19,697 research outputs found

    A Soft Computing Approach to Dynamic Load Balancing in 3GPP LTE

    Get PDF
    A major objective of the 3GPP LTE standard is the provision of high-speed data services. These services must be guaranteed under varying radio propagation conditions, to stochastically distributed mobile users. A necessity for determining and regulating the traffic load of eNodeBs naturally ensues. Load balancing is a self-optimization operation of self-organizing networks (SON). It aims at ensuring an equitable distribution of users in the network. This translates into better user satisfaction and a more efficient use of network resources. Several methods for load balancing have been proposed. Most of the algorithms are based on hard (traditional) computing which does not utilize the tolerance for precision of load balancing. This paper proposes the use of soft computing, precisely adaptive Neuro-fuzzy inference system (ANFIS) model for dynamic QoS aware load balancing in 3GPP LTE. The use of ANFIS offers learning capability of neural network and knowledge representation of fuzzy logic for a load balancing solution that is cost effective and closer to human intuitio

    Equalization of Third-Order Intermodulation Products in Wideband Direct Conversion Receivers

    Get PDF
    This paper reports a SAW-less direct-conversion receiver which utilizes a mixed-signal feedforward path to regenerate and adaptively cancel IM3 products, thus accomplishing system-level linearization. The receiver system performance is dominated by a custom integrated RF front end implemented in 130-nm CMOS and achieves an uncorrected out-of-band IIP3 of -7.1 dBm under the worst-case UMTS FDD Region 1 blocking specifications. Under IM3 equalization, the receiver achieves an effective IIP3 of +5.3 dBm and meets the UMTS BER sensitivity requirement with 3.7 dB of margin

    Partially Blind Handovers for mmWave New Radio Aided by Sub-6 GHz LTE Signaling

    Full text link
    For a base station that supports cellular communications in sub-6 GHz LTE and millimeter (mmWave) bands, we propose a supervised machine learning algorithm to improve the success rate in the handover between the two radio frequencies using sub-6 GHz and mmWave prior channel measurements within a temporal window. The main contributions of our paper are to 1) introduce partially blind handovers, 2) employ machine learning to perform handover success predictions from sub-6 GHz to mmWave frequencies, and 3) show that this machine learning based algorithm combined with partially blind handovers can improve the handover success rate in a realistic network setup of colocated cells. Simulation results show improvement in handover success rates for our proposed algorithm compared to standard handover algorithms.Comment: (c) 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Twisted Light Transmission over 143 kilometers

    Full text link
    Spatial modes of light can potentially carry a vast amount of information, making them promising candidates for both classical and quantum communication. However, the distribution of such modes over large distances remains difficult. Intermodal coupling complicates their use with common fibers, while free-space transmission is thought to be strongly influenced by atmospheric turbulence. Here we show the transmission of orbital angular momentum modes of light over a distance of 143 kilometers between two Canary Islands, which is 50 times greater than the maximum distance achieved previously. As a demonstration of the transmission quality, we use superpositions of these modes to encode a short message. At the receiver, an artificial neural network is used for distinguishing between the different twisted light superpositions. The algorithm is able to identify different mode superpositions with an accuracy of more than 80% up to the third mode order, and decode the transmitted message with an error rate of 8.33%. Using our data, we estimate that the distribution of orbital angular momentum entanglement over more than 100 kilometers of free space is feasible. Moreover, the quality of our free-space link can be further improved by the use of state-of-the-art adaptive optics systems.Comment: 12 pages, 4 figure
    • …
    corecore