4 research outputs found

    Modelling and Automated Implementation of Optimal Power Saving Strategies in Coarse-Grained Reconfigurable Architectures

    Get PDF
    This paper focuses on how to efficiently reduce power consumption in coarse-grained reconfigurable designs, to allow their effective adoption in heterogeneous architectures supporting and accelerating complex and highly variable multifunctional applications. We propose a design flow for this kind of architectures that, besides their automatic customization, is also capable of determining their optimal power management support. Power and clock gating implementation costs are estimated in advance, before their physical implementation, on the basis of the functional, technological, and architectural parameters of the baseline design. Experimental results, on 90 and 45 nm CMOS technologies, demonstrate that the proposed approach guides the designer towards optimal implementation

    A scalable thread scheduling co-processor based on data-flow principles

    No full text
    Large synchronization and communication overhead will become a major concern in future extreme-scale machines (e.g., HPC systems, supercomputers). These systems will push upwards performance limits by adopting chips equipped with one order of magnitude more cores than today. Alternative execution models can be explored in order to exploit the high parallelism offered by future massive many-core chips. This paper proposes the integration of standard cores with dedicated co-processing units that enable the system to support a fine-grain data-flow execution model developed within the TERAFLUX project. An instruction set architecture extension for supporting fine-grain thread scheduling and execution is proposed. This instruction set extension is supported by the co-processor that provides hardware units for accelerating thread scheduling and distribution among the available cores. Two fundamental aspects are at the base of the proposed system: the programmers can adopt their preferred programming model, and the compilation tools can produce a large set of threads mainly communicating in a producer-consumer fashion, hence enabling data-flow execution. Experimental results demonstrate the feasibility of the proposed approach and its capability of scaling with the increasing number of cores

    An Efficient NoC-based Framework To Improve Dataflow Thread Management At Runtime

    Get PDF
    This doctoral thesis focuses on how the application threads that are based on dataflow execution model can be managed at Network-on-Chip (NoC) level. The roots of the dataflow execution model date back to the early 1970’s. Applications adhering to such program execution model follow a simple producer-consumer communication scheme for synchronising parallel thread related activities. In dataflow execution environment, a thread can run if and only if all its required inputs are available. Applications running on a large and complex computing environment can significantly benefit from the adoption of dataflow model. In the first part of the thesis, the work is focused on the thread distribution mechanism. It has been shown that how a scalable hash-based thread distribution mechanism can be implemented at the router level with low overheads. To enhance the support further, a tool to monitor the dataflow threads’ status and a simple, functional model is also incorporated into the design. Next, a software defined NoC has been proposed to manage the distribution of dataflow threads by exploiting its reconfigurability. The second part of this work is focused more on NoC microarchitecture level. Traditional 2D-mesh topology is combined with a standard ring, to understand how such hybrid network topology can outperform the traditional topology (such as 2D-mesh). Finally, a mixed-integer linear programming based analytical model has been proposed to verify if the application threads mapped on to the free cores is optimal or not. The proposed mathematical model can be used as a yardstick to verify the solution quality of the newly developed mapping policy. It is not trivial to provide a complete low-level framework for dataflow thread execution for better resource and power management. However, this work could be considered as a primary framework to which improvements could be carried out
    corecore