6,320 research outputs found

    Multiple-RAT selection for reducing call blocking/dropping probability in cooperative heterogeneous wireless networks

    Get PDF
    There is an increasing demand for high bandwidth-consuming services such as real-time video and video streaming over wireless access networks. A single radio access technology (RAT) in a heterogeneous wireless network may not always have enough radio resource to admit high bandwidth-consuming calls, such as video calls. Existing joint call admission control (JCAC) algorithms designed for heterogeneous wireless networks block/drop an incoming call when none of the available individual RATs in the network has enough bandwidth to admit the incoming call. Consequently, video calls experience high call blocking/dropping probability in the network. However, some calls such as multi-layer coded (scalable) video can be transmitted/received over one or multiple RATs. This article proposes a JCAC algorithm that selects a single or multiple RATs for scalable video calls in heterogeneous wireless networks, depending on availability of radio resources in available RATs. Non scalable calls are always admitted into a single RAT by the algorithm. The aim of the proposed algorithm is to reduce call blocking/dropping probability for both scalable and non-scalable calls. An analytical model is developed for the proposed JCAC algorithm, and its performance is evaluated. Simulation results show that the proposed algorithm reduces call blocking/dropping probability in heterogeneous wireless networks

    Joint call admission control and resource allocation for H.264 SVC transmission over OFDMA networks

    Get PDF

    Joint in-network video rate adaptation and measurement-based admission control: algorithm design and evaluation

    Get PDF
    The important new revenue opportunities that multimedia services offer to network and service providers come with important management challenges. For providers, it is important to control the video quality that is offered and perceived by the user, typically known as the quality of experience (QoE). Both admission control and scalable video coding techniques can control the QoE by blocking connections or adapting the video rate but influence each other's performance. In this article, we propose an in-network video rate adaptation mechanism that enables a provider to define a policy on how the video rate adaptation should be performed to maximize the provider's objective (e.g., a maximization of revenue or QoE). We discuss the need for a close interaction of the video rate adaptation algorithm with a measurement based admission control system, allowing to effectively orchestrate both algorithms and timely switch from video rate adaptation to the blocking of connections. We propose two different rate adaptation decision algorithms that calculate which videos need to be adapted: an optimal one in terms of the provider's policy and a heuristic based on the utility of each connection. Through an extensive performance evaluation, we show the impact of both algorithms on the rate adaptation, network utilisation and the stability of the video rate adaptation. We show that both algorithms outperform other configurations with at least 10 %. Moreover, we show that the proposed heuristic is about 500 times faster than the optimal algorithm and experiences only a performance drop of approximately 2 %, given the investigated video delivery scenario

    Advanced solutions for quality-oriented multimedia broadcasting

    Get PDF
    Multimedia content is increasingly being delivered via different types of networks to viewers in a variety of locations and contexts using a variety of devices. The ubiquitous nature of multimedia services comes at a cost, however. The successful delivery of multimedia services will require overcoming numerous technological challenges many of which have a direct effect on the quality of the multimedia experience. For example, due to dynamically changing requirements and networking conditions, the delivery of multimedia content has traditionally adopted a best effort approach. However, this approach has often led to the end-user perceived quality of multimedia-based services being negatively affected. Yet the quality of multimedia content is a vital issue for the continued acceptance and proliferation of these services. Indeed, end-users are becoming increasingly quality-aware in their expectations of multimedia experience and demand an ever-widening spectrum of rich multimedia-based services. As a consequence, there is a continuous and extensive research effort, by both industry and academia, to find solutions for improving the quality of multimedia content delivered to the users; as well, international standards bodies, such as the International Telecommunication Union (ITU), are renewing their effort on the standardization of multimedia technologies. There are very different directions in which research has attempted to find solutions in order to improve the quality of the rich media content delivered over various network types. It is in this context that this special issue on broadcast multimedia quality of the IEEE Transactions on Broadcasting illustrates some of these avenues and presents some of the most significant research results obtained by various teams of researchers from many countries. This special issue provides an example, albeit inevitably limited, of the richness and breath of the current research on multimedia broadcasting services. The research i- - ssues addressed in this special issue include, among others, factors that influence user perceived quality, encoding-related quality assessment and control, transmission and coverage-based solutions and objective quality measurements

    Resource management in IP-based radio access networks

    Get PDF
    IP is being considered to be used in the Radio Access Network (RAN) of UMTS. It is of paramount importance to be able to provide good QoS guarantees to real time services in such an IP-based RAN. QoS in IP networks is most efficiently provided with Differentiated services (Diffserv). However, currently Diffserv mainly specifies Per Hop Behaviors (PHB). Proper mechanisms for admission control and resource reservation have not yet been defined. A new resource management concept in the IP-based RAN is needed to offer QoS guarantees to real time services. We investigate the current Diffserv mechanisms and contribute to development of a new resource management protocol. We focus on the load control algorithm [9], which is an attempt to solve the problem of admission control and resource reservation in IP-based networks. In this document we present some load control issues and propose to enhance the load control protocol with the Measurement Based Admission Control (MBAC) concept. With this enhancement the traffic load in the IP-based RAN can be estimated, since the ingress router in the network path can be notified by marking packets with the resource state information. With this knowledge, the ingress router can perform admission control to keep the IP-based RAN stable with a high utilization even in overload situations

    A Decision-Theoretic Approach to Resource Allocation in Wireless Multimedia Networks

    Full text link
    The allocation of scarce spectral resources to support as many user applications as possible while maintaining reasonable quality of service is a fundamental problem in wireless communication. We argue that the problem is best formulated in terms of decision theory. We propose a scheme that takes decision-theoretic concerns (like preferences) into account and discuss the difficulties and subtleties involved in applying standard techniques from the theory of Markov Decision Processes (MDPs) in constructing an algorithm that is decision-theoretically optimal. As an example of the proposed framework, we construct such an algorithm under some simplifying assumptions. Additionally, we present analysis and simulation results that show that our algorithm meets its design goals. Finally, we investigate how far from optimal one well-known heuristic is. The main contribution of our results is in providing insight and guidance for the design of near-optimal admission-control policies.Comment: To appear, Dial M for Mobility, 200

    Clustering Algorithms for Scale-free Networks and Applications to Cloud Resource Management

    Full text link
    In this paper we introduce algorithms for the construction of scale-free networks and for clustering around the nerve centers, nodes with a high connectivity in a scale-free networks. We argue that such overlay networks could support self-organization in a complex system like a cloud computing infrastructure and allow the implementation of optimal resource management policies.Comment: 14 pages, 8 Figurs, Journa
    • 

    corecore