Image segmentation is the process of partitioning a image into different
regions or groups based on some characteristics like color, texture, motion or
shape etc. Active contours is a popular variational method for object
segmentation in images, in which the user initializes a contour which evolves
in order to optimize an objective function designed such that the desired
object boundary is the optimal solution. Recently, imaging modalities that
produce Manifold valued images have come up, for example, DT-MRI images, vector
fields. The traditional active contour model does not work on such images. In
this paper, we generalize the active contour model to work on Manifold valued
images. As expected, our algorithm detects regions with similar Manifold values
in the image. Our algorithm also produces expected results on usual gray-scale
images, since these are nothing but trivial examples of Manifold valued images.
As another application of our general active contour model, we perform texture
segmentation on gray-scale images by first creating an appropriate Manifold
valued image. We demonstrate segmentation results for manifold valued images
and texture images