459 research outputs found

    Application of a Novel Stability Control System for Coordination of Power Flow Control Devices in the Future GB Transmission System

    Get PDF
    With increasing large-scale renewable energy sources in the UK and the need for adequate transmission capacity to accommodate the upcoming renewable generations, more state-of-the-art power flow control devices such as embedded High Voltage DC (HVDC) links will soon be commissioned in the GB HV transmission system to provide the additional capacity. An operational stability control system is required to ensure the coordinated control of power flow control devices in order to achieve better dynamic performance and stability. The focus of this paper is to demonstrate the capability of a multi-variable controller for the coordinated control using a non-parametric sampled regulator control design method. This method is practical for applications in large power systems since the complexity of the controller design does not increase with the size and dynamic of the power system. Also, this design method is demonstrated in two power system applications in this paper

    Prediction by Promoter Logic in Bacterial Quorum Sensing

    Get PDF
    Quorum-sensing systems mediate chemical communication between bacterial cells, coordinating cell-density-dependent processes like biofilm formation and virulence-factor expression. In the proteobacterial LuxI/LuxR quorum sensing paradigm, a signaling molecule generated by an enzyme (LuxI) diffuses between cells and allosterically stimulates a transcriptional regulator (LuxR) to activate its cognate promoter (pR). By expressing either LuxI or LuxR in positive feedback from pR, these versatile systems can generate smooth (monostable) or abrupt (bistable) density-dependent responses to suit the ecological context. Here we combine theory and experiment to demonstrate that the promoter logic of pR – its measured activity as a function of LuxI and LuxR levels – contains all the biochemical information required to quantitatively predict the responses of such feedback loops. The interplay of promoter logic with feedback topology underlies the versatility of the LuxI/LuxR paradigm: LuxR and LuxI positive-feedback systems show dramatically different responses, while a dual positive/negative-feedback system displays synchronized oscillations. These results highlight the dual utility of promoter logic: to probe microscopic parameters and predict macroscopic phenotype

    Runs, Panics and Bubbles: Diamond-Dybvig and Morris-Shin Reconsidered

    Get PDF
    The basic two-noncooperative-equilibrium-point model of Diamond and Dybvig is considered along with the work of Morris and Shin utilizing the possibility of outside noise to select a unique equilibrium point. Both of these approaches are essentially nondynamic. We add an explicit replicator dynamic from evolutionary game theory to provide for a sensitivity analysis that encompasses both models and contains the results of both depending on parameter settings

    Switchable Genetic Oscillator Operating in Quasi-Stable Mode

    Get PDF
    Ring topologies of repressing genes have qualitatively different long-term dynamics if the number of genes is odd (they oscillate) or even (they exhibit bistability). However, these attractors may not fully explain the observed behavior in transient and stochastic environments such as the cell. We show here that even repressilators possess quasi-stable, travelling-wave periodic solutions that are reachable, long-lived and robust to parameter changes. These solutions underlie the sustained oscillations observed in even rings in the stochastic regime, even if these circuits are expected to behave as switches. The existence of such solutions can also be exploited for control purposes: operation of the system around the quasi-stable orbit allows us to turn on and off the oscillations reliably and on demand. We illustrate these ideas with a simple protocol based on optical interference that can induce oscillations robustly both in the stochastic and deterministic regimes.Comment: 24 pages, 5 main figure

    Activity Report: Automatic Control 1979-1980

    Get PDF

    Iterative Random Forests to detect predictive and stable high-order interactions

    Get PDF
    Genomics has revolutionized biology, enabling the interrogation of whole transcriptomes, genome-wide binding sites for proteins, and many other molecular processes. However, individual genomic assays measure elements that interact in vivo as components of larger molecular machines. Understanding how these high-order interactions drive gene expression presents a substantial statistical challenge. Building on Random Forests (RF), Random Intersection Trees (RITs), and through extensive, biologically inspired simulations, we developed the iterative Random Forest algorithm (iRF). iRF trains a feature-weighted ensemble of decision trees to detect stable, high-order interactions with same order of computational cost as RF. We demonstrate the utility of iRF for high-order interaction discovery in two prediction problems: enhancer activity in the early Drosophila embryo and alternative splicing of primary transcripts in human derived cell lines. In Drosophila, among the 20 pairwise transcription factor interactions iRF identifies as stable (returned in more than half of bootstrap replicates), 80% have been previously reported as physical interactions. Moreover, novel third-order interactions, e.g. between Zelda (Zld), Giant (Gt), and Twist (Twi), suggest high-order relationships that are candidates for follow-up experiments. In human-derived cells, iRF re-discovered a central role of H3K36me3 in chromatin-mediated splicing regulation, and identified novel 5th and 6th order interactions, indicative of multi-valent nucleosomes with specific roles in splicing regulation. By decoupling the order of interactions from the computational cost of identification, iRF opens new avenues of inquiry into the molecular mechanisms underlying genome biology

    Convex searches for discrete-time Zames-Falb multipliers

    Full text link
    In this paper we develop and analyse convex searches for Zames--Falb multipliers. We present two different approaches: Infinite Impulse Response (IIR) and Finite Impulse Response (FIR) multipliers. The set of FIR multipliers is complete in that any IIR multipliers can be phase-substituted by an arbitrarily large order FIR multiplier. We show that searches in discrete-time for FIR multipliers are effective even for large orders. As expected, the numerical results provide the best 2\ell_{2}-stability results in the literature for slope-restricted nonlinearities. Finally, we demonstrate that the discrete-time search can provide an effective method to find suitable continuous-time multipliers.Comment: 12 page

    Coupling between feedback loops in autoregulatory networks affects bistability range, open-loop gain and switching times

    Get PDF
    Biochemical regulatory networks governing diverse cellular processes such as stress-response, differentiation and cell cycle often contain coupled feedback loops. We aim at understanding how features of feedback architecture, such as the number of loops, the sign of the loops and the type of their coupling, affect network dynamical performance. Specifically, we investigate how bistability range, maximum open-loop gain and switching times of a network with transcriptional positive feedback are affected by additive or multiplicative coupling with another positive- or negative-feedback loop. We show that a network's bistability range is positively correlated with its maximum open-loop gain and that both quantities depend on the sign of the feedback loops and the type of feedback coupling. Moreover, we find that the addition of positive feedback could decrease the bistability range if we control the basal level in the signal-response curves of the two systems. Furthermore, the addition of negative feedback has the capacity to increase the bistability range if its dissociation constant is much lower than that of the positive feedback. We also find that the addition of a positive feedback to a bistable network increases the robustness of its bistability range, whereas the addition of a negative feedback decreases it. Finally, we show that the switching time for a transition from a high to a low steady state increases with the effective fold change in gene regulation. In summary, we show that the effect of coupled feedback loops on the bistability range and switching times depends on the underlying mechanistic details

    Unfalsified control : data-driven control design for performance improvement

    Get PDF
    corecore