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Abstract—ANFIS is applicable in modeling of key parameters 

when investigating the performance and functionality of wireless 

networks. The need to save both capital and operational 

expenditure in the management of wireless networks cannot be 

over-emphasized. Automation of network operations is a 

veritable means of achieving the necessary reduction in CAPEX 

and OPEX. To this end, next generations networks such WiMAX 

and 3GPP LTE and LTE-Advanced provide support for self-

optimization, self-configuration and self-healing to minimize 

human-to-system interaction and hence reap the attendant 

benefits of automation. One of the most important optimization 

tasks is load balancing as it affects network operation right from 

planning through the lifespan of the network. Several methods 

for load balancing have been proposed. While some of them have 

a very buoyant theoretical basis, they are not practically 

implementable at the current state of technology. Furthermore, 

most of the techniques proposed employ iterative algorithm, 

which in itself is not computationally efficient. This paper 

proposes the use of soft computing, precisely adaptive neuro-

fuzzy inference system for dynamic QoS-aware load balancing in 

3GPP LTE. Three key performance indicators (i.e. number of 

satisfied user, virtual load and fairness distribution index) are 

used to adjust hysteresis task of load balancing. 

Keywords-ANFIS; 3GPP; LTE; Neural Network; Fuzzy Logic; 

Load balancing; Virtual load. 

I.  INTRODUCTION 

The third generation project (3GPP) Long Term Evolution 
(LTE) has the core objective of meeting the increasing 
performance needs of mobile broadband. Some of the key 
features of LTE include: high spectral efficiency, very low 
latency, support of variable bandwidth, simple protocol 
architecture, and support for Self-Organizing Networks (SON) 
operation. SON operation was introduced to improve overall 
system performance through efficient operations and 
maintenance. Load balancing belongs to SON’s self-optimizing 
functions, which are engineered towards reducing overall 
operational expenditures (OPEX) by minimizing workload for 
site survey, analysis of network performance and other 
operational and maintenance tasks that require human 
intervention. Generally, self-optimization involves the use of 
User Equipment (UE) and evolved Node B (eNB) 
measurements and performance measurements for network 
auto-tuning. The objective of load balancing is to ensure an 
equitable distribution of cell load among cells or to transfer part 
of the traffic from congested cells with the aim of improving 

the overall system capacity and network performance indices 
[1], [2]. 

The process of load balancing begins with detecting 
network load imbalance by periodically exchanging 
information between neighbouring eNBs (over the X2 
interface) to compare the cells load. To realize an efficient intra 
LTE based load balancing, the load information must consist of 
both radio resource usage, which corresponds to the uplink and 
downlink physical resource block (PRB) usage as well as 
generic measurements representing non-radio-related resource 
usage. The non-radio-related load parameters include: 
Transport Network Load (TNL) indicator, Hardware (HW) 
load indicator, and available capacity for load balancing as a 
percentage of total cell capacity. For inter-RAT (radio access 
technology) load information must include another parameter 
known as Cell Capacity Class Value (CCCV), which is a 
relative capacity indicator. An algorithm to distribute the loads 
towards neighboring cell(s) with minimum number of cell 
reselection or handover is then implemented to achieve load 
balancing.  

Several algorithms have been envisaged. In [3], a load 
balancing algorithm aimed at finding the optimum handover 
(HO) offset value between the overloaded cell and a possible 
target cell was implemented. Another paradigm to load 
balancing for LTE networks was investigated in [4]. The 
approach is based on a network formulation of heterogeneous 
services with different quality of service requirements. In [5], 
Wang et al. used a network utility-based load-balancing 
framework to develop an algorithm called Heaviest-First Load 
Balancing (HFLB). Another approach postulated in [6] 
involves the integration of another self-optimization function – 
handover parameter optimization to offset handover problems 
associated with load balancing. All of the aforementioned 
methods and algorithms are however based on iterative 
processes, which are computationally expensive. This is a 
serious limitation to a generalized load-balancing scheme.  

In addition, since load balancing using handover is a 
computationally demanding task, it is desirable to divide and 
allocate resources between users who have data to transmit. If 
the desired load balancing is not achieved, then a handover is 
enforced. Moreover, to realize a generic load balancing, both 
radio resource usage and non-radio resource parameters must 
be incorporated. These challenges point to the need for the 
development of a robust, computationally less expensive and as 
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a consequence cost effect approach. In this research work, an 
Adaptive Neuro-fuzzy Inference System (ANFIS) is proposed 
for the implementation of dynamic load balancing in LTE. 

II. SYSTEM MODELING AND LOAD METRIC 

DETERMINATION 

A. Introduction 

The proposed system consists of a five-layer ANFIS that 
takes three inputs viz.: a) SINR – the Signal to Interference 
Noise Ratio of the users; b) the virtual load of a cell and c) the 
load distribution index of the entire network. The output of the 
ANFIS system is a quality of service (QoS) indicator that is 
used to decide either scheduling or handover, in order to 
achieve load balancing. The Network model is based on a 
3GPP downlink multi-cell network serving users with 
homogenous QoS requirement. Specifically, constant bit error 
rate (CBR) users are taken into account. Other QoS 
requirements can be easily added. The SINR is used as a metric 
measuring the link quality of the link model [7]. Performance 
analysis is hinged on two factors, namely: fairness distribution 
of the virtual load and the link Block Error Ratio (LBER).  

B. Link Model 

The post-equalization symbol SINR was determined from 
three parts of the link measurement model. These constituent 
models include:  (i) shadow fading, (ii) macroscopic pathloss 
and (iii) small scale fading (for Multiple-Input-Multiple 
Output). The propagation pathloss due to distance and antenna 
gain can be modeled by the macroscopic pathloss between an 
eNodeB sector and a UE. The pathloss can be noted as 

          
 where    is the     transmitter (denoted as 0 for the 

attached eNodeB and       for the interfering eNodeBs.    is 

the     UE which is located at an       position. The pathloss 
was generated using a distance dependent pathloss of       
                 [8] and a                 antenna [9].  

Shadow fading occurs due to obstacles in the propagation 
path between the eNodeB and UE. Shadow fading can be seen 
as the changes in the geographical properties of the terrain 
associated with the mean pathloss derived from the 
macroscopic pathloss model. It is often approximated by a log-
normal distribution of standard deviation 10 dB and mean 0 
dB. A UE moving in the Region of Interest (ROI) will 
experience a slowly changing pathloss due to the shadow 
fading of the attached eNodeB being correlated with the 
shadow fading of the interfering eNodeBs. Shadow fading can 
be denoted by           

. The large scales fading (shadow fading 

and pathloss) are position dependent and time-invariant. 

Small-scale fading results primarily due to the presence of 
reflectors and signal scatter agents that cause multiple versions 
of the transmitted signal to arrive at receiver. The small scale 
fading is modeled as a time dependent process for different 
transmission modes. One of the MIMO transmission modes is 
the Open Loop Spatial Multiplexing. The MIMO OSLM 
channel can be modeled to obtain the per-layer SINR. This 
transmission mode consists of a precoding for Spatial 
Multiplexing (SM) with large-delay Cyclic Delay Diversity 
(CDD) [10]. The OLSM MIMO precoding is defined by: 

[

       

 
          

]                                    

Where,    – Number of transmit antennas;   – Number of 
layers (a layer is a mapping of symbols to the transmit 
antenna);           – precoding matrix; D, U –      
diagonal matrixes introducing the CDD.  

For the MIMO OLSM, the SINR for the UE can be 
expressed as:  

        
                    

        
  ∑     

    
            

           
  

       

 Where   and    model the channel estimation errors; 
         represents the homogenously distributed transmit 
power;    models a simple Zero Forcing (ZF) receiver noise 
enhancement    is the uncorrelated receiver noise and   
models the interference.            

               
   stand for the 

shadow fading and pathloss between the UE,   and its attached 
eNodeB   (for      ) and its interferers (for          ) 
respectively.  

A given MCS (Modulation Coding Scheme) requires a 
certain SINR (measured at the receiver of the UE) to operate 
with an acceptably low BER (Bit Error Rate) in the output data. 
An MCS with a higher throughput needs a higher SINR to 
operate [11]. We assume that the best modulation coding 
scheme (MCS) is used for a given SINR and the highest data 
rate         is achievable, this can be represented by Shannon 
formula as shown below:  

                                                  

For better approximation to realistic MCS, the mapping 
function is scaled by an attenuation factor (of say     ) and is 
bounded by the minimum required SINR of        and a 
maximum bitrate of           .  

C. Load Metric 

The amount of Physical Resource Blocks (PRBs) required 
by user   can be expressed as:  

   
  

           
                              

Where    – is required data rate; BW – is the transmission 
bandwidth of one resource block (180 kHz for LTE).  

The load of cell   is thus expressed as the ratio of the sum 
of the required resources of all users connected to cell   to the 
total number of resources   : 

      (
∑           

  
  )                           

If we chose the number of unsatisfied users as assessment 
and simulation metric, then we can focus on the CBR traffic 
rather than the network throughput. In this case, the UEs either 
get exactly the CBR or they totally unsatisfied. Equation (5) 
implies that the cell load parameter should not exceed 1 for all 
users to be satisfied. This can be extended to give a general 
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indication of how overloaded (or otherwise) a cell is, by 
defining a virtual load given by: 

  ̂  
∑           

  
                                   

Where   ̂    implies that all users in the cell are satisfied, 
  ̂    means     of the users are satisfied. The total number 
of unsatisfied users in the whole network (with a total number 
of    users in cell   ) is given by: 

  ∑   (     (  
 

  ̂
))

 

                      

For performance analysis, the use of a fairness distribution 
proposed in [12] is employed. Thus, the load distribution index 
measuring the degree of load balancing of the entire network is 
given as: 

     
 ∑         

| |   ∑         
                                   

Where | | is the number of cells in the network (used for 
simulation) and t is the simulation time. The load balance index 

     takes the value in the interval [
 

| |
  ]. A larger   indicates 

a more balanced load distribution among the cells. Thus, the 
load distribution index is 1 when the load is completely 
balanced. The aim of load balancing (for CBR users) is to 
maximize is to maximize      at each time  .  

In order to improve the load balancing performance among 
adjacent cells, it is necessary to find the optimum target cell. 
This can be achieved by adopting a two-layer inquiry scheme 
proposed in [13]. The source eNB (the cell requiring load 
balancing) request load state and environment state from all 
neighbouring eNBs (first layer cells).  The load state is the load 
of the first layer cell and the environment state is the average 
load of the first layer cell’s adjacent cells excluding the one to 
be adjusted (denoted as the second layer cells). The overall 
state of the first layer cell   is obtained by a weighted 
combination of the load state (   ) and environment state (   ) 
in one figure as follows: 

                                                 

Where the environmental state is given by: 

                      
∑   

 
   

 
              

       , the load of first layer cell    and   is a parameter 
that indicates the relative contribution of     and     to    . 

      gives a comprehensive load information of the first 
layer cell, thereby indicating whether the eNodeB can be a 
target cell. Taking the value of       equation (9) can be 
expressed as: 

                 (
∑   

 
   

 
)                      

III. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM 

Adaptive Neuro-Fuzzy Inference System (ANFIS) 
otherwise referred to as Adaptive Network-based Fuzzy 
inference System was proposed in [14]. ANFIS is a blend of 
Fuzzy Logic (FL) and Artificial Neural Network (ANN) that 
captures the strengths and offsets the limitations of both 
techniques for building Inference Systems (IS) with 
improved results and enhanced intelligence. Fuzzy logic is 
associated with the theory of fuzzy set, which relates to 
classes of objects with rough boundaries in which 
membership is a matter of degree. It is an extensive 
multivalued logical system that departs in concept and 
substance from the traditional multivalued logical systems. 
Much of fuzzy logic may be viewed as a platform for 
computing with words rather than numbers. The use of 
words for computing is closer to human intuition and 
exploits the tolerance for imprecision, thereby lowering the 
cost of the solution [15]. However, there are no known 
appropriate or well-established methods of defining rules 
and membership functions based on human knowledge and 
experience. Artificial Neural Networks are made up of 
simple processing elements operating concurrently. These 
elements model the biological nervous system, with the 
network functions predominantly determined by the 
connections between the elements. Neural Networks have 
the ability to learn from data by adjusting the values of the 
connections (weights) between the elements. Merging 
these two artificial intelligence paradigms together offers 
the learning power of neural networks and the knowledge 
representation of fuzzy logic for making inferences from 
observations.  

A. Basic ANFIS Architecture 

The ANFIS architecture described here is based on type 
3 fuzzy inference system (other popular types are the type 
1 and type 2). In the type 3 inference system, the Takagi 
and Sugeno's (TKS) if-then rules are used [16]. The output 
of each rule is obtained by adding a constant term to the 
linear combination of the input variables. Final output is 
then computed by taking the weighted average of each 
rule's output. The type 3 ANFIS architecture with two 
inputs (x and y) and one output, z, is shown in figure1.  

 
  

 

Figure 1. Type 3 ANFIS Architecture 
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Assuming the rule base contains two first order TKS if-
then rules as follows: 

 

                                                  

                                                 

The ANFIS structure is the functional equivalent of a 
supervised, feed-forward neural network with one input 
layer, three hidden layers and one output layer, whose 
functionality are as described below: 

Layer 1: Every node in this layer is an adaptive layer 
that generates the membership grades of the input vectors. 
Usually, a bell-shaped (Gaussian) function with maximum 
equal to 1 and minimum equal to 0 is used for 
implementing the node function: 

  
     

    
 

  |         |
    

                     

Where   
  is the output of the     node in the first layer, 

   
    is the membership function of input   in the 

linguistic variable    . The parameter set            are 
responsible for are responsible for defining the shapes of 
the membership functions. These parameters are called 
premise parameters.  

Layer 2: Each mode in this layer determines the firing 
strength of a rule by multiplying the membership functions 
associated with the rules. The nodes in this layer are fixed 
in nature. The firing strength of a particular rule (the 
output of a node) is given by: 

    
     

       
                               

Any other T-norm operator that performs fuzzy AND 
operation can be used in this layer. 

Layer 3: This layer consists of fixed nodes that are used 
to compute the ratio of the     rule's firing strength to the 
total of all firing strengths: 

 ̅    
  

  

     
                                     

The outputs of this layer are otherwise known as 
normalized firing strength for convenience. 

Layer 4: This is an adaptive layer with node function 
given by: 

 ̅      
   ̅                                       

This layer essentially computes the contribution of each 
rule to the overall output. It is defuzzification layer and 
provides output values resulting from the inference of 
rules. The parameters in this layer            are known as 
consequent parameters. 

Layer 5: There is only one fixed node in this layer. It 
computes the overall output as the summation of 
contribution from each rule: 

∑ ̅   

 

   
  ∑

    

∑    
 

                               

B. Hybrid Learning Algorithm 

The objective of learning is to tune all the adjustable 
parameters to make the ANFIS output match the desired 
data. In order to improve the training efficiency, a 
combination of learning algorithms is adopted to adjust the 
parameters of the input and output membership functions. 
The consequent parameters are optimized using the least 
square method with the antecedent parameters fixed. After 
updating the consequent parameters, the gradient descent 
method using back-propagation training algorithm is used 
to fine-tune the premise parameters. Assuming the premise 
parameters are held fixed, then the overall output of the 
ANFIS will be a linear combination of the consequent 
outputs given by: 

   ̅     ̅    

  ̅               ̅             

   ̅        ̅        ̅       ̅        ̅     

                                                                                                    

IV. DESIGN OF LOAD BALANCING INFERENCE SCHEME 

In the first stage, the crisp variables, the virtual load of 
the source cell, the load fairness distribution index and 
number of unsatisfied users are converted into fuzzy 
(linguistic) variables in the fuzzification process. The 
fuzzification maps the three input variables to fuzzy labels 
of the fuzzy sets. Each linguistic variable has a 
corresponding membership function. A sigmoidal 
membership function (precisely, the product of two 
sigmoidal function) was used in this work. As there are 
three inputs and 4 fuzzified variables, the inference system 
has a set of 64 rules (figure 2).  

 
The neural network training helps select the appropriate 

rule to be fired.  

 
Figure 2. Rule Viewer for the inference system 
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Next, the rules are de-fuzzified to produce quantifiable 
results. Defuzzification can be achieved using several 
techniques such as maximum methods, center of gravity 

method, center of singleton method etc. The center of gravity 
method is adopted for this work. The defuzzified output is 
further is then used to schedule resources or handover users to 
achieve a dynamic load balancing. The structure of the Model 
used is depicted in figure 3.  

The model consists of 158 nodes, 64 rules, 256 linear 
parameters and 48 nonlinear parameters. The total number of 
parameter is very important in deciding the number of training 
data pairs required. In order to realize a good generalization 
capability, it is recommended to have the number of training 
data points to be many times larger than the number of 
parameters being evaluated [15]. 1326 input/output pairs of 
training data was used for training. Thus, the ratio between the 
data points and parameters is about four times (1326/304). 

For parameter optimization, hybrid training (which 
combines least mean squares and back-propagation) was used. 
To ascertain how well the training data models the load 
balancing system, model validation was incorporated. Model 
validation involves presenting input/output data sets on which 
the inference system not trained to the inference system to 
check the degree to which the inference system model predicts 
the corresponding data set outputs values. For this work, model 
validation was accomplished using a checking data set of 1326 
input/output pairs. The checking data helps prevent the 
potential of model over-fitting of the data. This is accomplished 
by selecting model parameters that correspond to the minimum 

checking data model error. Fig.4 show training data tested on 
the checking data.  

 

V. RESULTS AND DISCUSSION 

The ANFIS system uses the hysteresis value for a QoS 
aware dynamic load balancing. The inference system increases 
the hysteresis as the virtual load of the cell increases. The 
virtual load has an overriding effect over the fairness 
distribution index in determining the result of the inference. 
When these two factors are the predominant input metrics, the 
relationship is illustrated in figure 5.  

 
As the number of satisfied users increases, hysteresis value 

decreases (figure 6). Conversely, when the number of 
unsatisfied users in the network increases, the hysteresis value 
also increases to trigger. This results in sustaining or triggering 
load-balancing process.  

 
Figure 4. Checking data tested on training data 

 
Figure 5. Hysterisis as a function of Fairness Index and Virtual Load 

 
Figure 3. ANFIS structure for Proposed Dynamic Load Balancing 
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Figure 7 shows the effect of fairness index and the number 

of satisfied users in determining the value. The result reveals 
that the numbers of satisfied users have a more domineering 
effect over fairness index in determining load balancing.  

 

VI. CONCLUSION 

In summary, we have presented in this paper three key 
performance indicators for consideration in LTE dynamic load 
balancing i.e. the number of satisfied (dissatisfied) users, the 
fairness index and the virtual load of the source are three key 
performance indicators that can be used for dynamic load 
balancing in LTE and by extension to all SONs. This becomes 
especially important in the consideration of different network 
architectures [17]. As seen from the results, the number of 
satisfied (dissatisfied) users plays a more dominant role as the 
key performance indicator (KPI) especially where QoS is a 
major consideration. The virtual load of the cell is the next 
most important key performance indicator for fine-tuning the 

load balancing decision. Although the Fairness index did not 
reflect well in comparison to the other KPIs, it is also important 
especially where the load balancing in the network can be 
achieved by a more even (fairer) distribution of resource to 
users. In other words, the fairness index can be used as the KPI 
for deciding scheduling, while the virtual load and number of 
satisfied/unsatisfied users can be employed for handovers when 
and where necessary, thereby achieving a dynamic QoS-aware 
load balancing.    
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Figure 6. Effect of using virtual load and number of satisfied users for 

ANFIS load balancing. 

 

 
Figure 7. Effect of using fairness index and number of satisfied users for 

ANFIS load balancing 
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