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Abstract—Multimedia services such as Video on Demand and
network-based personal video recording introduce important new
management challenges to network and service providers. Given
the high revenue opportunities of these services, it is important to
maximize the Quality of Experience (QoE) of multimedia services
as much as possible. Traditionally, admission control mechanisms
are used to protect the QoE of existing resources and to avoid
that the traffic rate on a link exceeds a predefined threshold.
Using admission control, flows are blocked when congestion is
imminent. For video based services, the traffic rate can also be
controlled by switching existing flows to a lower video quality.
In this case, the videos can still be viewed but at a reduced
QoE, which increases the available resources and thus makes
room for new flows. In this paper, we focus on the video
rate adaptation process. We propose a distributed video rate
adaptation algorithm that allows controlling which qualities are
offered to the users and how the videos are adapted as a response
to changes in the network load. The video rate adaptation
algorithm uses the information available in the Pre-Congestion
Notification mechanism, a measurement based admission control
mechanism standardized recently by the IETF. The video rate
adaptation process is steered by utility functions, which define
how the quality of the videos should be adapted as a function of
the network load.

I. INTRODUCTION

For non-scalable flows, such as constant data transfers, the
most effective way of avoiding congestion is by deploying an
admission control mechanism which blocks new flows once
congestion is imminent. With the increasing popularity of
video services, a new set of mechanisms have been proposed
that rely on video rate adaptation to ensure that the traffic rate
does not exceed a predefined threshold. Instead of blocking
new requests, the quality of existing videos is decreased when
the network load is high to make room for new requests.

Transport protocols that allow to adapt the bitrate of videos
such as HTTP Live Streaming [1] and the recently stan-
dardized MPEG DASH [2] have already been proposed. The
problem, however, is that the client and server decide on which
rate to send out, as an end-to-end congestion control mech-
anism. Scalable Video Coding (SVC) allows changing the
video rate by dropping video quality layers [3], but does not
provide an algorithm to steer the rate adaptation. In practice,
a service provider wants to choose the transmitted video rate
as a function of the network load. Recently, mechanisms have
been proposed which adapt the video rate on nodes inside the
network based on in-network feedback [4]. However, they still

require admission control mechanisms to block flows when
even the lowest quality level cannot be allowed anymore. The
challenge is to effectively combine video rate adaptation with
traditional admission control mechanisms.

In this article, we propose a dynamic video rate adaptation
algorithm for SVC on top of the Pre-Congestion Notification
(PCN) mechanism [5], which is a decentralized measurement
based admission control mechanism, recently standardized by
the IETF. The PCN system can be deployed in a Diffserv
domain: each PCN node measures the network load and
signals this load information to the PCN endpoints through
the marking of packets. Packets are marked in a similar way
as performed by an Active Queue Management system such as
Random Early Detection and Explicit Congestion Notification.
An introduction to PCN, including a survey of algorithmic
options for the various PCN functions is discussed in [6]
and further evaluated in [7]. We have previously investigated
PCN’s performance in protecting video services and have
proposed several extensions optimized for video services [8]
and also proposed a static quality differentiation algorithm that
only allows deciding upon the video quality to stream during
the admittance phase. Furthermore, we derived guidelines for
deploying PCN in a video environment in [9].

The novel dynamic video rate adaptation algorithm pre-
sented in this paper uses a PCN system to estimate the
network load. Through policies a service provider can state
the allowed video qualities as a function of the network load.
The algorithm is dynamic as it is also possible to scale down
the quality of existing flows.

The remainder of this article is structured as follows. In
Section II, we provide an overview of the PCN mechanism.
The dynamic video rate adaptation algorithm is presented in
Section III. In Section IV, the impact on the admittance pro-
cess and the perceived video quality is characterized. Finally,
Section V, concludes this article.

II. PCN ARCHITECTURE FOR VIDEO RATE ADAPTATION

A. IETF’s PCN architecture

The goal of the PCN admission control system is to protect
the QoS of inelastic flows in a Diffserv domain. In contrast to
the traditional centralized Diffserv admission control system,
the PCN system features a distributed measurement-based
architecture. In the original PCN architecture, traffic enters
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Fig. 1. Modified PCN architecture for supporting video rate adaptation.

the domain through PCN ingress nodes, and leaves through
PCN egress nodes. PCN interior nodes meter the traffic
rate and mark traversing packets as an in-band congestion
signal (through Diffserv code points). The metering and mark-
ing functions support two marking behaviors: (i) threshold-
metering and -marking, which marks all packets when the bit
rate is greater than a reference rate, and (ii) excess-traffic-
metering and -marking, where packets are marked at a ratio
equal to the difference between the bit rate and the excess
threshold rate. At the egress node, a congestion level estimate
is calculated, by investigating the fraction of received marked
packets, and signaled to the decision point (e.g., a PCN ingress
node), where new flows are admitted and/or existing ones are
terminated.

B. Extensions to the IETF’s PCN architecture

In order to support the rate adaptation of videos, we propose
two extensions to the metering and marking functions (e.g., in
an interior node) of the IETF’s PCN architecture as illustrated
in Figure 1. First, the metering function must be able to
characterize the traffic rate, which we call the Monitored Rate
(MR), instead of only comparing the rate with a threshold.
In previous work [8], we proposed such a metering algorithm
based on sliding-window based bandwidth measurements. This
metering algorithm can cope better with the bursty nature of
video sessions and is more robust against changes in the traffic
characteristics. The second modification is the inclusion of the
video rate adaptation algorithm itself next to the metering and
marking function. The video rate adaptation algorithm uses
the MR value to locally re-scale the rate of SVC flows; its
algorithmic details are discussed in the next section. Note that,
as this algorithm only uses the metering function and does not
mark packets, it is complementary to PCN’s admission control
functions. However, it does impact the measured load, which
allows more sessions to be admitted at a reduced video quality.

III. DYNAMIC VIDEO RATE ADAPTATION

Ideally, an operator should stream the highest video quality
possible if there is ample capacity left. Once the network load

increases, existing streams can then be downscaled to make
room for more flows, and thus more paying customers. The
proposed algorithm enables an operator to set a policy on the
number of flows that can be admitted for each video level, and
dynamically scale the flows if the network load changes. This
is done through utility functions Ui(lo): these utility functions
define the share of the capacity of the link that can be used
for video quality level i as a function of the network load lo.

The algorithm is deployed on a PCN interior node and has
two functions: a monitoring function and decision function.
The monitoring function uses the local measurements MR
of the modified PCN metering function and the admissible
threshold rate AR. A normalized network load lo is calculated
as follows: lo = min(1, MR

AR ). A lo value of 1 indicates a pre-
congested network, while a lo value of 0 represents a network
without any load. Note that we use AR as the denominator of
this fraction to eliminate the introduced headroom caused by
the burstiness of the aggregate.

The calculated lo value is used by the decision function
to decide how many and which flows need to be rescaled.
Each time the monitoring function signals a change in the lo
value, the utility functions Ui(lo) are recalculated. For each
existing video quality level, the number of flows that need
to be (re-)scaled to this level are calculated based on the
expected average bitrate of the video quality level i, through
the following equation: nrF lows = d Ui(lo)×MR

getAverageBitrate(i)e.
This nrF lows value provides the maximum number of flows
that can be admitted at a given quality level. To decide which
flows are mapped to which quality, the service provider can
state its own policy (e.g., prioritizing gold subscriptions) by
ordering the flows accordingly.

To ensure a stable output of the utility functions we smooth
the output of the utility functions by calculating an exponential
weighted moving average on the utility functions. This intro-
duces a hysteresis on the decision function that avoids flows
oscillating between video quality levels. The algorithm can be
deployed on any PCN node: there is no cooperation needed
between the PCN nodes. As each node will independently
calculate their utility functions, multiple bottlenecks can cause
an additional rescaling of a video further down the path if
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the available load is lower there. As such, the videos will
be rescaled to the utility functions of the bottleneck with the
lowest available load.

Note that this approach assumes the use of homogeneous
flows where all flows can be scaled to the same level. If this is
not the case the algorithm can be extended by defining separate
utility functions per flow type and defining an additional type
of functions that estimate how the rescaling of a utility func-
tion will affect the total load. Hence, there is one estimation
function per utility function. These estimation functions can
then be used to compensate the lo value in scenarios where
there is an unequal share between different flow types.

IV. PERFORMANCE EVALUATION RESULTS

A. Experimental setup

The performance of the rate adaptation algorithm was
evaluated in an NS-2 based simulator. A tree-based topology
was used where a video head end streams SVC videos to
400 clients. This setup contains one bottleneck where the
link capacity decreases from 1 Gbps to 500 Mbps. A PCN
interior node was deployed on this bottleneck, together with
the dynamic rate adaptation extension. The PCN system
was configured to use only single marking (i.e., using only
excess-traffic-metering and -marking). The AR value was set
to 400 Mbps. We considered only flow admission and not
termination. In the evaluated scenario, the request process was
modeled through a uniform random distribution with a mean
of 5 requests per second, a minimum of 2.5 and a maximum
of 7.5, to represent a scenario describing realistic average
load conditions. The simulation time was 100 seconds, each
test was repeated 100 times. The weight of the exponential
weighted moving average function was set to 0.95. Four video
quality levels, with different average bitrates, were used: Full
HD (11Mbps), HD ready (8Mbps), SD (2Mbps) and High
Quality (HQ) Web (1.25Mbps). The following utility functions
were used:

UFHD(l) =

{
min(1, l−s2

s1−s2 ) if l ∈ [0, s2]

0 if l ∈]s2, 1]
(1)

UHDR(l) =

{
max(0, l−s1

s2−s1 ) if l ∈ [0, s2]

max(0, l−s3
s2−s3 ) if l ∈]s2, 1]

(2)

USD(l) = 1− UFHD(l)− UHDR(l)− UHQW(l) (3)

UHQW(l) = min(0, 1−
24∑

n=0

e−
x
2

xn

2n × n!
) (4)

where x = 100×(l−s2)
s1−s2 and (s2, s3) = (s1 + 0.2, s1 + 0.3).

Here, s1 denotes the load threshold at which the Full HD
videos are transmitted to HD ready videos and is a parameter
that is varied throughout the experiments. UHQW denotes
the cumulative Erlang distribution function with λ = 1

2 and
k = 25. The rationale behind the utility functions is that an
increasing network load results in a linear rescaling from Full
HD to SD. As we assumed that the lowest quality should
be avoided we used an Erlang function between SD and
HQ Web flows which has the property that, initially, the
decrease of the SD utility function is less than the other
utility functions, followed by a steeper increase of HQ Web
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Fig. 2. Utility functions used. The rationale of the utility functions is to
gradually lower the video quality as the network load increases to admit more
connections at a reduced quality.
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Fig. 3. Impact of the configured utility functions on the admission control
in terms of bandwidth per quality level and number of quality switches.

later. Other functions with this property can be chosen as
well.

To validate the algorithm we investigate the impact on the
network load. In this experiment, s1 was set to 0.6 which
resulted in the utility functions as shown in Figure 2. The effect
these utility functions have on the bandwidth share per quality
level is illustrated in Figure 3. Also the number of dropped
layers is shown, illustrating the stability of the rate adaptation.
The desired effect, defined through the utility functions, is
reached, but with an additional burstiness in the network load,
caused by the video burstiness. As shown in Figure 3, the
rescaling decision is stable thanks to the introduced hysteresis:
as the load increases, the number of layer drops gradually
increases without any significant fluctuations. The share of Full
HD and HD ready videos increases first but quickly drops as
the network load increases further and all videos are scaled to
HQ Web. At 88 seconds, we reach an equilibrium where new
requests are blocked.

B. Obtained gain by the algorithm

We compare the performance of the dynamic rate adaptation
algorithm with the original PCN mechanism (that does not fea-
ture video quality differentiation). Furthermore, we compare
with an earlier proposed, static video quality differentiation
mechanism [8] that can only scale a flow during the admittance
phase. As performance metrics we use the number of admitted
flows and the average video quality. The video quality was
measured by using the Structural SIMilarity (SSIM) score [10],
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TABLE I
COMPARISON OF THE DYNAMIC RATE ADAPTATION ALGORITHM WITH A

STATIC VERSION AND THE ORIGINAL PCN MECHANISM

Video quality Admitted flows
original 0.981 46

static 0.905 112
dynamic 0.880 334

which is a video quality metric that produces a value between
0 and 1. The SSIM scores of the original videos ranged
from 0.880 (HQ Web) to 0.981 (Full HD). For the dynamic
algorithm we used the utility functions illustrated in Figure 2.
In the original mechanism all flows were admitted as Full HD
videos. The static case was configured to admit Full HD videos
up to a load of 60%, HD ready videos up to a load of 80%, SD
videos up to a load of 90% and HQ Web videos afterwards.

Table I shows the number of admitted flows and video
quality at a network load of 100%. The original mechanism
is able to provide the highest video quality as only Full
HD videos are admitted, but with only a small number of
admitted flows. The static mechanism can already admit more
videos but the highest gain is obtained by using the dynamic
mechanism, because all videos are eventually scaled to HQ
Web videos. In the dynamic mechanism, the obtained video
quality will be higher than the static version during lower
network loads, as we can admit a flow initially at a high quality
and downscale it afterwards.

C. Analysis of the impact on the video quality

The definition of the utility functions has an important
impact on the admission control. In this experiment, we
investigate the impact of varying the s1 parameter and present
an analytical estimation for the number of admitted flows and
average SSIM score. In the dynamic algorithm, the estimated
number of admitted flows of video quality level i for a non-
normalized load l is

Ui(
l

AR )× l
Bitratei

(5)

where Bitratei is the expected average bitrate of video
quality level i (e.g., given as meta-data by the video server).
The total number of admitted flows is then given by summing
all n quality levels:

∑n
i=1

Ui(
l

AR )×l

Bitratei
.

To calculate the average video quality, it is sufficient to
know the share of each video quality level. The average video
quality at load l is given by

∑n
i=1 Ui(l)× SSIM(i), where

SSIM(i) is the average SSIM score of video quality level i.
To obtain the average SSIM score over a timeframe [t1, t2],
the equation can be integrated:∫ t2

t1

∑n
i=1 Ui(L(t))× SSIM(i)× tdt∫ t2
t1

∑n
i=1 Ui(L(t))× tdt

(6)

where L(t) is an estimator for the expected load over time t.
Figure 4 shows the average SSIM score as a function of the

network load for different s1 values. The figure shows that an
increasing network load has a decreasing effect on the SSIM
score as more videos are being rescaled to HQ Web videos.
This decreasing trend starts sooner for lower s1 values. The
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Fig. 4. SSIM score as a function of the network load for different s1 values.

results also show that the analytical model (ana) is a very good
estimator for the results obtained through simulation (sim).

As the obtained average video quality can be characterized
analytically, this can be used to determine an adequate policy
by setting appropriate values for the utility functions. An
operator should set the values that represent the lowest possible
video quality scores he is willing to tolerate for different
network loads. Based on these values he can then determine
which s1 parameter value, or even other types of utility
functions, are most suited to obtain the expected behaviour.

V. CONCLUSIONS

We presented a video rate adaptation algorithm that aug-
ments a PCN system with the option to dynamically modify
the video quality of existing flows. The algorithm uses utility
functions that define the share of each video quality level as a
function of the measured load. Performance evaluation results
show that the algorithm indeed succeeds in scaling the videos
according to the utility functions and characterizes the gain
compared to other approaches. Furthermore, we proposed an
analytical model that allows finding suitable utility functions.
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