84,857 research outputs found

    Color image segmentation using a spatial k-means clustering algorithm

    Get PDF
    This paper details the implementation of a new adaptive technique for color-texture segmentation that is a generalization of the standard K-Means algorithm. The standard K-Means algorithm produces accurate segmentation results only when applied to images defined by homogenous regions with respect to texture and color since no local constraints are applied to impose spatial continuity. In addition, the initialization of the K-Means algorithm is problematic and usually the initial cluster centers are randomly picked. In this paper we detail the implementation of a novel technique to select the dominant colors from the input image using the information from the color histograms. The main contribution of this work is the generalization of the K-Means algorithm that includes the primary features that describe the color smoothness and texture complexity in the process of pixel assignment. The resulting color segmentation scheme has been applied to a large number of natural images and the experimental data indicates the robustness of the new developed segmentation algorithm

    Automatic segmentation of skin cancer images using adaptive color clustering

    Get PDF
    This paper presents the development of an adaptive image segmentation algorithm designed for the identification of the skin cancer and pigmented lesions in dermoscopy images. The key component of the developed algorithm is the Adaptive Spatial K-Means (A-SKM) clustering technique that is applied to extract the color features from skin cancer images. Adaptive-SKM is a novel technique that includes the primary features that describe the color smoothness and texture complexity in the process of pixel assignment. The A-SKM has been included in the development of a flexible color-texture image segmentation scheme and the experimental data indicates that the developed algorithm is able to produce accurate segmentation when applied to a large number of skin cancer (melanoma) images

    Color image segmentation using a self-initializing EM algorithm

    Get PDF
    This paper presents a new method based on the Expectation-Maximization (EM) algorithm that we apply for color image segmentation. Since this algorithm partitions the data based on an initial set of mixtures, the color segmentation provided by the EM algorithm is highly dependent on the starting condition (initialization stage). Usually the initialization procedure selects the color seeds randomly and often this procedure forces the EM algorithm to converge to numerous local minima and produce inappropriate results. In this paper we propose a simple and yet effective solution to initialize the EM algorithm with relevant color seeds. The resulting self initialised EM algorithm has been included in the development of an adaptive image segmentation scheme that has been applied to a large number of color images. The experimental data indicates that the refined initialization procedure leads to improved color segmentation

    Active Contour Models for Manifold Valued Image Segmentation

    Full text link
    Image segmentation is the process of partitioning a image into different regions or groups based on some characteristics like color, texture, motion or shape etc. Active contours is a popular variational method for object segmentation in images, in which the user initializes a contour which evolves in order to optimize an objective function designed such that the desired object boundary is the optimal solution. Recently, imaging modalities that produce Manifold valued images have come up, for example, DT-MRI images, vector fields. The traditional active contour model does not work on such images. In this paper, we generalize the active contour model to work on Manifold valued images. As expected, our algorithm detects regions with similar Manifold values in the image. Our algorithm also produces expected results on usual gray-scale images, since these are nothing but trivial examples of Manifold valued images. As another application of our general active contour model, we perform texture segmentation on gray-scale images by first creating an appropriate Manifold valued image. We demonstrate segmentation results for manifold valued images and texture images

    Improved Depth Map Estimation from Stereo Images based on Hybrid Method

    Get PDF
    In this paper, a stereo matching algorithm based on image segments is presented. We propose the hybrid segmentation algorithm that is based on a combination of the Belief Propagation and Mean Shift algorithms with aim to refine the disparity and depth map by using a stereo pair of images. This algorithm utilizes image filtering and modified SAD (Sum of Absolute Differences) stereo matching method. Firstly, a color based segmentation method is applied for segmenting the left image of the input stereo pair (reference image) into regions. The aim of the segmentation is to simplify representation of the image into the form that is easier to analyze and is able to locate objects in images. Secondly, results of the segmentation are used as an input of the local window-based matching method to determine the disparity estimate of each image pixel. The obtained experimental results demonstrate that the final depth map can be obtained by application of segment disparities to the original images. Experimental results with the stereo testing images show that our proposed Hybrid algorithm HSAD gives a good performance

    An Efficient Image Segmentation Approach through Enhanced Watershed Algorithm

    Get PDF
    Image segmentation is a significant task for image analysis which is at the middle layer of image engineering. The purpose of segmentation is to decompose the image into parts that are meaningful with respect to a particular application. The proposed system is to boost the morphological watershed method for degraded images. Proposed algorithm is based on merging morphological watershed result with enhanced edge detection result obtain on pre processing of degraded images. As a post processing step, to each of the segmented regions obtained, color histogram algorithm is applied, enhancing the overall performance of the watershed algorithm. Keywords – Segmentation, watershed, color histogra

    Region-based segmentation of images using syntactic visual features

    Get PDF
    This paper presents a robust and efficient method for segmentation of images into large regions that reflect the real world objects present in the scene. We propose an extension to the well known Recursive Shortest Spanning Tree (RSST) algorithm based on a new color model and so-called syntactic features [1]. We introduce practical solutions, integrated within the RSST framework, to structure analysis based on the shape and spatial configuration of image regions. We demonstrate that syntactic features provide a reliable basis for region merging criteria which prevent formation of regions spanning more than one semantic object, thereby significantly improving the perceptual quality of the output segmentation. Experiments indicate that the proposed features are generic in nature and allow satisfactory segmentation of real world images from various sources without adjustment to algorithm parameters

    A Method of Segmentation for Hyper spectral & Medical Images Based on Color Image Segmentation

    Get PDF
    The paper propose an original and simple segmentation strategy based on the EM approach for hyper spectral images . In a first step, to simplify the input color textured image into a color image without texture. The final segmentation is simply achieved by a spatially color segmentation using feature vector with the set of color values contained around the pixel to be classified. The spatial constraint allows taking into account the inherent spatial relationships of any image and its colours. This approach provides effective PSNR for the segmented image. These results omit the better performance athe segmented images are compared with Watershed & Region Growing Algorithm. This approach provides the effective segmentation for the Spectral Images & Medical Images. With proposed approach it can be fascinated that the data obtained from the segmentation can provide accurate information from the huge image
    • 

    corecore