218 research outputs found

    A 360 VR and Wi-Fi Tracking Based Autonomous Telepresence Robot for Virtual Tour

    Get PDF
    This study proposes a novel mobile robot teleoperation interface that demonstrates the applicability of a robot-aided remote telepresence system with a virtual reality (VR) device to a virtual tour scenario. To improve realism and provide an intuitive replica of the remote environment for the user interface, the implemented system automatically moves a mobile robot (viewpoint) while displaying a 360-degree live video streamed from the robot to a VR device (Oculus Rift). Upon the user choosing a destination location from a given set of options, the robot generates a route based on a shortest path graph and travels along that the route using a wireless signal tracking method that depends on measuring the direction of arrival (DOA) of radio signals. This paper presents an overview of the system and architecture, and discusses its implementation aspects. Experimental results show that the proposed system is able to move to the destination stably using the signal tracking method, and that at the same time, the user can remotely control the robot through the VR interface

    Holographic reality: enhancing the artificial reality experience throuhg interactive 3D holography

    Get PDF
    Holography was made know by several science-fiction productions, however this technology dates back to the year 1940. Despite the considerable age of this discovery, this technology remains inaccessible to the average consumer. The main goal of this manuscript is to advance the state of the art in interactive holography, providing an accessible and low-cost solution. The final product intends to nudge the HCI com munity to explore potential applications, in particular to be aquatic centric and environmentally friendly. Two main user studies are performed, in order to determine the impact of the proposed solution by a sample audience. Provided user studies include a first prototype as a Tangible User Interface - TUI for Holographic Reality - HR Second study included the Holographic Mounted Display - HMD for proposed HR interface, further analyzing the interactive holographic experience without hand-held devices. Both of these studies were further compared with an Augmented Reality setting. Obtained results demonstrate a significantly higher score for the HMD approach. This suggests it is the better solution, most likely due to the added simplicity and immersiveness features it has. However the TUI study did score higher in several key parameters, and should be considered for future studies. Comparing with an AR experience, the HMD study scores slightly lower, but manages to surpass AR in several parameters. Several approaches were outlined and evaluated, depicting different methods for the creation of Interactive Holographic Reality experiences. In spite of the low maturity of holographic technology, it can be concluded it is comparable and can keep up to other more developed and mature artificial reality settings, further supporting the need for the existence of the Holographic Reality conceptA tecnologia holográfica tornou-se conhecida através da ficção científica, contudo esta tecnologia remonta até ao ano 1940. Apesar da considerável idade desta descoberta, esta tecnologia continua a não ser acessíveil para o consumidor. O objetivo deste manuscrito é avançar o estado de arte da Holografia Interactiva, e fornecer uma solução de baixo custo. O objetivo do produto final é persuadir a comunidade HCI para a exploração de aplicações desta tecnologia, em particular em contextos aquáticos e pró-ambientais. Dois estudos principais foram efetuados, de modo a determinar qual o impacto da solução pro posta numa amostra. Os estudos fornecidos incluem um protótipo inicial baseado numa Interface Tangível e Realidade Holográfica e um dispositivo tangível. O segundo estudo inclui uma interface baseada num dispositivo head-mounted e em Realidade Holográfica, de modo a analisar e avaliar a experiência interativa e holográfica. Ambos os estudos são comparados com uma experiência semelhante, em Realidade Aumentada. Os resultados obtidos demonstram que o estudo HMD recebeu uma avaliação significante mel hor, em comparação com a abordagem TUI. Isto sugere que uma abordagem "head-mounted" tende a ser melhor solução, muito provavelmente devido às vantagens que possui em relação à simplicidade e imersividade que oferece. Contudo, o estudo TUI recebeu pontuações mais altas em alguns parâmetros chave, e deve ser considerados para a implementação de futuros estudos. Comparando com uma experiência de realidade aumentada, o estudo HMD recebeu uma avaliação ligeiramente menor, mas por uma margem mínima, e ultrapassando a AR em alguns parâmetros. Várias abordagens foram deliniadas e avaliadas, com diferentes métodos para a criação de experiências de Realidade Holográfica. Apesar da pouca maturidade da tecnologia holográfica, podemos concluir que a mesma é comparável e consegue acompanhar outros tipos de realidade artificial, que são muito mais desenvolvidos, o que suporta a necessidade da existência do conceito de Realidade Holográfica

    EnVRMent: Investigating Experience in a Virtual User-Composed Environment

    Get PDF
    Virtual Reality is a technology that has long held society\u27s interest, but has only recently began to reach a critical mass of everyday consumers. The idea of modern VR can be traced back decades, but because of the limitations of the technology (both hardware and software), we are only now exploring its potential. At present, VR can be used for tele-surgery, PTSD therapy, social training, professional meetings, conferences, and much more. It is no longer just an expensive gimmick to go on a momentary field trip; it is a tool, and as with the automobile, personal computer, and smartphone, it will only evolve as more and more adopt and utilize it in various ways. It can provide a three dimensional interface where only two dimensions were previously possible. It can allow us to express ourselves to one another in new ways regardless of the distance between individuals. It has astronomical potential, but with this potential we must first understand what makes it adoptable and attractive to the average consumer. The interaction with technology is often times the bottleneck through which the public either adopts or abandons that technology. The goal of this project is to explore user immerision and emotion during a VR experience centered around creating a virtual world. We also aimed to explore if the naturality of the user interface had any effect on user experience. Very limited user testing was available, however a small user group conducted in depth testing and feedback. While our sample size is small, the users were able to test the system and show that there is a positive correlation between influence on the virtual environment and a positive user emotional experience (immersion, empowerment, etc.), along with a few unexpected emotions (anxiety). We present the system developed, the user study, and proposed extensions for fruitful directions for this work by which a future project may continue the study

    A virtual reality head mounted display for underwater training and recreational purpose

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.This thesis introduces an interactive underwater virtual reality headset as an engaging and convenient tool for educational and recreational purpose. Recreational sea diving and other related underwater activities are common exhilarating experiences for many people. However, it is dangerous, costly and time-consuming for novices to learn. Virtual Reality presents a possible approach to this problem. Most of the consumer level virtual reality headsets can only be employed under dry conditions. Through a detailed literature review of virtual reality (VR) research field, a small gap that has not been filled which refers to the use of VR in wet or underwater scenarios. In order to fill the identified gap, a head mounted display prototype called UnderwaterVR was designed and implemented. The prototype is a safe and low-cost alternative for novices to learn diving in a controlled swimming pool environment, which at the same time serves as a novel entertainment platform to experience interactive underwater games. The proposed prototype is a cable-free, mask-like, waterproof VR goggles. In the virtual world, participants behave autonomously and being able to interact with the environment continuously. To evaluate the prototype, an autoethnographic study was conducted. The prototype was reported to be engaging and that, interestingly, there was less cybersickness in the prototype than in a normal VR setup out of water. A hypothesis is presented to interpret the reason why there was less cybersickness. This thesis presented a low cost but efficient way for making a waterproof head mounted display via 3D printing. The failures and redesigns that we had during the development contribute to the further research. Another contribution we have made in this thesis is to explore the underwater interactivity for VR/AR

    Virtual Helicopter Landing Platform (V-HELP)

    Get PDF
    The research project focused on how virtual reality (VR) could create a non-immersive environment and improve in increasing safety awareness at offshore platform. The main problem is the typical training talk usually use video and audio presentation which cannot provide the walkthrough movement. The aim of this project is to develop and design Virtual Helicopter Landing Platform (V-HELP) application which allows users to explore the virtual platform environment. The objectives of this project are to design and develop helicopter landing platform; to visualize movement and facilitate understanding in VR; and at the same time identify components and characteristics of the virtual environment for adequate realism. In completion the project, the framework used is based on part of the waterfall "modeling theory. The phases involved in the framework used for project development is the analysis phase, design and development phase, integration and testing phase and lastly evaluation phase. Developments tools have been used in the project are 3D Maya 5..0.1 and Macromedia Flash MX software. As a result from the evaluation conducted, shows that most of the evaluators are satisfied with the project. They think that the realism of the prototype can be improved in virtual environment through enhancement on chosen the suitable textures materials and enable user control during walkthrough. As a conclusion, the research project show that Virtual Environment are very useful and more effective for the offshore safety training compared to the conventional method

    Remotely operated telepresent robotics

    Get PDF
    Remotely operated robots with the ability of performing specific tasks are often used in hazardous environments in place of humans to prevent injury or death. Modern remotely operated robots suffer from limitations with accuracy which is primarily due the lack of depth perception and unintuitive hardware controls. The undertaken research project suggests an alternative method of vision and control to increase a user‟s operational performance of remotely controlled robotics. The Oculus Rift Development Kit 2.0 is a low cost device originally developed for the electronic entertainment industry which allows users to experience virtual reality by the use of a head mounted display. This technology is able to be adapted to different uses and is primarily utilised to achieve real world stereoscopic 3D vision for the user. Additionally a wearable controller was trialled with the goal of allowing a robotic arm to mimic the position of the user‟s arm via a master/slave setup. By incorporating the stated vision and control methods, any possible improvements in the accuracy and speed for users was investigated through experimentation and a conducted study. Results indicated that using the Oculus Rift for stereoscopic vision improved upon the user‟s ability to judge distances remotely but was detrimental to the user‟s ability to operate the robot. The research has been conducted under the supervision of the University of Southern Queensland (USQ) and provides useful information towards the area of remotely operated telepresent robotics

    Immersive virtual reality as a pedagogical tool in education:a systematic literature review of quantitative learning outcomes and experimental design

    Get PDF
    The adoption of immersive virtual reality (I-VR) as a pedagogical method in education has challenged the conceptual definition of what constitutes a learning environment. High fidelity graphics and immersive content using head-mounted-displays (HMD) have allowed students to explore complex subjects in a way that traditional teaching methods cannot. Despite this, research focusing on learning outcomes, intervention characteristics, and assessment measures associated with I-VR use has been sparse. To explore this, the current systematic review examined experimental studies published since 2013, where quantitative learning outcomes using HMD based I-VR were compared with less immersive pedagogical methods such as desktop computers and slideshows. A literature search yielded 29 publications that were deemed suitable for inclusion. Included papers were quality assessed using the Medical Education Research Study Quality Instrument (MERSQI). Most studies found a significant advantage of utilising I-VR in education, whilst a smaller number found no significant differences in attainment level regardless of whether I-VR or non-immersive methods were utilised. Only two studies found clear detrimental effects of using I-VR. However, most studies used short interventions, did not examine information retention, and were focused mainly on the teaching of scientific topics such as biology or physics. In addition, the MERSQI showed that the methods used to evaluate learning outcomes are often inadequate and this may affect the interpretation of I-VR’s utility. The review highlights that a rigorous methodological approach through the identification of appropriate assessment measures, intervention characteristics, and learning outcomes is essential to understanding the potential of I-VR as a pedagogical method

    Children and Virtual Reality: Emerging Possibilities and Challenges

    Get PDF
    Virtual Reality is fast becoming a reality, with estimates that over 200m headsets will have been sold by 2020, and the market value for VR hardware and software reaching well over $20bn by then. Key players in the market currently include PlayStation with PSVR, Facebook with Oculus Rift, Google Cardboard and Daydream, Mattel with Viewmaster, and many other brands investing in content production for various audiences. One of those audiences is young people and children. “Children and Virtual Reality” is a collaboration between Dubit, Turner, WEARVR and the COST (European Cooperation in Science and Technology) Action DigiLitEY. Dubit, Turner and WEARVR are companies that specialise in digital, TV and VR content, with an interest in developing best practices around VR and children. DigiLitEY is a five year (2013-2017) academic network that focuses on existing and emerging communicative technologies for young children. This includes wearable technologies, 3D printers, robots, augmented reality, toys and games and relevant aspects of the Internet of Things. This report brings together industry research into the effects of VR on 8 to 12 year olds, and ideas that arose from a COST funded Think Tank to explore what the research findings might mean for the use of VR by under 8s

    Digital Cognitive Companions for Marine Vessels : On the Path Towards Autonomous Ships

    Get PDF
    As for the automotive industry, industry and academia are making extensive efforts to create autonomous ships. The solutions for this are very technology-intense. Many building blocks, often relying on AI technology, need to work together to create a complete system that is safe and reliable to use. Even when the ships are fully unmanned, humans are still foreseen to guide the ships when unknown situations arise. This will be done through teleoperation systems.In this thesis, methods are presented to enhance the capability of two building blocks that are important for autonomous ships; a positioning system, and a system for teleoperation.The positioning system has been constructed to not rely on the Global Positioning System (GPS), as this system can be jammed or spoofed. Instead, it uses Bayesian calculations to compare the bottom depth and magnetic field measurements with known sea charts and magnetic field maps, in order to estimate the position. State-of-the-art techniques for this method typically use high-resolution maps. The problem is that there are hardly any high-resolution terrain maps available in the world. Hence we present a method using standard sea-charts. We compensate for the lower accuracy by using other domains, such as magnetic field intensity and bearings to landmarks. Using data from a field trial, we showed that the fusion method using multiple domains was more robust than using only one domain. In the second building block, we first investigated how 3D and VR approaches could support the remote operation of unmanned ships with a data connection with low throughput, by comparing respective graphical user interfaces (GUI) with a Baseline GUI following the currently applied interfaces in such contexts. Our findings show that both the 3D and VR approaches outperform the traditional approach significantly. We found the 3D GUI and VR GUI users to be better at reacting to potentially dangerous situations than the Baseline GUI users, and they could keep track of the surroundings more accurately. Building from this, we conducted a teleoperation user study using real-world data from a field-trial in the archipelago, where the users should assist the positioning system with bearings to landmarks. The users experienced the tool to give a good overview, and despite the connection with the low throughput, they managed through the GUI to significantly improve the positioning accuracy

    A motion control method for a differential drive robot based on human walking for immersive telepresence

    Get PDF
    Abstract. This thesis introduces an interface for controlling Differential Drive Robots (DDRs) for telepresence applications. Our goal is to enhance immersive experience while reducing user discomfort, when using Head Mounted Displays (HMDs) and body trackers. The robot is equipped with a 360° camera that captures the Robot Environment (RE). Users wear an HMD and use body trackers to navigate within a Local Environment (LE). Through a live video stream from the robot-mounted camera, users perceive the RE within a virtual sphere known as the Virtual Environment (VE). A proportional controller was employed to facilitate the control of the robot, enabling to replicate the movements of the user. The proposed method uses chest tracker to control the telepresence robot and focuses on minimizing vection and rotations induced by the robot’s motion by modifying the VE, such as rotating and translating it. Experimental results demonstrate the accuracy of the robot in reaching target positions when controlled through the body-tracker interface. Additionally, it also reveals an optimal VE size that effectively reduces VR sickness and enhances the sense of presence
    corecore