R. Nossel, and L. B. Dixon (2009). Disengagement from

mental health treatment among individuals with schizophrenia and strategies

for facilitating connections to care: a review of the literature. Schizophrenia

bulletin 35 (4), 696–703.

[166] Kurutach, T., I. Clavera, Y. Duan, A. Tamar, and P. Abbeel (2018). Model-

ensemble trust-region policy optimization. arXiv preprint arXiv:1802.10592 .

[167] Kwapisz, J. R., G. M. Weiss, and S. A. Moore (2011, March). Activity

recognition using cell phone accelerometers. SIGKDD Explor. Newsl. 12 (2),

74–82.

[168] Lagoudakis, M. G. and R. Parr (2003). Least-squares policy iteration.

Journal of machine learning research 4 (Dec), 1107–1149.

[169] Lai, T. L. and H. Robbins (1985). Asymptotically efficient adaptive

allocation rules. Advances in applied mathematics 6 (1), 4–22.

[170] Lan, A. S. and R. G. Baraniuk (2016). A contextual bandits framework

for personalized learning action selection. In EDM.

[171] Langlois, E., S. Zhang, G. Zhang, P. Abbeel, and J. Ba (2019). Benchmark-

ing model-based reinforcement learning. arXiv preprint arXiv:1907.02057 .

[172] Lee, G., S. Bauer, P. Faratin, and J. Wroclawski (2004). Learning user

preferences for wireless services provisioning. Proceedings of the Third Inter-

national Joint Conference on Autonomous Agents and Multiagent Systems,

2004. AAMAS 2004., 480–487.

281



Bibliography

[173] Lei, H., A. Tewari, and S. Murphy (2014). An actor-critic contextual

bandit algorithm for personalized interventions using mobile devices. Advances

in Neural Information Processing Systems 27.

[174] Li, K. and M. Q.-H. Meng (2015). Personalizing a service robot by learning

human habits from behavioral footprints. Engineering 1 (1), 079–084.

[175] Li, L., I. Albert-Smet, and A. A. Faisal (2020). Optimizing medical

treatment for sepsis in intensive care: from reinforcement learning to Pre-

Trial evaluation. arXiv preprint arXiv:2003.06474 .

[176] Li, L., W. Chu, J. Langford, and R. E. Schapire (2010a). A contextual-

bandit approach to personalized news article recommendation. In Proceedings

of the 19th international conference on World wide web, pp. 661–670. ACM.

[177] Li, L., W. Chu, J. Langford, and R. E. Schapire (2010b). A contextual-

bandit approach to personalized news article recommendation. Proceedings

of the 19th international conference on World wide web - WWW ’10 .

[178] Li, L., M. Komorowski, and A. A. Faisal (2018, May). The actor search tree

critic (ASTC) for Off-Policy POMDP learning in medical decision making.

[179] Li, L., M. Komorowski, and A. A. Faisal (2019, May). Optimizing sequen-

tial medical treatments with Auto-Encoding heuristic search in POMDPs.

[180] Li, Y. (2017). Deep reinforcement learning: An overview. arXiv preprint

arXiv:1701.07274 .

[181] Li, Z., J. Kiseleva, M. de Rijke, and A. Grotov (2017). Towards learning

reward functions from user interactions. Proceedings of the ACM SIGIR

International Conference on Theory of Information Retrieval - ICTIR ’17 .

[182] Liebman, E. and P. Stone (2015). Dj-mc: A reinforcement-learning agent

for music playlist recommendation. In AAMAS.

[183] Lillicrap, T. P., J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,

D. Silver, and D. Wierstra (2015). Continuous control with deep reinforcement

learning. arXiv preprint arXiv:1509.02971 .

282



Bibliography

[184] Lim, J., H. Son, D. Lee, and D. Lee (2017). An marl-based distributed

learning scheme for capturing user preferences in a smart environment. 2017

IEEE International Conference on Services Computing (SCC).

[185] Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement

learning, planning and teaching. Machine learning 8 (3-4), 293–321.

[186] Liu, Q., B. Cui, Z. Wei, B. Peng, H. Huang, H. Deng, J. Hao, X. Huang,

and K.-F. Wong (2019). Building personalized simulator for interactive

search. In Proceedings of the Twenty-eighth International Joint Conference

on Artificial Intelligence (IJCAI-19), pp. 5109–5115.

[187] Liu, Q., L. Li, Z. Tang, and D. Zhou (2018). Breaking the curse of horizon:

Infinite-Horizon Off-Policy estimation. In S. Bengio, H. Wallach, H. Larochelle,

K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.), Advances in Neural

Information Processing Systems 31, pp. 5356–5366. Curran Associates, Inc.

[188] Liu, Y., B. Logan, N. Liu, Z. Xu, J. Tang, and Y. Wang (2017). Deep

reinforcement learning for dynamic treatment regimes on medical registry

data. 2017 IEEE International Conference on Healthcare Informatics (ICHI).

[189] Liu, Y., Y. Zeng, Y. Chen, J. Tang, and Y. Pan (2019). Self-improving

generative adversarial reinforcement learning. In Proceedings of the 18th

International Conference on Autonomous Agents and MultiAgent Systems,

AAMAS ’19, Richland, SC, pp. 52–60. International Foundation for Au-

tonomous Agents and Multiagent Systems.

[190] Llorente and S. E. Guerrero (2012). Increasing retrieval quality in con-

versational recommenders. IEEE Transactions on Knowledge and Data

Engineering 24 (10), 1876–1888.

[191] Lotfy, H. M., S. M. Khamis, and M. M. Aboghazalah (2016). Multi-

agents and learning: Implications for webusage mining. Journal of Advanced

Research 7 (2), 285–295.

283



Bibliography

[192] Lowd, D. and C. Meek (2005). Adversarial learning. In Proceedings of

the eleventh ACM SIGKDD international conference on Knowledge discovery

in data mining, pp. 641–647.

[193] Lowery, C. and A. A. Faisal (2013). Towards efficient, personalized anesthe-

sia using continuous reinforcement learning for propofol infusion control. 2013

6th International IEEE/EMBS Conference on Neural Engineering (NER).

[194] Lu, M., Z. Shahn, D. Sow, F. Doshi-Velez, and L.-W. H. Lehman (2020,

May). Is deep reinforcement learning ready for practical applications in

healthcare? a sensitivity analysis of Duel-DDQN for sepsis treatment.

[195] Maaten, L. v. d. and G. Hinton (2008). Visualizing data using t-SNE. J.

Mach. Learn. Res. 9 (Nov), 2579–2605.

[196] Madani, O. and D. DeCoste (2005). Contextual recommender problems

[extended abstract]. Proceedings of the 1st international workshop on Utility-

based data mining - UBDM ’05 .

[197] Maes, P. and R. Kozierok (1993). Learning interface agents. In AAAI,

Volume 93, pp. 459–465.

[198] Mahmood, T., G. Mujtaba, and A. Venturini (2013). Dynamic personal-

ization in conversational recommender systems. Information Systems and

e-Business Management 12 (2), 213–238.

[199] Mahmood, T. and F. Ricci (2007). Learning and adaptivity in interactive

recommender systems. Proceedings of the ninth international conference on

Electronic commerce - ICEC ’07 .

[200] Malbrain, M. L. N. G., P. E. Marik, I. Witters, C. Cordemans, A. W.

Kirkpatrick, D. J. Roberts, and N. Van Regenmortel (2014, November). Fluid

overload, de-resuscitation, and outcomes in critically ill or injured patients:

a systematic review with suggestions for clinical practice. Anaesthesiol.

Intensive Ther. 46 (5), 361–380.

284



Bibliography

[201] Malekzadeh, M., R. G. Clegg, and H. Haddadi (2018, April). Replace-

ment autoencoder: A privacy-preserving algorithm for sensory data analysis.

In 2018 IEEE/ACM Third International Conference on Internet-of-Things

Design and Implementation (IoTDI), pp. 165–176.

[202] Malpani, A., B. Ravindran, and H. Murthy (2011). Personalized intelligent

tutoring system using reinforcement learning. In FLAIRS Conference.

[203] Manickam, I., A. S. Lan, and R. G. Baraniuk (2017). Contextual multi-

armed bandit algorithms for personalized learning action selection. 2017

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP).

[204] Marik, P. E. (2010). What defines an intensive care unit? ICU Direc-

tor 1 (3), 175–180.

[205] Marik, P. E. (2015, May). The demise of early goal-directed therapy for

severe sepsis and septic shock. Acta Anaesthesiol. Scand. 59 (5), 561–567.

[206] Marik, P. E. and J. D. Farkas (2018, October). The changing paradigm of

sepsis: Early diagnosis, early antibiotics, early pressors, and early adjuvant

treatment. Crit. Care Med. 46 (10), 1690–1692.

[207] Marik, P. E., W. T. Linde-Zwirble, E. A. Bittner, J. Sahatjian, and

D. Hansell (2017, May). Fluid administration in severe sepsis and septic

shock, patterns and outcomes: an analysis of a large national database.

Intensive Care Med. 43 (5), 625–632.

[208] Marteau, T. M., D. Ogilvie, M. Roland, M. Suhrcke, and M. P. Kelly

(2011). Judging nudging: can nudging improve population health? Bmj 342,

d228.

[209] Martin, K. N. and I. Arroyo (2004). Agentx: Using reinforcement learning

to improve the effectiveness of intelligent tutoring systems. In International

Conference on Intelligent Tutoring Systems, pp. 564–572. Springer.

285



Bibliography

[210] Mart́ın-Guerrero, J. D., F. Gomez, E. Soria-Olivas, J. Schmidhuber,

M. Climente-Mart́ı, and N. V. Jiménez-Torres (2009). A reinforcement
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Trusting Semi-structured Web Data

2014-25 Martijn Lappenschaar (RUN)

New network models for the analysis

of disease interaction

2014-26 Tim Baarslag (TUD)

What to Bid and When to Stop

2014-27 Rui Jorge Almeida (EUR)

Conditional Density Models Integrat-

ing Fuzzy and Probabilistic Repre-

sentations of Uncertainty

2014-28 Anna Chmielowiec (VU)

Decentralized k-Clique Matching

2014-29 Jaap Kabbedijk (UU)

Variability in Multi-Tenant Enter-

prise Software

2014-30 Peter de Cock (UvT)

Anticipating Criminal Behaviour

2014-31 Leo van Moergestel (UU)

Agent Technology in Agile Multi-

parallel Manufacturing and Product

Support

2014-32 Naser Ayat (UvA)

On Entity Resolution in Probabilistic

Data

2014-33 Tesfa Tegegne (RUN)

Service Discovery in eHealth

2014-34 Christina Manteli (VU)

The Effect of Governance in Global

Software Development: Analyzing

Transactive Memory Systems.

2014-35 Joost van Ooijen (UU)

Cognitive Agents in Virtual Worlds:

A Middleware Design Approach

2014-36 Joos Buijs (TUE)

Flexible Evolutionary Algorithms for

Mining Structured Process Models

2014-37 Maral Dadvar (UT)

Experts and Machines United

Against Cyberbullying

2014-38 Danny Plass-Oude Bos (UT)

Making brain-computer interfaces

better: improving usability through

post-processing.
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2014-39 Jasmina Maric (UvT)

Web Communities, Immigration, and

Social Capital

2014-40 Walter Omona (RUN)

A Framework for Knowledge Manage-

ment Using ICT in Higher Education

2014-41 Frederic Hogenboom (EUR)

Automated Detection of Financial

Events in News Text

2014-42 Carsten Eijckhof (CWI/TUD)

Contextual Multidimensional Rele-

vance Models

2014-43 Kevin Vlaanderen (UU)

Supporting Process Improvement

using Method Increments

2014-44 Paulien Meesters (UvT)

Intelligent Blauw. Met als ondertitel:

Intelligence-gestuurde politiezorg in

gebiedsgebonden eenheden.

2014-45 Birgit Schmitz (OUN)

Mobile Games for Learning: A

Pattern-Based Approach

2014-46 Ke Tao (TUD)

Social Web Data Analytics: Rele-

vance, Redundancy, Diversity

2014-47 Shangsong Liang (UVA)

Fusion and Diversification in Infor-

mation Retrieval

2015
2015-01 Niels Netten (UvA)

Machine Learning for Relevance of

Information in Crisis Response

2015-02 Faiza Bukhsh (UvT)

Smart auditing: Innovative Compli-

ance Checking in Customs Controls

2015-03 Twan van Laarhoven (RUN)

Machine learning for network data

2015-04 Howard Spoelstra (OUN)

Collaborations in Open Learning

Environments

2015-05 Christoph Bösch (UT)

Cryptographically Enforced Search

Pattern Hiding

2015-06 Farideh Heidari (TUD)

Business Process Quality Computa-

tion - Computing Non-Functional

Requirements to Improve Business

Processes

2015-07 Maria-Hendrike Peetz (UvA)

Time-Aware Online Reputation Anal-

ysis

2015-08 Jie Jiang (TUD)

Organizational Compliance: An

agent-based model for designing and

evaluating organizational interactions

2015-09 Randy Klaassen (UT)

HCI Perspectives on Behavior

Change Support Systems

2015-10 Henry Hermans (OUN)

OpenU: design of an integrated sys-

tem to support lifelong learning

2015-11 Yongming Luo (TUE)

Designing algorithms for big graph

datasets: A study of computing

bisimulation and joins

2015-12 Julie M. Birkholz (VU)

Modi Operandi of Social Network

Dynamics: The Effect of Context on

Scientific Collaboration Networks

2015-13 Giuseppe Procaccianti (VU)

Energy-Efficient Software

320



2015-14 Bart van Straalen (UT)

A cognitive approach to modeling

bad news conversations

2015-15 Klaas Andries de Graaf (VU)

Ontology-based Software Architec-

ture Documentation

2015-16 Changyun Wei (UT)

Cognitive Coordination for Coopera-

tive Multi-Robot Teamwork

2015-17 André van Cleeff (UT)

Physical and Digital Security Mecha-

nisms: Properties, Combinations and

Trade-offs

2015-18 Holger Pirk (CWI)

Waste Not, Want Not! - Managing

Relational Data in Asymmetric Mem-

ories

2015-19 Bernardo Tabuenca (OUN)

Ubiquitous Technology for Lifelong

Learners

2015-20 Löıs Vanhée (UU)

Using Culture and Values to Support

Flexible Coordination

2015-21 Sibren Fetter (OUN)

Using Peer-Support to Expand and

Stabilize Online Learning

2015-22 Zhemin Zhu (UT)

Co-occurrence Rate Networks

2015-23 Luit Gazendam (VU)

Cataloguer Support in Cultural Her-

itage

2015-24 Richard Berendsen (UVA)

Finding People, Papers, and Posts:

Vertical Search Algorithms and Eval-

uation

2015-25 Steven Woudenberg (UU)

Bayesian Tools for Early Disease

Detection

2015-26 Alexander Hogenboom (EUR)

Sentiment Analysis of Text Guided

by Semantics and Structure

2015-27 Sándor Héman (CWI)

Updating compressed column-stores

2015-28 Janet Bagorogoza (TiU)

Knowledge Management and High

Performance; The Uganda Financial

Institutions Model for HPO

2015-29 Hendrik Baier (UM)

Monte-Carlo Tree Search Enhance-

ments for One-Player and Two-

Player Domains

2015-30 Kiavash Bahreini (OUN)

Real-time Multimodal Emotion

Recognition in E-Learning

2015-31 Yakup Koç (TUD)

On Robustness of Power Grids

2015-32 Jerome Gard (UL)

Corporate Venture Management in

SMEs

2015-33 Frederik Schadd (UM)

Ontology Mapping with Auxiliary

Resources

2015-34 Victor de Graaff (UT)

Geosocial Recommender Systems

2015-35 Junchao Xu (TUD)

Affective Body Language of Hu-

manoid Robots: Perception and

Effects in Human Robot Interaction
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2016
2016-01 Syed Saiden Abbas (RUN)

Recognition of Shapes by Humans

and Machines

2016-02 Michiel Christiaan Meulendijk

(UU)

Optimizing medication reviews

through decision support: prescribing

a better pill to swallow

2016-03 Maya Sappelli (RUN)

Knowledge Work in Context: User

Centered Knowledge Worker Support

2016-04 Laurens Rietveld (VU)

Publishing and Consuming Linked

Data

2016-05 Evgeny Sherkhonov (UVA)

Expanded Acyclic Queries: Contain-

ment and an Application in Explain-

ing Missing Answers

2016-06 Michel Wilson (TUD)

Robust scheduling in an uncertain

environment

2016-07 Jeroen de Man (VU)

Measuring and modeling negative

emotions for virtual training

2016-08 Matje van de Camp (TiU)

A Link to the Past: Constructing

Historical Social Networks from Un-

structured Data

2016-09 Archana Nottamkandath (VU)

Trusting Crowdsourced Information

on Cultural Artefacts

2016-10 George Karafotias (VUA)

Parameter Control for Evolutionary

Algorithms

2016-11 Anne Schuth (UVA)

Search Engines that Learn from

Their Users

2016-12 Max Knobbout (UU)

Logics for Modelling and Verifying

Normative Multi-Agent Systems

2016-13 Nana Baah Gyan (VU)

The Web, Speech Technologies and

Rural Development in West Africa -

An ICT4D Approach

2016-14 Ravi Khadka (UU)

Revisiting Legacy Software System

Modernization

2016-15 Steffen Michels (RUN)

Hybrid Probabilistic Logics - The-

oretical Aspects, Algorithms and

Experiments

2016-16 Guangliang Li (UVA)

Socially Intelligent Autonomous

Agents that Learn from Human Re-

ward

2016-17 Berend Weel (VU)

Towards Embodied Evolution of

Robot Organisms

2016-18 Albert Meroño Peñuela (VU)

Refining Statistical Data on the Web

2016-19 Julia Efremova (Tu/e)

Mining Social Structures from Ge-

nealogical Data

2016-20 Daan Odijk (UVA)

Context & Semantics in News &

Web Search

2016-21 Alejandro Moreno Célleri

(UT)

From Traditional to Interactive

Playspaces: Automatic Analysis of

Player Behavior in the Interactive

Tag Playground
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2016-22 Grace Lewis (VU)

Software Architecture Strategies for

Cyber-Foraging Systems

2016-23 Fei Cai (UVA)

Query Auto Completion in Informa-

tion Retrieval

2016-24 Brend Wanders (UT)

Repurposing and Probabilistic In-

tegration of Data; An Iterative and

data model independent approach

2016-25 Julia Kiseleva (TU/e)

Using Contextual Information to

Understand Searching and Browsing

Behavior

2016-26 Dilhan Thilakarathne (VU)

In or Out of Control: Exploring

Computational Models to Study the

Role of Human Awareness and Con-

trol in Behavioural Choices, with

Applications in Aviation and Energy

Management Domains

2016-27 Wen Li (TUD)

Understanding Geo-spatial Informa-

tion on Social Media

2016-28 Mingxin Zhang (TUD)

Large-scale Agent-based Social Simu-

lation - A study on epidemic predic-

tion and control

2016-29 Nicolas Höning (TUD)

Peak reduction in decentralised elec-

tricity systems - Markets and prices

for flexible planning

2016-30 Ruud Mattheij (UvT)

The Eyes Have It

2016-31 Mohammad Khelghati (UT)

Deep web content monitoring

2016-32 Eelco Vriezekolk (UT)

Assessing Telecommunication Service

Availability Risks for Crisis Organisa-

tions

2016-33 Peter Bloem (UVA)

Single Sample Statistics, exercises in

learning from just one example

2016-34 Dennis Schunselaar (TUE)

Configurable Process Trees: Elicita-

tion, Analysis, and Enactment

2016-35 Zhaochun Ren (UVA)

Monitoring Social Media: Summa-

rization, Classification and Recom-

mendation

2016-36 Daphne Karreman (UT)

Beyond R2D2: The design of nonver-

bal interaction behavior optimized

for robot-specific morphologies

2016-37 Giovanni Sileno (UvA)

Aligning Law and Action - a concep-

tual and computational inquiry

2016-38 Andrea Minuto (UT)

Materials that Matter - Smart Mate-

rials meet Art & Interaction Design

2016-39 Merijn Bruijnes (UT)

Believable Suspect Agents; Response

and Interpersonal Style Selection for

an Artificial Suspect

2016-40 Christian Detweiler (TUD)

Accounting for Values in Design

2016-41 Thomas King (TUD)

Governing Governance: A Formal

Framework for Analysing Institu-

tional Design and Enactment Gover-

nance

2016-42 Spyros Martzoukos (UVA)

Combinatorial and Compositional

Aspects of Bilingual Aligned Corpora
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2016-43 Saskia Koldijk (RUN)

Context-Aware Support for Stress

Self-Management: From Theory to

Practice

2017-44 Thibault Sellam (UVA)

Automatic Assistants for Database

Exploration

2016-45 Bram van de Laar (UT)

Experiencing Brain-Computer Inter-

face Control

2016-46 Jorge Gallego Perez (UT)

Robots to Make you Happy

2016-47 Christina Weber (UL)

Real-time foresight - Preparedness

for dynamic innovation networks

2016-48 Tanja Buttler (TUD)

Collecting Lessons Learned

2016-49 Gleb Polevoy (TUD)

Participation and Interaction in

Projects. A Game-Theoretic Anal-

ysis

2016-50 Yan Wang (UVT)

The Bridge of Dreams: Towards a

Method for Operational Performance

Alignment in IT-enabled Service

Supply Chains

2017
2017-01 Jan-Jaap Oerlemans (UL)

Investigating Cybercrime

2017-02 Sjoerd Timmer (UU)

Designing and Understanding Foren-

sic Bayesian Networks using Argu-

mentation

2017-03 Daniël Harold Telgen (UU)

Grid Manufacturing; A Cyber-

Physical Approach with Autonomous

Products and Reconfigurable Manu-

facturing Machines

2017-04 Mrunal Gawade (CWI)

Multi-core Parallelism in a Column-

store

2017-05 Mahdieh Shadi (UVA)

Collaboration Behavior

2017-06 Damir Vandic (EUR)

Intelligent Information Systems for

Web Product Search

2017-07 Roel Bertens (UU)

Insight in Information: from Ab-

stract to Anomaly

2017-08 Rob Konijn (VU)

Detecting Interesting Differ-

ences:Data Mining in Health Insur-

ance Data using Outlier Detection

and Subgroup Discovery

2017-09 Dong Nguyen (UT)

Text as Social and Cultural Data: A

Computational Perspective on Varia-

tion in Text

2017-10 Robby van Delden (UT)

(Steering) Interactive Play Behavior

2017-11 Florian Kunneman (RUN)

Modelling patterns of time and emo-

tion in Twitter #anticipointment

2017-12 Sander Leemans (TUE)

Robust Process Mining with Guaran-

tees

2017-13 Gijs Huisman (UT)

Social Touch Technology - Extend-

ing the reach of social touch through

haptic technology
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2017-14 Shoshannah Tekofsky (UvT)

You Are Who You Play You Are:

Modelling Player Traits from Video

Game Behavior

2017-15 Peter Berck (RUN)

Memory-Based Text Correction

2017-16 Aleksandr Chuklin (UVA)

Understanding and Modeling Users

of Modern Search Engines

2017-17 Daniel Dimov (UL)

Crowdsourced Online Dispute Reso-

lution

2017-18 Ridho Reinanda (UVA)

Entity Associations for Search

2017-19 Jeroen Vuurens (UT)

Proximity of Terms, Texts and Se-

mantic Vectors in Information Re-

trieval

2017-20 Mohammadbashir Sedighi

(TUD)

Fostering Engagement in Knowledge

Sharing: The Role of Perceived Bene-

fits, Costs and Visibility

2017-21 Jeroen Linssen (UT)

Meta Matters in Interactive Story-

telling and Serious Gaming (A Play

on Worlds)

2017-22 Sara Magliacane (VU)

Logics for causal inference under

uncertainty

2017-23 David Graus (UVA)

Entities of Interest — Discovery in

Digital Traces

2017-24 Chang Wang (TUD)

Use of Affordances for Efficient

Robot Learning

2017-25 Veruska Zamborlini (VU)

Knowledge Representation for Clini-

cal Guidelines, with applications to

Multimorbidity Analysis and Litera-

ture Search

2017-26 Merel Jung (UT)

Socially intelligent robots that under-

stand and respond to human touch

2017-27 Michiel Joosse (UT)

Investigating Positioning and Gaze

Behaviors of Social Robots: People’s

Preferences, Perceptions and Behav-

iors

2017-28 John Klein (VU)

Architecture Practices for Complex

Contexts

2017-29 Adel Alhuraibi (UvT)

From IT-BusinessStrategic Align-

ment to Performance: A Moderated

Mediation Model of Social Innova-

tion, and Enterprise Governance of

IT”

2017-30 Wilma Latuny (UvT)

The Power of Facial Expressions

2017-31 Ben Ruijl (UL)

Advances in computational methods

for QFT calculations

2017-32 Thaer Samar (RUN)

Access to and Retrievability of Con-

tent in Web Archives

2017-33 Brigit van Loggem (OU)

Towards a Design Rationale for Soft-

ware Documentation: A Model of

Computer-Mediated Activity

2017-34 Maren Scheffel (OU)

The Evaluation Framework for Learn-

ing Analytics
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2017-35 Martine de Vos (VU)

Interpreting natural science spread-

sheets

2017-36 Yuanhao Guo (UL)

Shape Analysis for Phenotype Char-

acterisation from High-throughput

Imaging

2017-37 Alejandro Montes Garcia

(TUE)

WiBAF: A Within Browser Adapta-

tion Framework that Enables Control

over Privacy

2017-38 Alex Kayal (TUD)

Normative Social Applications

2017-39 Sara Ahmadi (RUN)

Exploiting properties of the human

auditory system and compressive

sensing methods to increase noise

robustness in ASR

2017-40 Altaf Hussain Abro (VUA)

Steer your Mind: Computational

Exploration of Human Control in

Relation to Emotions, Desires and

Social Support For applications in

human-aware support systems

2017-41 Adnan Manzoor (VUA)

Minding a Healthy Lifestyle: An Ex-

ploration of Mental Processes and

a Smart Environment to Provide

Support for a Healthy Lifestyle

2017-42 Elena Sokolova (RUN)

Causal discovery from mixed and

missing data with applications on

ADHD datasets

2017-43 Maaike de Boer (RUN)

Semantic Mapping in Video Retrieval

2017-44 Garm Lucassen (UU)

Understanding User Stories - Compu-

tational Linguistics in Agile Require-

ments Engineering

2017-45 Bas Testerink (UU)

Decentralized Runtime Norm En-

forcement

2017-46 Jan Schneider (OU)

Sensor-based Learning Support

2017-47 Jie Yang (TUD)

Crowd Knowledge Creation Accelera-

tion

2017-48 Angel Suarez (OU)

Collaborative inquiry-based learning

2018
2018-01 Han van der Aa (VUA)

Comparing and Aligning Process

Representations

2018-02 Felix Mannhardt (TUE)

Multi-perspective Process Mining

2018-03 Steven Bosems (UT)

Causal Models For Well-Being:

Knowledge Modeling, Model-Driven

Development of Context-Aware Ap-

plications, and Behavior Prediction

2018-04 Jordan Janeiro (TUD)

Flexible Coordination Support for

Diagnosis Teams in Data-Centric

Engineering Tasks

2018-05 Hugo Huurdeman (UVA)

Supporting the Complex Dynamics

of the Information Seeking Process

2018-06 Dan Ionita (UT)

Model-Driven Information Security

Risk Assessment of Socio-Technical

Systems
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2018-07 Jieting Luo (UU)

A formal account of opportunism in

multi-agent systems

2018-08 Rick Smetsers (RUN)

Advances in Model Learning for Soft-

ware Systems

2018-09 Xu Xie (TUD)

Data Assimilation in Discrete Event

Simulations

2018-10 Julienka Mollee (VUA)

Moving forward: supporting physi-

cal activity behavior change through

intelligent technology

2018-11 Mahdi Sargolzaei (UVA)

Enabling Framework for Service-

oriented Collaborative Networks

2018-12 Xixi Lu (TUE)

Using behavioral context in process

mining

2018-13 Seyed Amin Tabatabaei

(VUA)

Computing a Sustainable Future

2018-14 Bart Joosten (UVT)

Detecting Social Signals with Spa-

tiotemporal Gabor Filters

2018-15 Naser Davarzani (UM)

Biomarker discovery in heart failure

2018-16 Jaebok Kim (UT)

Automatic recognition of engagement

and emotion in a group of children

2018-17 Jianpeng Zhang (TUE)

On Graph Sample Clustering

2018-18 Henriette Nakad (UL)

De Notaris en Private Rechtspraak

2018-19 Minh Duc Pham (VUA)

Emergent relational schemas for

RDF

2018-20 Manxia Liu (RUN)

Time and Bayesian Networks

2018-21 Aad Slootmaker (OUN)

EMERGO: a generic platform for

authoring and playing scenario-based

serious games

2018-22 Eric Fernandes de Mello

Araujo (VUA)

Contagious: Modeling the Spread of

Behaviours, Perceptions and Emo-

tions in Social Networks

2018-23 Kim Schouten (EUR)

Semantics-driven Aspect-Based Senti-

ment Analysis

2018-24 Jered Vroon (UT)

Responsive Social Positioning Be-

haviour for Semi-Autonomous Telep-

resence Robots

2018-25 Riste Gligorov (VUA)

Serious Games in Audio-Visual Col-

lections

2018-26 Roelof Anne Jelle de Vries

(UT)

Theory-Based and Tailor-Made: Mo-

tivational Messages for Behavior

Change Technology

2018-27 Maikel Leemans (TUE)

Hierarchical Process Mining for Scal-

able Software Analysis

2018-28 Christian Willemse (UT)

Social Touch Technologies: How they

feel and how they make you feel
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2018-29 Yu Gu (UVT)

Emotion Recognition from Mandarin

Speech

2018-30 Wouter Beek (VU)

The ”K” in ”semantic web” stands

for ”knowledge”: scaling semantics

to the web

2019

2019-01 Rob van Eijk (UL)

Comparing and Aligning Process

Representations

2019-02 Emmanuelle Beauxis Aussalet

(CWI, UU)

Statistics and Visualizations for As-

sessing Class Size Uncertainty

2019-03 Eduardo Gonzalez Lopez de

Murillas (TUE)

Process Mining on Databases: Ex-

tracting Event Data from Real Life

Data Sources

2019-04 Ridho Rahmadi (RUN)

Finding stable causal structures from

clinical data

2019-05 Sebastiaan van Zelst (TUE)

Process Mining with Streaming Data

2019-06 Chris Dijkshoorn (VU)

Nichesourcing for Improving Access

to Linked Cultural Heritage Datasets

2019-07 Soude Fazeli (TUD)

2019-08 Frits de Nijs (TUD)

Resource-constrained Multi-agent

Markov Decision Processes

2019-09 Fahimeh Alizadeh Moghaddam

(UVA)

Self-adaptation for energy efficiency

in software systems

2019-10 Qing Chuan Ye (EUR)

Multi-objective Optimization Meth-

ods for Allocation and Prediction

2019-11 Yue Zhao (TUD)

Learning Analytics Technology to

Understand Learner Behavioral En-

gagement in MOOCs

2019-12 Jacqueline Heinerman (VU)

Better Together

2019-13 Guanliang Chen (TUD)

MOOC Analytics: Learner Modeling

and Content Generation

2019-14 Daniel Davis (TUD)

Large-Scale Learning Analytics:

Modeling Learner Behavior & Im-

proving Learning Outcomes in Mas-

sive Open Online Courses

2019-15 Erwin Walraven (TUD)

Planning under Uncertainty in Con-

strained and Partially Observable

Environments

2019-16 Guangming Li (TUE)

Process Mining based on Object-

Centric Behavioral Constraint

(OCBC) Models

2019-17 Ali Hurriyetoglu (RUN)

Extracting actionable information

from microtexts

2019-18 Gerard Wagenaar (UU)

Artefacts in Agile Team Communica-

tion

2019-19 Vincent Koeman (TUD)

Tools for Developing Cognitive

Agents
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2019-20 Chide Groenouwe (UU)

Fostering technically augmented hu-

man collective intelligence

2019-21 Cong Liu (TUE)

Software Data Analytics: Architec-

tural Model Discovery and Design

Pattern Detection

2019-22 Martin van den Berg (VU)

Improving IT Decisions with Enter-

prise Architecture

2019-23 Qin Liu (TUD)

Intelligent Control Systems: Learn-

ing, Interpreting, Verification

2019-24 Anca Dumitrache (VU)

Truth in Disagreement - Crowdsourc-

ing Labeled Data for Natural Lan-

guage Processing

2019-25 Emiel van Miltenburg (VU)

Pragmatic factors in (automatic)

image description

2019-26 Prince Singh (UT)

An Integration Platform for Synchro-

modal Transport

2019-27 Alessandra Antonaci (OUN)

The Gamification Design Process

applied to (Massive) Open Online

Courses

2019-28 Esther Kuinderman (UL)

Cleared for take-off: Game-based

learning to prepare airline pilots for

critical situations

2019-29 Daniel Formolo (VU)

Using virtual agents for simulation

and training of social skills in safety-

critical circumstances

2019-30 Vahid Yazdanpanah (UT)

Multiagent Industrial Symbiosis Sys-

tems

2019-31 Milan Jelisavcic (VU)

Alive and Kicking: Baby Steps in

Robotics

2019-32 Chiara Sironi (UM)

Monte-Carlo Tree Search for Artifi-

cial General Intelligence in Games

2019-33 Anil Yaman (TUE)

Evolution of Biologically Inspired

Learning in Artificial Neural Net-

works

2019-34 Negar Ahmadi (TUE)

EEG Microstate and Functional

Brain Network Features for Classifi-

cation of Epilepsy and PNES

2019-35 Lisa Facey-Shaw (OUN)

Gamification with digital badges in

learning programming

2019-36 Kevin Ackermans (OUN)

Designing Video-Enhanced Rubrics

to Master Complex Skills

2019-37 Jian Fang (TUD)

Database Acceleration on FPGAs

2019-38 Akos Kadar (OUN)

Learning visually grounded and mul-

tilingual representations
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2020
2020-01 Armon Toubman (UL)

Calculated Moves: Generating Air

Combat Behaviour

2020-02 Marcos de Paula Bueno (UL)

Unraveling Temporal Processes using

Probabilistic Graphical Models

2020-03 Mostafa Deghani (UvA)

Learning with Imperfect Supervision

for Language Understanding

2020-04 Maarten van Gompel (RUN)

Context as Linguistic Bridges

2020-05 Yulong Pei (TUE)

On local and global structure mining

2020-06 Preethu Rose Anish (UT)

Stimulation Architectural Thinking

during Requirements Elicitation - An

Approach and Tool Support

2020-07 Wim van der Vegt (OUN)

Towards a software architecture for

reusable game components

2020-08 Ali Mirsoleimani (UL)

Structured Parallel Programming for

Monte Carlo Tree Search

2020-09 Myriam Traub (UU)

Measuring Tool Bias and Improving

Data Quality for Digital Humanities

Research

2020-10 Alifah Syamsiyah (TUE)

In-database Preprocessing for Pro-

cess Mining

2020-11 Sepideh Mesbah (TUD)

Semantic-Enhanced Training Data

Augmentation Methods for Long-Tail

Entity Recognition Models

2020-12 Ward van Breda (VU)

Predictive Modeling in E-Mental

Health: Exploring Applicability in

Personalised Depression Treatment

2020-13 Marco Virgolin (CWI)

Design and Application of Gene-pool

Optimal Mixing Evolutionary Algo-

rithms for Genetic Programming

2020-14 Mark Raasveldt (CWI/UL)

Integrating Analytics with Relational

Databases

2020-15 Konstantinos Georgiadis

(OUN)

Smart CAT: Machine Learning for

Configurable Assessments in Serious

Games

2020-16 Ilona Wilmont (RUN)

Cognitive Aspects of Conceptual

Modelling

2020-17 Daniele Di Mitri (OUN)

The Multimodal Tutor: Adaptive

Feedback from Multimodal Experi-

ences

2020-18 Georgios Methenitis (TUD)

Agent Interactions & Mechanisms

in Markets with Uncertainties: Elec-

tricity Markets in Renewable Energy

Systems

2020-19 Guido van Capelleveen (UT)

Industrial Symbiosis Recommender

Systems

2020-20 Albert Hankel (VU)

Embedding Green ICT Maturity in

Organisations

2020-21 Karine da Silva Miras de

Araujo (VU)

Where is the robot?: Life as it could

be
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2020-22 Maryam Masoud Khamis

(RUN)

Understanding complex systems im-

plementation through a modeling

approach: the case of e-government

in Zanzibar

2020-23 Rianne Conijn (UT)

The Keys to Writing: A writing an-

alytics approach to studying writing

processes using keystroke logging

2020-24 Lenin da Nobrega Medeiros

(VUA/RUN)

How are you feeling, human? To-

wards emotionally supportive chat-

bots

2020-25 Xin Du (TUE)
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