580 research outputs found

    EGOIST: Overlay Routing Using Selfish Neighbor Selection

    Full text link
    A foundational issue underlying many overlay network applications ranging from routing to P2P file sharing is that of connectivity management, i.e., folding new arrivals into an existing overlay, and re-wiring to cope with changing network conditions. Previous work has considered the problem from two perspectives: devising practical heuristics for specific applications designed to work well in real deployments, and providing abstractions for the underlying problem that are analytically tractable, especially via game-theoretic analysis. In this paper, we unify these two thrusts by using insights gleaned from novel, realistic theoretic models in the design of Egoist – a prototype overlay routing system that we implemented, deployed, and evaluated on PlanetLab. Using measurements on PlanetLab and trace-based simulations, we demonstrate that Egoist's neighbor selection primitives significantly outperform existing heuristics on a variety of performance metrics, including delay, available bandwidth, and node utilization. Moreover, we demonstrate that Egoist is competitive with an optimal, but unscalable full-mesh approach, remains highly effective under significant churn, is robust to cheating, and incurs minimal overhead. Finally, we discuss some of the potential benefits Egoist may offer to applications.National Science Foundation (CISE/CSR 0720604, ENG/EFRI 0735974, CISE/CNS 0524477, CNS/NeTS 0520166, CNS/ITR 0205294; CISE/EIA RI 0202067; CAREER 04446522); European Commission (RIDS-011923

    Application of overlay techniques to network monitoring

    Get PDF
    Measurement and monitoring are important for correct and efficient operation of a network, since these activities provide reliable information and accurate analysis for characterizing and troubleshooting a network’s performance. The focus of network measurement is to measure the volume and types of traffic on a particular network and to record the raw measurement results. The focus of network monitoring is to initiate measurement tasks, collect raw measurement results, and report aggregated outcomes. Network systems are continuously evolving: besides incremental change to accommodate new devices, more drastic changes occur to accommodate new applications, such as overlay-based content delivery networks. As a consequence, a network can experience significant increases in size and significant levels of long-range, coordinated, distributed activity; furthermore, heterogeneous network technologies, services and applications coexist and interact. Reliance upon traditional, point-to-point, ad hoc measurements to manage such networks is becoming increasingly tenuous. In particular, correlated, simultaneous 1-way measurements are needed, as is the ability to access measurement information stored throughout the network of interest. To address these new challenges, this dissertation proposes OverMon, a new paradigm for edge-to-edge network monitoring systems through the application of overlay techniques. Of particular interest, the problem of significant network overheads caused by normal overlay network techniques has been addressed by constructing overlay networks with topology awareness - the network topology information is derived from interior gateway protocol (IGP) traffic, i.e. OSPF traffic, thus eliminating all overlay maintenance network overhead. Through a prototype that uses overlays to initiate measurement tasks and to retrieve measurement results, systematic evaluation has been conducted to demonstrate the feasibility and functionality of OverMon. The measurement results show that OverMon achieves good performance in scalability, flexibility and extensibility, which are important in addressing the new challenges arising from network system evolution. This work, therefore, contributes an innovative approach of applying overly techniques to solve realistic network monitoring problems, and provides valuable first hand experience in building and evaluating such a distributed system

    Exploiting Parallelism in the Design of Peer-to-Peer Overlays

    Get PDF
    Many peer-to-peer overlay operations are inherently parallel and this parallelism can be exploited by using multi-destination multicast routing, resulting in significant message reduction in the underlying network. We propose criteria for assessing when multicast routing can effectively be used, and compare multi-destination multicast and host group multicast using these criteria. We show that the assumptions underlying the Chuang-Sirbu multicast scaling law are valid in large-scale peer-to-peer overlays, and thus Chuang-Sirbu is suitable for estimating the message reduction when replacing unicast overlay messages with multicast messages. Using simulation, we evaluate message savings in two overlay algorithms when multi-destination multicast routing is used in place of unicast messages. We further describe parallelism in a range of overlay algorithms including multi-hop, variable-hop, load-balancing, random walk, and measurement overlay

    Ontology-based Search Algorithms over Large-Scale Unstructured Peer-to-Peer Networks

    Get PDF
    Peer-to-Peer(P2P) systems have emerged as a promising paradigm to structure large scale distributed systems. They provide a robust, scalable and decentralized way to share and publish data.The unstructured P2P systems have gained much popularity in recent years for their wide applicability and simplicity. However efficient resource discovery remains a fundamental challenge for unstructured P2P networks due to the lack of a network structure. To effectively harness the power of unstructured P2P systems, the challenges in distributed knowledge management and information search need to be overcome. Current attempts to solve the problems pertaining to knowledge management and search have focused on simple term based routing indices and keyword search queries. Many P2P resource discovery applications will require more complex query functionality, as users will publish semantically rich data and need efficiently content location algorithms that find target content at moderate cost. Therefore, effective knowledge and data management techniques and search tools for information retrieval are imperative and lasting. In my dissertation, I present a suite of protocols that assist in efficient content location and knowledge management in unstructured Peer-to-Peer overlays. The basis of these schemes is their ability to learn from past peer interactions and increasing their performance with time.My work aims to provide effective and bandwidth-efficient searching and data sharing in unstructured P2P environments. A suite of algorithms which provide peers in unstructured P2P overlays with the state necessary in order to efficiently locate, disseminate and replicate objects is presented. Also, Existing approaches to federated search are adapted and new methods are developed for semantic knowledge representation, resource selection, and knowledge evolution for efficient search in dynamic and distributed P2P network environments. Furthermore,autonomous and decentralized algorithms that reorganizes an unstructured network topology into a one with desired search-enhancing properties are proposed in a network evolution model to facilitate effective and efficient semantic search in dynamic environments

    Underlay aware approach to support quality of service in publish-subscribe systems

    Get PDF
    Providing delay-reduced routing is important in publish-subscribe systems where timely delivery of event notifications is a critical factor affecting system operation or user experience. However, common research focused primarily on alleviating false-positives. More recent efforts aim towards quality related issues through adapting the overlay according to subscriber requirements but leaving underlying network characteristics aside. It is commonly accepted that efficient routing can only be achieved when underlying network characteristics are respected. Even so, incorporating underlay-aware strategies to build low-stretch overlays is not considered in many distributed environments. This work focuses on solving the problem of establishing an efficient underlay-aware routing mechanism in a content-based publish-subscribe system. In particular, we strive to reduce end-to-end delay among communication partners. Thereby, our contributions are twofold: We will develop a topology inference scheme for unstructured peer-to-peer networks and introduce a routing mechanism reducing overall end-to-end delay among peers. Experimental evaluations will be given for different Internet-like router topologies showing that the approach is capable of modeling an underlay network in an efficient and accurate manner. Furthermore, we will show the positive impact on the stretch of the overlay to outline the concept as a source for efficient event notification delivery in a publish-subscribe environment

    Analyzing and Enhancing Routing Protocols for Friend-to-Friend Overlays

    Get PDF
    The threat of surveillance by governmental and industrial parties is more eminent than ever. As communication moves into the digital domain, the advances in automatic assessment and interpretation of enormous amounts of data enable tracking of millions of people, recording and monitoring their private life with an unprecedented accurateness. The knowledge of such an all-encompassing loss of privacy affects the behavior of individuals, inducing various degrees of (self-)censorship and anxiety. Furthermore, the monopoly of a few large-scale organizations on digital communication enables global censorship and manipulation of public opinion. Thus, the current situation undermines the freedom of speech to a detrimental degree and threatens the foundations of modern society. Anonymous and censorship-resistant communication systems are hence of utmost importance to circumvent constant surveillance. However, existing systems are highly vulnerable to infiltration and sabotage. In particular, Sybil attacks, i.e., powerful parties inserting a large number of fake identities into the system, enable malicious parties to observe and possibly manipulate a large fraction of the communication within the system. Friend-to-friend (F2F) overlays, which restrict direct communication to parties sharing a real-world trust relationship, are a promising countermeasure to Sybil attacks, since the requirement of establishing real-world trust increases the cost of infiltration drastically. Yet, existing F2F overlays suffer from a low performance, are vulnerable to denial-of-service attacks, or fail to provide anonymity. Our first contribution in this thesis is concerned with an in-depth analysis of the concepts underlying the design of state-of-the-art F2F overlays. In the course of this analysis, we first extend the existing evaluation methods considerably, hence providing tools for both our and future research in the area of F2F overlays and distributed systems in general. Based on the novel methodology, we prove that existing approaches are inherently unable to offer acceptable delays without either requiring exhaustive maintenance costs or enabling denial-of-service attacks and de-anonymization. Consequentially, our second contribution lies in the design and evaluation of a novel concept for F2F overlays based on insights of the prior in-depth analysis. Our previous analysis has revealed that greedy embeddings allow highly efficient communication in arbitrary connectivity-restricted overlays by addressing participants through coordinates and adapting these coordinates to the overlay structure. However, greedy embeddings in their original form reveal the identity of the communicating parties and fail to provide the necessary resilience in the presence of dynamic and possibly malicious users. Therefore, we present a privacy-preserving communication protocol for greedy embeddings based on anonymous return addresses rather than identifying node coordinates. Furthermore, we enhance the communication’s robustness and attack-resistance by using multiple parallel embeddings and alternative algorithms for message delivery. We show that our approach achieves a low communication complexity. By replacing the coordinates with anonymous addresses, we furthermore provably achieve anonymity in the form of plausible deniability against an internal local adversary. Complementary, our simulation study on real-world data indicates that our approach is highly efficient and effectively mitigates the impact of failures as well as powerful denial-of-service attacks. Our fundamental results open new possibilities for anonymous and censorship-resistant applications.Die Bedrohung der Überwachung durch staatliche oder kommerzielle Stellen ist ein drängendes Problem der modernen Gesellschaft. Heutzutage findet Kommunikation vermehrt über digitale Kanäle statt. Die so verfügbaren Daten über das Kommunikationsverhalten eines Großteils der Bevölkerung in Kombination mit den Möglichkeiten im Bereich der automatisierten Verarbeitung solcher Daten erlauben das großflächige Tracking von Millionen an Personen, deren Privatleben mit noch nie da gewesener Genauigkeit aufgezeichnet und beobachtet werden kann. Das Wissen über diese allumfassende Überwachung verändert das individuelle Verhalten und führt so zu (Selbst-)zensur sowie Ängsten. Des weiteren ermöglicht die Monopolstellung einiger weniger Internetkonzernen globale Zensur und Manipulation der öffentlichen Meinung. Deshalb stellt die momentane Situation eine drastische Einschränkung der Meinungsfreiheit dar und bedroht die Grundfesten der modernen Gesellschaft. Systeme zur anonymen und zensurresistenten Kommunikation sind daher von ungemeiner Wichtigkeit. Jedoch sind die momentanen System anfällig gegen Sabotage. Insbesondere ermöglichen es Sybil-Angriffe, bei denen ein Angreifer eine große Anzahl an gefälschten Teilnehmern in ein System einschleust und so einen großen Teil der Kommunikation kontrolliert, Kommunikation innerhalb eines solchen Systems zu beobachten und zu manipulieren. F2F Overlays dagegen erlauben nur direkte Kommunikation zwischen Teilnehmern, die eine Vertrauensbeziehung in der realen Welt teilen. Dadurch erschweren F2F Overlays das Eindringen von Angreifern in das System entscheidend und verringern so den Einfluss von Sybil-Angriffen. Allerdings leiden die existierenden F2F Overlays an geringer Leistungsfähigkeit, Anfälligkeit gegen Denial-of-Service Angriffe oder fehlender Anonymität. Der erste Beitrag dieser Arbeit liegt daher in der fokussierten Analyse der Konzepte, die in den momentanen F2F Overlays zum Einsatz kommen. Im Zuge dieser Arbeit erweitern wir zunächst die existierenden Evaluationsmethoden entscheidend und erarbeiten so Methoden, die Grundlagen für unsere sowie zukünftige Forschung in diesem Bereich bilden. Basierend auf diesen neuen Evaluationsmethoden zeigen wir, dass die existierenden Ansätze grundlegend nicht fähig sind, akzeptable Antwortzeiten bereitzustellen ohne im Zuge dessen enorme Instandhaltungskosten oder Anfälligkeiten gegen Angriffe in Kauf zu nehmen. Folglich besteht unser zweiter Beitrag in der Entwicklung und Evaluierung eines neuen Konzeptes für F2F Overlays, basierenden auf den Erkenntnissen der vorangehenden Analyse. Insbesondere ergab sich in der vorangehenden Evaluation, dass Greedy Embeddings hoch-effiziente Kommunikation erlauben indem sie Teilnehmer durch Koordinaten adressieren und diese an die Struktur des Overlays anpassen. Jedoch sind Greedy Embeddings in ihrer ursprünglichen Form nicht auf anonyme Kommunikation mit einer dynamischen Teilnehmermengen und potentiellen Angreifern ausgelegt. Daher präsentieren wir ein Privätssphäre-schützenden Kommunikationsprotokoll für F2F Overlays, in dem die identifizierenden Koordinaten durch anonyme Adressen ersetzt werden. Des weiteren erhöhen wir die Resistenz der Kommunikation durch den Einsatz mehrerer Embeddings und alternativer Algorithmen zum Finden von Routen. Wir beweisen, dass unser Ansatz eine geringe Kommunikationskomplexität im Bezug auf die eigentliche Kommunikation sowie die Instandhaltung des Embeddings aufweist. Ferner zeigt unsere Simulationstudie, dass der Ansatz effiziente Kommunikation mit kurzen Antwortszeiten und geringer Instandhaltungskosten erreicht sowie den Einfluss von Ausfälle und Angriffe erfolgreich abschwächt. Unsere grundlegenden Ergebnisse eröffnen neue Möglichkeiten in der Entwicklung anonymer und zensurresistenter Anwendungen

    Scalable adaptive group communication on bi-directional shared prefix trees

    Get PDF
    Efficient group communication within the Internet has been implemented by multicast. Unfortunately, its global deployment is missing. Nevertheless, emerging and progressively establishing popular applications, like IPTV or large-scale social video chats, require an economical data distribution throughout the Internet. To overcome the limitations of multicast deployment, we introduce and analyze BIDIR-SAM, the rest structured overlay multicast scheme based on bi-directional shared prefix trees. BIDIR-SAM admits predictable costs growing logarithmically with increasing group size. We also present a broadcast approach for DHT-enabled P2P networks. Both schemes are integrated in a standard compliant hybrid group communication architecture, bridging the gap between overlay and underlay as well as between inter- and intra-domain multicast
    • …
    corecore