1,211 research outputs found

    Comparative Study Of Congestion Control Techniques In High Speed Networks

    Get PDF
    Congestion in network occurs due to exceed in aggregate demand as compared to the accessible capacity of the resources. Network congestion will increase as network speed increases and new effective congestion control methods are needed, especially to handle bursty traffic of todays very high speed networks. Since late 90s numerous schemes i.e. [1]...[10] etc. have been proposed. This paper concentrates on comparative study of the different congestion control schemes based on some key performance metrics. An effort has been made to judge the performance of Maximum Entropy (ME) based solution for a steady state GE/GE/1/N censored queues with partial buffer sharing scheme against these key performance metrics.Comment: 10 pages IEEE format, International Journal of Computer Science and Information Security, IJCSIS November 2009, ISSN 1947 5500, http://sites.google.com/site/ijcsis

    Enhancing QoS provisioning and granularity in next generation internet

    Get PDF
    Next Generation IP technology has the potential to prevail, both in the access and in the core networks, as we are moving towards a multi-service, multimedia and high-speed networking environment. Many new applications, including the multimedia applications, have been developed and deployed, and demand Quality of Service (QoS) support from the Internet, in addition to the current best effort service. Therefore, QoS provisioning techniques in the Internet to guarantee some specific QoS parameters are more a requirement than a desire. Due to the large amount of data flows and bandwidth demand, as well as the various QoS requirements, scalability and fine granularity in QoS provisioning are required. In this dissertation, the end-to-end QoS provisioning mechanisms are mainly studied, in order to provide scalable services with fine granularity to the users, so that both users and network service providers can achieve more benefits from the QoS provisioned in the network. To provide the end-to-end QoS guarantee, single-node QoS provisioning schemes have to be deployed at each router, and therefore, in this dissertation, such schemes are studied prior to the study of the end-to-end QoS provisioning mechanisms. Specifically, the effective sharing of the output bandwidth among the large amount of data flows is studied, so that fairness in the bandwidth allocation among the flows can be achieved in a scalable fashion. A dual-rate grouping architecture is proposed in this dissertation, in which the granularity in rate allocation can be enhanced, while the scalability of the one-rate grouping architecture is still maintained. It is demonstrated that the dual-rate grouping architecture approximates the ideal per-flow based PFQ architecture better than the one-rate grouping architecture, and provides better immunity capability. On the end-to-end QoS provisioning, a new Endpoint Admission Control scheme for Diffserv networks, referred to as Explicit Endpoint Admission Control (EEAC), is proposed, in which the admission control decision is made by the end hosts based on the end-to-end performance of the network. A novel concept, namely the service vector, is introduced, by which an end host can choose different services at different routers along its data path. Thus, the proposed service provisioning paradigm decouples the end-to-end QoS provisioning from the service provisioning at each router, and the end-to-end QoS granularity in the Diffserv networks can be enhanced, while the implementation complexity of the Diffserv model is maintained. Furthermore, several aspects of the implementation of the EEAC and service vector paradigm, referred to as EEAC-SV, in the Diffserv architecture are also investigated. The performance analysis and simulation results demonstrate that the proposed EEAC-SV scheme, not only increases the benefit to the service users, but also enhances the benefit to the network service provider in terms of network resource utilization. The study also indicates that the proposed EEAC-SV scheme can provide a compatible and friendly networking environment to the conventional TCP flows, and the scheme can be deployed in the current Internet in an incremental and gradual fashion

    Optimizing Service Differentiation Scheme with Sized-based Queue Management in DiffServ Networks

    Get PDF
    In this paper we introduced Modified Sized-based Queue Management as a dropping scheme that aims to fairly prioritize and allocate more service to VoIP traffic over bulk data like FTP as the former one usually has small packet size with less impact to the network congestion. In the same time, we want to guarantee that this prioritization is fair enough for both traffic types. On the other hand we study the total link delay over the congestive link with the attempt to alleviate this congestion as much as possible at the by function of early congestion notification. Our M-SQM scheme has been evaluated with NS2 experiments to measure the packets received from both and total link-delay for different traffic. The performance evaluation results of M-SQM have been validated and graphically compared with the performance of other three legacy AQMs (RED, RIO, and PI). It is depicted that our M-SQM outperformed these AQMs in providing QoS level of service differentiation.Comment: 10 pages, 9 figures, 1 table, Submitted to Journal of Telecommunication

    Delay-oriented active queue management in TCP/IP networks

    Get PDF
    PhDInternet-based applications and services are pervading everyday life. Moreover, the growing popularity of real-time, time-critical and mission-critical applications set new challenges to the Internet community. The requirement for reducing response time, and therefore latency control is increasingly emphasized. This thesis seeks to reduce queueing delay through active queue management. While mathematical studies and research simulations reveal that complex trade-off relationships exist among performance indices such as throughput, packet loss ratio and delay, etc., this thesis intends to find an improved active queue management algorithm which emphasizes delay control without trading much on other performance indices such as throughput and packet loss ratio. The thesis observes that in TCP/IP network, packet loss ratio is a major reflection of congestion severity or load. With a properly functioning active queue management algorithm, traffic load will in general push the feedback system to an equilibrium point in terms of packet loss ratio and throughput. On the other hand, queue length is a determinant factor on system delay performance while has only a slight influence on the equilibrium. This observation suggests the possibility of reducing delay while maintaining throughput and packet loss ratio relatively unchanged. The thesis also observes that queue length fluctuation is a reflection of both load changes and natural fluctuation in arriving bit rate. Monitoring queue length fluctuation alone cannot distinguish the difference and identify congestion status; and yet identifying this difference is crucial in finding out situations where average queue size and hence queueing delay can be properly controlled and reasonably reduced. However, many existing active queue management algorithms only monitor queue length, and their control policies are solely based on this measurement. In our studies, our novel finding is that the arriving bit rate distribution of all sources contains information which can be a better indication of congestion status and has a correlation with traffic burstiness. And this thesis develops a simple and scalable way to measure its two most important characteristics, namely the mean ii and the variance of the arriving rate distribution. The measuring mechanism is based on a Zombie List mechanism originally proposed and deployed in Stabilized RED to estimate the number of flows and identify misbehaving flows. This thesis modifies the original zombie list measuring mechanism, makes it capable of measuring additional variables. Based on these additional measurements, this thesis proposes a novel modification to the RED algorithm. It utilizes a robust adaptive mechanism to ensure that the system reaches proper equilibrium operating points in terms of packet loss ratio and queueing delay under various loads. Furthermore, it identifies different congestion status where traffic is less bursty and adapts RED parameters in order to reduce average queue size and hence queueing delay accordingly. Using ns-2 simulation platform, this thesis runs simulations of a single bottleneck link scenario which represents an important and popular application scenario such as home access network or SoHo. Simulation results indicate that there are complex trade-off relationships among throughput, packet loss ratio and delay; and in these relationships delay can be substantially reduced whereas trade-offs on throughput and packet loss ratio are negligible. Simulation results show that our proposed active queue management algorithm can identify circumstances where traffic is less bursty and actively reduce queueing delay with hardly noticeable sacrifice on throughput and packet loss ratio performances. In conclusion, our novel approach enables the application of adaptive techniques to more RED parameters including those affecting queue occupancy and hence queueing delay. The new modification to RED algorithm is a scalable approach and does not introduce additional protocol overhead. In general it brings the benefit of substantially reduced delay at the cost of limited processing overhead and negligible degradation in throughput and packet loss ratio. However, our new algorithm is only tested on responsive flows and a single bottleneck scenario. Its effectiveness on a combination of responsive and non-responsive flows as well as in more complicated network topology scenarios is left for future work

    A novel multimedia adaptation architecture and congestion control mechanism designed for real-time interactive applications

    Get PDF
    PhDThe increasing use of interactive multimedia applications over the Internet has created a problem of congestion. This is because a majority of these applications do not respond to congestion indicators. This leads to resource starvation for responsive flows, and ultimately excessive delay and losses for all flows therefore loss of quality. This results in unfair sharing of network resources and increasing the risk of network ‘congestion collapse’. Current Congestion Control Mechanisms such as ‘TCP-Friendly Rate Control’ (TFRC) have been able to achieve ‘fair-share’ of network resource when competing with responsive flows such as TCP, but TFRC’s method of congestion response (i.e. to reduce Packet Rate) is not ideally matched for interactive multimedia applications which maintain a fixed Frame Rate. This mismatch of the two rates (Packet Rate and Frame Rate) leads to buffering of frames at the Sender Buffer resulting in delay and loss, and an unacceptable reduction of quality or complete loss of service for the end-user. To address this issue, this thesis proposes a novel Congestion Control Mechanism which is referred to as ‘TCP-friendly rate control – Fine Grain Scalable’ (TFGS) for interactive multimedia applications. This new approach allows multimedia frames (data) to be sent as soon as they are generated, so that the multimedia frames can reach the destination as quickly as possible, in order to provide an isochronous interactive service. This is done by maintaining the Packet Rate of the Congestion Control Mechanism (CCM) at a level equivalent to the Frame Rate of the Multimedia Encoder.The response to congestion is to truncate the Packet Size, hence reducing the overall bitrate of the multimedia stream. This functionality of the Congestion Control Mechanism is referred to as Packet Size Truncation (PST), and takes advantage of adaptive multimedia encoding, such as Fine Grain Scalable (FGS), where the multimedia frame is encoded in order of significance, Most to Least Significant Bits. The Multimedia Adaptation Manager (MAM) truncates the multimedia frame to the size indicated by the Packet Size Truncation function of the CCM, accurately mapping user demand to available network resource. Additionally Fine Grain Scalable encoding can offer scalability at byte level granularity, providing a true match to available network resources. This approach has the benefits of achieving a ‘fair-share’ of network resource when competing with responsive flows (as similar to TFRC CCM), but it also provides an isochronous service which is of crucial benefit to real-time interactive services. Furthermore, results illustrate that an increased number of interactive multimedia flows (such as voice) can be carried over congested networks whilst maintaining a quality level equivalent to that of a standard landline telephone. This is because the loss and delay arising from the buffering of frames at the Sender Buffer is completely removed. Packets sent maintain a fixed inter-packet-gap-spacing (IPGS). This results in a majority of packets arriving at the receiving end at tight time intervals. Hence, this avoids the need of using large Playout (de-jitter) Buffer sizes and adaptive Playout Buffer configurations. As a result this reduces delay, improves interactivity and Quality of Experience (QoE) of the multimedia application
    corecore