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Abstract
Biochemical regulatory networks governing diverse cellular processes such as stress-response,
differentiation and cell cycle often contain coupled feedback loops. We aim at understanding
how features of feedback architecture, such as the number of loops, the sign of the loops and
the type of their coupling, affect network dynamical performance. Specifically, we investigate
how bistability range, maximum open-loop gain and switching times of a network with
transcriptional positive feedback are affected by additive or multiplicative coupling with
another positive- or negative-feedback loop. We show that a network’s bistability range is
positively correlated with its maximum open-loop gain and that both quantities depend on the
sign of the feedback loops and the type of feedback coupling. Moreover, we find that the
addition of positive feedback could decrease the bistability range if we control the basal level
in the signal-response curves of the two systems. Furthermore, the addition of negative
feedback has the capacity to increase the bistability range if its dissociation constant is much
lower than that of the positive feedback. We also find that the addition of a positive feedback to
a bistable network increases the robustness of its bistability range, whereas the addition of a
negative feedback decreases it. Finally, we show that the switching time for a transition from a
high to a low steady state increases with the effective fold change in gene regulation. In
summary, we show that the effect of coupled feedback loops on the bistability range and
switching times depends on the underlying mechanistic details.

S Online supplementary data available from stacks.iop.org/PhysBio/9/055003/mmedia

1. Introduction

Coupled positive- and negative-feedback loops are common
features of biochemical networks [1–3]. Such loops have been
identified in regulatory pathways that govern diverse cellular
processes, such as stress-response [4], galactose signaling
[5] and the cell cycle [6]. The dynamic consequences of
feedback in simple genetic circuits were theoretically analyzed
by Savageau [7–9]. Since then, these predictions have been
extended and verified experimentally. It was demonstrated that
negative feedback is likely to result in faster transient responses

[10], robustness against the fluctuation of parameters [11] and
dynamical stability [12]. On the other hand, positive feedback
is likely to result in slower response times [13], increased noise
[14] and possibly bistability [15].

Network bistability is defined as the ability of a system
to exhibit two different stable steady states for the same
biochemical conditions. For a system to be bistable, the
underlying circuit must possess positive feedback along with
some type of nonlinear behavior [16]. Previously, it was shown
that the stability properties of a positive-feedback system can
be deduced by analyzing the behavior of the open-loop system
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for which the feedback is blocked but the system is subject to
tunable input instead. [17]. As long as the open-loop system
is monotone (lacks negative-feedback loops; excluding self-
feedback) and displays the sigmoidal input–output curve, the
closed system is guaranteed to be bistable for some range
of feedback strengths [17]. Furthermore, information about
closed system’s stability is determined by analyzing the slope
of the steady-state input–output curve of the open-loop system
at fixed points. For such analysis, it is often useful to analyze
the slope of this curve in log–log coordinates. This is a local
quantity defined for a given input signal and is referred to
as open-loop gain (LG). Previously, we have shown that the
necessary condition for bistability in a network depends on the
maximum value of LG (mLG)—a global quantity computed
over the range of signals [18].

The simplest transcriptional regulatory network that can
exhibit bistability is an autoregulatory circuit, in which a
transcription factor (TF) positively regulates the production of
its own mRNA. Such single-feedback autoregulatory circuits
play a crucial role in several cellular processes, such as
stress-response [19], differentiation [20] and cell cycle [21].
These observations raise the following question—If a circuit
with a single positive feedback can mediate diverse cellular
responses, then why do some biological systems have more
than one feedback? Several answers have been suggested
by past studies, some of which we briefly discuss here.
First, duplicate feedback loops provide robustness against
perturbations simply via redundancy of their effect [22]. For
example, a genetic mutation or fluctuation disabling one of
the feedback loops may not drastically affect the network
performance if there is another loop. Second, the presence of
fast and slow positive-feedback loops can result in a ‘dual time’
monostable or bistable switch that is both rapidly inducible and
resistant to noise during signaling [23, 24]. Third, positive-
feedback loops can interact to increase effective cooperativity,
thereby increasing the range of conditions at which bistability
is observed [25]. Fourth, coupled positive-feedback loops can
give rise to multistable decision switches that can robustly
discriminate differences in strength, duration and timing of
signal [26]. On the other hand, interlinked positive- and
negative-feedback loops offer flexibility in the network’s
dynamical performance as modulating their relative strengths
enables transitions between the bistable and oscillatory regime
[27, 28]. The presence of positive feedback in an oscillatory
network (designed primarily using negative-feedback loops)
increases the robustness of the oscillations and allows for
greater tunability [29]. The presence of negative feedback in
a bistable network produces faster reversible transitions and
transient switching responses [30].

Here, we focus on how a single transcriptional positive
feedback interacts with another positive- or negative-feedback
loop to affect the dynamical properties of a bistable network.
Hereafter, the interaction between two feedback loops is
referred to as ‘coupling’ and depending on the number of
promoters in the genetic architecture, it can be classified
into additive (two promoters with one operator site each)
or multiplicative (one promoter with two operator sites).
Previously, it was shown that additive coupling between
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Figure 1. Genetic architectures and corresponding transcriptional
logic depicting the coupling of feedback loops. (a) PPA: a gene
network depicting the additive coupling of two positive-feedback
loops. The transcription of gene X is controlled from two
independent promoters, P1 and P2, both of which possess upstream
operator sites for the TF XA. Bound TF upregulates transcription
from the two promoters, thereby giving rise to two
positive-feedback loops. (b) PPM: a gene network depicting
multiplicative coupling of two positive-feedback loops. The
transcription of gene X is controlled from one promoter P. TF XA

regulates transcription by binding to the operator sites upstream of
the promoter, thereby resulting in two positive-feedback loops such
as in the case of additive coupling. (c) PNA: a gene network
depicting additive coupling of a positive- and a negative-feedback
loop. The transcription of gene X is controlled from two independent
promoters P1 and P2, both of which possess upstream operator sites
for the TF XA. Bound TF upregulates and downregulates the
transcription from the promoters P1 and P2, respectively, thereby
giving rise to positive- and negative-feedback loops. (d) PNM: a
gene network depicting multiplicative coupling of a positive- and a
negative-feedback loop. The transcription of gene X is controlled by
one promoter P. TF XA regulates transcription by binding to the
operator sites upstream of the promoter, thereby resulting in
positive- and negative-feedback loops similar to the case of additive
coupling.

positive-feedback loops always increases the bistability range
and switching times [31]. In contrast, additive coupling
between positive and negative feedback decreases the
bistability range [28]. However, these results are based on
a limited choice of parameter values and did not explicitly
consider the possibility of multiplicative coupling. In this
work, we investigate how the bistability range and the
switching time of a network with autoregulatory positive
feedback are affected by both additive and multiplicative
coupling with another positive- or negative-feedback loop. In
general, we aim at understanding how the features of feedback
architecture, such as the number of loops, the sign of the loops
and the type of their coupling, affect a network’s dynamical
performance.

2. Mathematical model for networks with coupled
feedback loops

The type of coupling between feedback loops is a consequence
of the underlying genetic architecture and as discussed
below depends on the number of promoters. Here we
consider four different genetic architectures which result in
additively or multiplicatively coupled positive/positive- and
positive/negative-feedback loops (figure 1). We built ordinary
differential-equation-based models for these networks
assuming that mRNA concentrations are at quasi-steady state
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to understand the effects of the number of loops, the sign of the
loops and the type of their coupling. The resulting equations
are given below along with some key attributes, while detailed
derivations are presented in the supplementary data available
at stacks.iop.org/PhysBio/9/055003/mmedia.

2.1. Additively coupled positive/positive-feedback loops
(PPA-network)

Figure 1(a) depicts a scenario in which the transcription of
gene X is controlled from two independent promoters, P1

and P2. Post-translationally, an activating signal converts the
protein X into an active form XA. This form functions as a
TF and positively regulates transcription of its own gene by
binding to the operator sites upstream of the two promoters,
thereby resulting in two positive-feedback loops. An example
of such a regulatory architecture is the phoPR operon in
Bacillus subtilis whose transcription is controlled by two σA-
dependent promoters both regulated by TF PhoP∼P [32]. We
built a detailed biochemical model for this network and found
that the coupling between the feedback loops results in an
additive relationship between them. The following equations
between the normalized concentrations of the active TF (xA)
and the total protein (xT ) display the additive effect:

dxT

dτ
= b

(
1 + f1

xn1
A

xn1
A + 1

+ f2
xn2

A

xn2
A + ln2

)
− xT (1)

xA = γ xT . (2)

These equations are in dimensionless form—concentrations
are normalized with the dissociation constant of TF binding
to the first operator site, whereas the dimensionless time τ is
obtained by normalizing time with the protein degradation rate.
All parameters in the above equations are positive and have a
clear meaning: b is the combined basal protein synthesis rate
from two promoters, f1 and f2 are the fold changes in protein
synthesis resulting from each operator site, n1 and n2 are the
respective Hill coefficients for the two positive-feedback loops
(number of molecules of XA required to activate each operator
site) and l is the ratio of the TF dissociation constants of the
second site to that of the first site. For simplicity, the activation
of TF is modeled with a linear equation (2), which expresses
the concentration of active TF as a fraction of the concentration
of total protein. This linear relation corresponds to first-order
activation and deactivation reactions (see the supplementary
data available at stacks.iop.org/PhysBio/9/055003/mmedia).
Biologically, this can occur when activation or deactivation is
achieved via binding to a small molecule present in excess or
via unsaturated phosphorylation–dephosphorylation reactions.
The parameter γ represents the fraction of the total TF that
is active and thus has a value between 0 and 1. Henceforth, it
will be considered as the activation signal for the network.

2.2. Multiplicatively coupled positive/positive-feedback
loops (PPM-network)

Figure 1(b) depicts an alternate scenario in which the
transcription of gene X is controlled by one promoter P
with two operator sites that bind an active form XA and

positively regulate transcription rate. Consequently, there are
two positive-feedback loops, similar to section 2.1 but with
different coupling. In B. subtilis, TF DegU∼P controls its
own transcription in a similar fashion by two operator sites
upstream of its promoter [33]. We built a detailed biochemical
model for this network with one promoter. Under the two
assumptions stated below, we found that the coupling between
the feedback loops results in a multiplicative relationship
between them. First, we assumed that TF molecules binding
to different operator sites do not interact, i.e. bind non-
cooperatively. This assumption leads to an additive free energy
of binding and as a result, the dissociation constant of the TF
molecules from the two operator sites is the product of the
dissociation constants from each individual operator site. The
second assumption is that TF molecules bound to different
operator sites interact with RNA polymerase independently
and, as a result, the fold change in the rate of protein synthesis
from the two operator sites is the product of the fold changes
from the individual operator sites. Under these assumptions,
equation (1) is replaced with the following equation, which
displays the multiplicative effect:

dxT

dτ
= b

(
1 + f1

xn1
A

xn1
A + 1

)(
1 + f2

xn2
A

xn2
A + ln2

)
− xT . (3)

We assume the same mechanism for linear activation as in
equation (2). All parameters have the same meanings as in
section 2.1, except b, which is now the basal protein synthesis
rate from the single promoter.

Note that equation (3) is derived assuming non-
cooperative binding of TFs. However, cooperative binding
of TFs at different operator sites is possible in the case
of coupled positive/positive-feedback loops. For example,
in bacteriophage λ, the CI repressor positively regulates its
own transcription from the promoter PRM by cooperatively
binding to the operator sites OR1 and OR2 [34]. Therefore,
we also developed an alternate framework which takes
cooperativity into account; however, our main conclusions
do not depend on it (see the supplementary data available
at stacks.iop.org/PhysBio/9/055003/mmedia).

2.3. Additively coupled positive/negative-feedback loops
(PNA-network)

Figure 1(c) depicts a scenario in which the transcription
of gene X is controlled from two independent promoters,
P1 and P2. The two-promoter situation is similar to figure
1(a); however, in this case, the active form XA regulates
the transcription both positively and negatively from the
promoters P1 and P2, respectively, thereby resulting in positive-
and negative-feedback loops. For example, in B. subtilis,
TF Spo0A∼P positively and negatively regulates its own
transcription through σH and σA-dependent promoters by
binding to different operator sites [35]. As in section 2.1,
we built a detailed biochemical model for this network and
found that the coupling between the two feedback loops results
in an additive relationship between them, as depicted in the
following equation:

dxT

dτ
= b

(
1 + f1

xn1
A

xn1
A + 1

− f2
xn2

A

xn2
A + ln2

)
− xT . (4)
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We assume the same mechanism for linear activation as in
equation (2). Compared to section 2.1, some of the parameters
now have slightly different meanings, as noted. f2 is now
the fold-change reduction in protein synthesis and n2 is the
Hill coefficient for the negative feedback. All parameters are
positive. Additionally, to ensure that the rate of change of
protein (dxT /dτ ) in the above equation remains positive in the
limit of non-saturated positive feedback and saturated negative
feedback (l � xA � 1), we constrain f2 to be less than 1.

2.4. Multiplicatively coupled positive/negative-feedback
loops (PNM-network)

Figure 1(d) depicts a scenario in which the transcription of
gene X is controlled from one promoter P. The one-promoter
situation is similar to figure 1(b); however, in this case, the
active form XA both positively and negatively regulates its own
transcription by binding to operator sites that are upstream
of the promoter, thereby resulting in positive- and negative-
feedback loops. In E. coli, PapB autoregulates itself in a
similar manner—it activates transcription by binding to an
upstream operator site, while it represses transcription by
binding to another which includes the position of transcription
initiation by RNA polymerase [36]. As in section 2.2, we
built a detailed biochemical model for this network, to find
that the coupling between the two feedback loops results in
a multiplicative relationship between them, as depicted in the
following equation:

dxT

dτ
= b

(
1 + f1

xn1
A

xn1
A + 1

) (
1 − f2

xn2
A

xn2
A + ln2

)
− xT . (5)

We assume the same mechanism for linear activation as in
equation (2), and all of the parameters have the same meaning
as in section 2.3.

Note that substituting f2 = 0 into equation (1) (or into
equations (3)–(5)) removes the second positive or negative
feedback, whereby the system reduces to a single positive-
feedback network (P-network). The bistability properties of
this network are depicted in figure 2. Steady states of the
network are determined by the intersections between the
system’s nullclines: the open-loop transcriptional transfer
function (production term in equation (1) after substituting
f2 = 0, solid curve) and the dotted line (equation (2)),
depicting the input signal (figure 2(a)). The two dashed
lines with slopes γ −1

1 and γ −1
2 represent the boundaries of

the bistability range. Any signal inside this range (dotted
line in figure 2(a)) will result in three intersections with
the transcriptional transfer function, indicating the existence
of two stable steady states and an unstable steady state.
LG in figure 2(a) refers to the slope of the transcriptional
transfer function in the log–log coordinates. For a sigmoidal
transcriptional transfer function (as in figure 2(a)), LG depends
on the given input signal through the concentration of TF
XA and attains its maximum value in the interval γ1 <

γ < γ2 (figure 2(b)). Figure 2(c) shows the steady-state
signal-response curve (one-parameter bifurcation diagram)
containing a range of signals for which two different steady
states are possible. This curve consists of three branches: two
of the branches represent the stable steady states (solid lines)

and the intermediate dotted branch represents the unstable
steady state (dotted line). At the boundaries of the bistability
range, the steady-state response of the system discontinuously
jumps from one state to the other (see the arrows in
figure 2(c)).

Although the above models in sections 2.1–2.4 are
developed for different variants of an autoregulatory network
with a single TF, they can be extended to include multiple TFs.
For example, let us assume that the first positive feedback in
the scenarios discussed above is mediated through another
gene Y, such that genes X and Y mutually activate each other’s
transcription. In this case, gene Y serves as an intermediate
node, which increases the dimensionality of the equations at
hand. Nevertheless, this scenario can be reduced to the form
of equations discussed above by assuming a quasi-steady state
approximation for TF YA

( dyA

dτ
≈ 0

)
. This assumption will

allow us to substitute TF YA as a function of TF XA into the
differential equation governing xT , thereby reducing the sys-
tem to one dimension. The quasi-steady state approximation
discussed above may not always be applicable for additional
TFs, but is sometimes useful for example when the second TF
has a faster degradation rate. Moreover, this assumption does
not affect the condition for bistability (LG > 1), which has
been derived for systems with indirect feedback loops and is
hence applicable for networks with multiple TFs [17].

Methods. We sampled 10 000 parameter sets for which the
following networks were simultaneously bistable: (i) P, PPA
and PPM, and (ii) P, PNA and PNM (see the supplementary
data available at stacks.iop.org/PhysBio/9/055003/mmedia for
details of the parameter sets). For each parameter set, we used
the command-line bifurcation package MATCONT [37] to
obtain the bifurcation diagram. Subsequently, MATLAB was
used to analyze the sampling data and to numerically compute
bistability range, mLG, effective fold change and switching
times. The bistability range is defined as the ratio between
the higher (γ2) and lower (γ1) thresholds of the signal at
which the system, respectively, switches from an OFF state
to an ON state, and vice versa. LG is defined as the slope of
transcriptional transfer function at steady state (xT = U (xA))
in log–log coordinates (LG = xA

U
dU
dxA

), while mLG is the
maximum value of this slope. The effective fold change is
defined as the ratio of the maximum and basal total protein
levels. The effective fold change for a P-network is equal to
the fold change in protein synthesis due to the feedback, i.e. f1,
but in the case of remaining four networks, it will be a function
of the two fold changes f1 and f2. A network’s switching time
from an OFF to an ON state is defined as the time that is taken
to make the transition between the states when there is a step-
increase in the activating signal (γ ) from 0 to 1. Similarly, the
switching time from an ON to an OFF state is defined for the
reverse transition.

We adopt the methodology of [38] to compute a network’s
robustness score which represents the fraction of sampled
parameter sets that result in the bistability range greater
than 5. The mean and standard deviation for each network’s
robustness score was obtained using bootstrapping techniques
as follows. For each network, the distribution of bistability
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Figure 2. Dynamical characteristics of a bistable P-network. (a) Steady states of the network are determined by the intersections between
the transcriptional transfer function (solid curve) and the dotted line depicting the input signal. The dashed lines parameterized by the
signals γ1 and γ2 represent the boundaries of the bistability range. The boundaries of the bistability range are inverse of the slopes of the
dashed lines. The dotted line represents a signal inside the bistability range and results in three intersections with the transcriptional transfer
function, corresponding to two stable steady states (filled circles) and an unstable steady state (empty circle). (b) The slope of the
transcriptional transfer function represents the system’s open-loop gain, which depends on the input signal through the concentration of
TF XA and attains its maximum value in the interval γ1 < γ < γ2. (c) The steady-state signal-response curve shows a range of signals
(horizontal bar) for which two different steady-state responses are possible. At the boundaries of the bistability range, the steady-state
response of the system discontinuously jumps from one state to the other (arrows). The two solid curves represent the stable steady states
(OFF and ON), which are separated by the unstable steady state (dotted curve).

ranges (original dataset obtained after parameter sampling)
was used to produce 1000 resamples of the original dataset
using the bootstrp function in MATLAB. Each resample
is created by random sampling with replacement from the
original dataset, and its size is equal to the size of the original
dataset (10,000 in this case). Next, for each resample, the
robustness score was computed as described above. Finally,
the robustness scores from 1000 resamples were used to
calculate the mean and standard deviation of a network’s
robustness score. As an alternate robustness measure, we also
compute the sensitivity of bistability range to fold change f 1,
the common parameter across all networks, SBR

f1
= f1

BR
dBR
d f1

.
Sensitivity for the P-network was computed analytically using
its bistability range expression derived in the supplementary
data available at stacks.iop.org/PhysBio/9/055003/mmedia.
For other networks, MATCONT was used to obtain bistability
ranges when f 1 was varied by ±10% and ±20% while other
parameters are kept constant. These values were used to
calculate the first derivative in the sensitivity expression using
the five-point center difference formula and thereby compute
the sensitivity.

3. Results

3.1. Bistability range positively correlates with maximum
open-loop gain

The deciding role played by mLG in determining the necessary
condition for bistability [18] led us to analyze whether it
also controls the bistability range—the range of signal levels
over which a system displays two stable states (see figure 2).
First, we examine the P-network (the case f2 = 0 discussed
in section 2.1) and analytically compute the expressions
for the mLG and bistability range (see the supplementary
data available at stacks.iop.org/PhysBio/9/055003/mmedia).
We find that both of these quantities increase with the Hill
coefficient (n1) and the fold change in protein synthesis ( f1)

(see the supplementary data, figures S1(a) and (b), available at
stacks.iop.org/PhysBio/9/055003/mmedia). This confirms our
initial supposition that the bistability range is controlled by
mLG.
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Figure 3. Bistability range is positively correlated with maximum
open-loop gain. Parameter sets were sampled for P, PPA, PPM, PNA
and PNM bistable networks, and the corresponding bistability
ranges and maximum open-loop gains were computed (see
section 2.4, Methods for details). High Spearman and Pearson
correlation coefficients demonstrate a strong correlation between a
network’s bistability range and its maximum open-loop gain.

Subsequently, we extend our analysis to include PPA-,
PPM-, PNA- and PNM-networks, which are discussed in
sections 2.1–2.4. We numerically compute bistability ranges
and mLGs for these networks because their model equations
are analytically intractable. We sample parameter sets for
all five networks (see section 2.4, Methods for details), and
for each parameter set we numerically compute the two
aforementioned quantities. Figure 3 shows the result of this
analysis, which leads us to conclude that the mLG and
bistability range of a network are highly correlated (Spearman
correlation coefficient = 0.93, Pearson correlation coefficient
= 0.89). The reason for this high correlation becomes clear by
analyzing a typical transcriptional transfer function, as shown
in figure 2(a). The steepest slope of this transfer function
in log–log coordinates represents the mLG, which governs
the separation between the two tangents (dashed lines) that
determine a network’s bistability range. Therefore, an increase
in mLG increases the separation between the two tangents,
eventually resulting in a larger bistability range.

The large variability in figure 3 is a consequence of
different effective fold changes (the ratio of maximal and
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basal total protein levels) for parameter sets that result in
the same mLG. Since the effective fold change controls the
height of the transcriptional transfer function, it also plays a
role in determining the points of tangency that describe the
bistability range. Thus, between two parameter sets with the
same mLG, the set with a larger effective fold change will
lead to a higher bistability range as it will further separate
the two tangents. Consequently, the variability in the sampling
results can be explained by the fact that parameter sets with
the same mLG could result in different bistability ranges for
different fold-change values. Therefore, we decided to check
whether the bistability range also depends on the effective fold
change. We use the data obtained from parameter sampling
to compute the effective fold change for each of the five
networks. Surprisingly, we find that the bistability range is
somewhat weakly correlated with the effective fold change,
as shown by the low Spearman and Pearson correlation
coefficients (see the supplementary data, figure S2, available
at stacks.iop.org/PhysBio/9/055003/mmedia).

3.2. Network’s open-loop gain is determined by the sign of
feedback loops and the type of coupling

The above analysis suggests that mLG is an important property
of a bistable network as it not only determines the possibility
of bistability but also determines the bistability range. LG
can sometimes be computed independently of the choice of
parameters and transcriptional transfer functions. For example,
let the following equation describe the rate of change of the
total protein in the case of coupled feedback loops:

dxT

dτ
= U (xA) − xT . (6)

For additive coupling

U (xA) = F(xA) + G(xA), (7)

whereas for multiplicative coupling

U (xA) = F(xA)G(xA), (8)

where F(xA) and G(xA) represent the general transcriptional
transfer functions for the two feedback loops.

Using the formula for LG defined in section 2.4, Methods,
we obtain the following expressions for LGs for the two types
of coupling:

LGadditive = ωLGF + (1 − ω)LGG (9)

LGmultiplicative = LGF + LGG, (10)

where LGF = xA
F

dF
dxA

and LGG = xA
G

dG
dxA

are the LGs from
the first and second feedback, respectively, and ω = F

F+G
represents the ratio between the amount of total protein
produced from the first feedback loop and the coupled
feedback loops.

Because the expressions in equations (9) and (10) are
general, they can be converted to the LGs for the five networks
discussed in section 2, after substituting corresponding F(xA)

and G(xA) from equations (1) and (3)–(5). Through this
analysis, we expect to unravel the effects of the sign of
feedback loops and the type of coupling on a network’s LG.

(1) Open-loop gain for the PPA-network. The LG for the
PPA-network (LGPPA) is given by equation (9), where

F = b
(
1 + f1

x
n1
A

x
n1
A +1

)
and G = b f2

x
n2
A

x
n2
A +l

n2 are, respectively,
the transcriptional transfer functions (defined in equation
(1)) for the first and second positive-feedback loops and
ω < 1. As LGPPA is a weighted average of two LGs,
it lies between those two quantities. If LGF > LGG,
then equation (9) leads us to conclude that additive
coupling with a second feedback that has a smaller LG
(LGG) decreases the LG of the P-network (LGP) which
corresponds to the limiting case G = 0 and ω = 1 in
equation (9):

LGP = LGF . (11)

The opposite is true in the case LGF < LGG. Thus, if
the second feedback’s LG is smaller than that of the first
one, then additive coupling between the two feedback
loops always results in a smaller LG compared to a single
positive-feedback network.

(2) Open-loop gain for the PPM-network. The LG for the
PPM-network(LGPPM) is given by equation (10), in which
F (defined in section 3.2.1) and G = (

1 + f2
x

n2
A

x
n2
A +ln2

)
are, respectively, the transcriptional transfer functions
(defined in equation (3)) for the first and second
positive-feedback loops. Comparing equations (10) and
(11) shows that LGPPM > LGF . Hence, we conclude
that multiplicative coupling of positive-feedback loops
always results in a larger LG compared to a single
positive-feedback network.

(3) Open-loop gain for the PNA-network. The LG for the
PNA-network(LGPNA) is given by equation (9), in which
F (defined in section 3.2.1) and G = −b f2

x
n2
A

x
n2
A +ln2

are,
respectively, the transcriptional transfer functions (defined
in equation (4)) for the positive- and negative-feedback
loops and ω > 1 (since G < 0). Subtracting equation
(11) from equation (9), we obtain LGPNA − LGP = (ω −
1)(LGF − LGG). Now, if LGF > LGG, then we conclude
that additive coupling with a negative feedback that has
a smaller LG (LGG) increases the LG of the P-network
(LGP). The opposite is true in the case LGF < LGG. Thus,
if the negative feedback’s LG is smaller than that of the
positive feedback, then additive coupling between the two
feedback loops always results in a larger LG compared to
a single positive-feedback network.

(4) Open-loop gain for the PNM-network. The LG for
the PNM-network (LGPNM) is given by equation
(10), in which F (defined in section 3.2.1) and
G = (

1 − f2
x

n2
A

x
n2
A +ln2

)
are, respectively, the transcrip-

tional transfer functions (defined in equation (5)) for
the positive- and negative-feedback loops. However,
LGG < 0 because dG

dxA
< 0. Hence, equation (10) results

in LGPNM < LGF , which allows us to conclude that
multiplicative coupling of positive/negative-feedback
loops always results in a smaller LG compared to a single
positive-feedback network.

To summarize, we combine the conclusions from sections
3.2.1–3.2.4 in the following inequality, which depicts the
relationship between the LGs for the five networks:

LGPPM > LGPPA, LGP, LGPNA > LGPNM. (12)
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In order to increase the LG of the P-network, we can add a
(i) positive feedback that is multiplicatively coupled to the
first one, or (ii) positive feedback that is additively coupled
and has an LG larger than the first one, or (iii) negative
feedback that is additively coupled and has an LG smaller
than the first one. On the other hand, a decrease in the
LG could be achieved by replacing the positive feedback
with a negative feedback (in (i) and (ii)) and vice versa
(in (iii)). We note that the theoretical results obtained in
this section are independent of parameter values and actual
functional forms of F and G, and are therefore quite general in
nature. Additionally, we numerically compute mLG for each
parameter set during the parameter sampling discussed above.
The sampling results (see the supplementary data, figure S3,
available at stacks.iop.org/PhysBio/9/055003/mmedia) are in
accordance with the theoretical results summarized in the
above inequality.

3.3. A network’s bistability range is determined by the sign of
feedback loops and the type of coupling

The preceding sections revealed that a network’s bistability
range is highly correlated with mLG, which itself depends on
the sign of feedback loops and the type of coupling. Hence,
we expect that the bistability range also depends on these
two network features. We therefore expand on the previous
studies [28, 31] to investigate the relationship between the
bistability range and the features of the feedback architecture
over a wide range of parameter values. To this end, we sample
parameter sets for all five networks (see section 2.4, Methods
for details). In contrast with previous studies [28, 31], we
include a non-zero basal protein production rate, explore the
effects of multiplicative coupling and also consider distinct
dissociation constants of TF binding for the different operator
sites.

To understand how coupled feedback loops control the
bistability range, we compare bistability ranges in networks
with (i) one feedback versus two feedback loops, (ii)
additive versus multiplicative coupling and (iii) positive-
versus negative-feedback loops. Sampling results for these
comparisons are presented in figure 4 and are discussed below.

(1) Additive coupling with another positive or negative feed-
back can either increase or decrease the P-network’s
bistability range. Figures 4(a) and (b) present compar-
isons between the bistability ranges of a single positive-
feedback network and additively coupled positive/
positive- or positive/negative-feedback loops. Histograms
show that, irrespective of the sign of second feedback,
additive coupling has the capacity to both increase and
decrease the bistability range of the P-network. This is in
contrast with previous research that showed that the sec-
ond positive or negative feedback respectively increases
or decreases the bistability range. We discuss counterex-
amples to this original claim in the next section.

(2) Multiplicative coupling with another positive or negative
feedback always increases or decreases the P-
network’s bistability range. Figures 4(c) and (d) present
comparisons between the bistability ranges of a single

positive-feedback network and multiplicatively coupled
positive/positive- or positive/negative-feedback loops.
Histograms show that multiplicative coupling always
increases the bistability range of a P-network if the second
feedback is positive, and decreases the bistability range if
the second feedback is negative.

(3) The PPM-network has a larger bistability range, whereas
the PNM-network has a smaller bistability range,
compared to the analogous additively coupled system.
Figures 4(e) and ( f ) present comparisons between
the bistability ranges of additively and multiplicatively
coupled positive/positive- or positive/negative-feedback
loops. Histograms show that, when the coupling between
two positive-feedback loops is changed from additive to
multiplicative, the bistability range increases. However,
the same modification in the case of coupled positive/
negative-feedback loops decreases the bistability range.

We summarize the conclusions in the following inequality,
which governs the relationship between the bistability ranges
for the five networks:

BRPPM > BRPPA, BRP, BRPNA > BRPNM. (13)

Comparing equations (13) and (12) further confirms that the
bistability range and mLG are correlated. Thus, if we aim at
increasing or decreasing the P-network’s bistability range, we
can add multiplicatively coupled positive or negative feedback,
respectively. Additive coupling can also increase or decrease
the bistability range by employing the mechanisms discussed
below.

3.4. Positive feedback can decrease, while negative feedback
can increase, the bistability range

Parameter sampling shows that in contrast to previous findings
[28, 31], adding a second positive feedback to the P-network
can decrease the bistability range, whereas adding a negative
feedback can increase the bistability range (figure 5). In
figure 5(a), the steady-state signal-response curves for the P-
and PPA-networks reveal that the latter has a smaller bistability
range (compare corresponding horizontal bars on the x-axis).
This result can be explained by inspecting the transcriptional
transfer functions in figure 5(c), which show that mLG for the
PPA-network is smaller than that of the P-network (compare
the maximum slopes of the two curves). The reduction in
mLG causes the higher signal boundary of the bistability range
to move significantly (see the arrow), thereby resulting in a
smaller bistability range.

In figure 5(b), the steady-state signal-response curves for
the P- and PNA-networks reveal that the latter has a larger
bistability range (compare corresponding horizontal bars on
the x-axis). This result is also explained by inspecting the
corresponding transcriptional transfer functions in figure 5(d).
The presence of negative feedback in the PNA-network results
in a non-monotonic response in the transcriptional transfer
function. This response is produced because the dissociation
constant of TF binding for the negative-feedback operator site
is much lower than that the positive-feedback operator site.
Correspondingly, the parameter l, the ratio between the two
dissociation constants, is much smaller than 1 (l = 0.17).
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Figure 4. Comparison of bistability ranges for networks with different feedback architecture. The panels represent histograms of the ratio of
the bistability ranges for networks (a) PPA and P, (b) PNA and P, (c) PPM and P, (d) PNM and P, (e) PPM and PPA, and ( f ) PNM and PNA.
φ represents the fraction of sampled parameter sets for which the ratio is less than 1. (c)–( f ) Histograms lying entirely on the right or left of
the dashed line (for which ratio = 1) indicate that one of the networks has a larger bistability range. (a)–(b) Depending on parameters, either
of the networks can achieve a larger bistability range.
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Figure 5. Positive feedback can decrease, while negative feedback can increase the bistability range. Steady-state signal-response curves for
networks (a) P and PPA, and (c) P and PNA show that the addition of a positive and negative feedback has the capacity to, respectively,
decrease and increase the bistability range (compare corresponding horizontal bars on the x-axis). (b) Steady-state curves (similar to
figure 2(a)) for panel (a) show that maximum open-loop gain for the PPA-network is smaller than that of the P-network. This causes the
higher threshold (γ2 in figure 2(a)) to decrease significantly (see the arrow; the slope of the dashed line is the inverse of the threshold),
resulting in a smaller bistability range. (d) Steady-state curves for panel (c) show that the PNA network has a non-monotonic response. This
causes the higher threshold to increase significantly (see the arrow), resulting in a larger bistability range. Parameters (panels (a) and (b)):
b = 0.73, f1 = 18.52, f2 = 20.48, n1 = 7.42, n2 = 1.65, l = 2.06. Parameters (panels (c) and (d)): b = 2.86, f1 = 53.2, f2 = 0.69,
n1 = 6.89, n2 = 9.68, l = 0.17.

The non-monotonic response causes the higher signal level
boundary of the bistability range to move significantly (see the
arrow), thereby resulting in a larger bistability range.

3.5. Coupling of feedback loops affects the robustness of
network’s bistability range

Although the results summarized in equations (12) and
(13) describe important relationships between the bistability

ranges and LGs for the five networks, these equations do
not reveal if the network with coupled feedback loops
has any performance advantage over a single positive-
feedback network. For example, single positive feedback
can achieve a very large bistability range and mLG if it
has a sufficiently high-fold change and hill coefficient (see
the supplementary data, figures S1(a) and (b), available
at stacks.iop.org/PhysBio/9/055003/mmedia), and does not
necessarily need a multiplicatively coupled second positive
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Figure 6. Positive feedback increases while negative feedback decreases the robustness of network’s bistability range. Robustness scores
represent the fraction of sampled parameter sets that result in robust network bistability (bistability range > 5, see section 2.4, Methods for
details). (a) An additively coupled second positive feedback increases the robustness of the P-network. Changing the type of coupling to
multiplicative further increases the robustness. (b) An additively coupled negative feedback does not affect the robustness of the P-network,
whereas a multiplicatively coupled negative feedback decreases it.

feedback. To understand possible performance advantages of
multiple feedback loops, we adopt the methodology of [38] to
quantify how strongly bistable a network is by computing
robustness scores. These scores represent the fraction of
sampled parameter sets that result in robust network bistability
(bistability range greater than 5). We find that an additively
coupled second positive feedback as in the PPA-network
increases the robustness score as compared to the P-network
(figure 6(a)). Moreover, changing the type of coupling to
multiplicative (PPM-network) further increases the robustness
score (figure 6(a)). On the other hand, a multiplicatively
coupled negative feedback as in the PNM-network decreases
the robustness score compared to the P-network (figure 6(b)).
However, an additively coupled negative feedback (PNM-
network) does not affect its robustness score (figure 6(b)).

The measure of robustness described above was based
on the number of sampled parameter sets, some with very
different bistability ranges. In addition, we were interested in
knowing the differences between networks with single and
coupled feedback loops for a particular parameter set that
resulted in the same bistability range. Specifically, we asked
the following question: what is the advantage of a network with
coupled feedback loops if we can achieve the same bistability
properties with a single positive-feedback network? To answer
this, we first selected all the parameter sets for which the
bistability range and mLG of the P-network are equal to that of
the network with coupled feedback loops. We did not include
the PPM-network in this analysis as we could not find any
parameter set in our sampling results which matched the above
criteria. For the PPA-, PNA- and PNM-networks, we calculated
the sensitivity of bistability range to fold change f 1 (see
section 2.4, Methods for details). We find that irrespective of
the sign of feedback, adding a second loop to the P-network can
reduce this sensitivity (see the supplementary data, figure S4,
available at stacks.iop.org/PhysBio/9/055003/mmedia). Thus,
in networks with coupled feedback loops, the bistability range
is more robust to parameter variation.

3.6. Examining the dependence of switching times on number,
sign and coupling of feedback loops

In a monostable system, a positive feedback results in slower
response times, whereas a negative feedback leads to faster

response times [10, 39] (response time is defined as the time
it takes to reach halfway between the initial and final protein
levels). A more interesting dynamical property to study in the
case of a bistable system is the time that it takes for the system
to switch between the two steady states when exposed to a
step-increase or step-decrease in the signal. In light of the
dependence of response times for monostable systems on the
sign of feedback loops [10, 39], we expect that the addition
of another positive or negative feedback to the P-network may
cause the network’s switching times to increase or decrease,
respectively.

OFF-to-ON switching time displays no clear dependence
on the sign of feedback loops and the type of coupling.
Parameter sampling results show that any of the four
networks with coupled feedback loops can have faster or
slower switching time compared to a single positive-feedback
network (see the supplementary data, figure S5, available
at stacks.iop.org/PhysBio/9/055003/mmedia). Thus, OFF-to-
ON switching time displays no clear dependence on the sign
of feedback loops and the type of coupling. The variability in
switching times for any of the five networks is a consequence
of different OFF-to-ON switching thresholds for different
parameter sets. Notably, for a bistable system, the switching
time depends on the signal strength, which in turn determines
the distance between the input signal and the switching
threshold [40]. For example, if a bistable system is in the
OFF state and we provide two step increases in the signal γL

and γH > γL such that both cross the switching threshold (γ2,
see figure 2(c)), then the signal closer to the threshold (γL in
this case) will result in slower dynamics.

ON-to-OFF switching time is determined by the network’s
effective fold change. A step decrease in the signal from 1 to 0
instantly makes the active TF concentration zero (see equation
(2)). This reduces the production term in the differential
equations (1) and (3)–(5) to the basal synthesis level, which is
the same for all five networks. As a result, during the transition,
the protein production term remains constant and does not
depend on the active TF concentration. Moreover, since the
protein degradation rate is identical in all five networks, the
switching time depends only on the pre-transition (ON state)
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total protein levels. Thus, the larger the effective fold change
for a network, the greater is the separation between the ON
and OFF states and, hence, the slower are the switching times.
Effective fold changes are in turn affected by the sign of
feedback loops and the type of coupling. Consequently, ON-
to-OFF switching time depends on the network’s feedback
structure, but through a combined parameter—effective fold
change.

Not surprisingly, parameter sampling results
show that ON-to-OFF switching time depends on
the sign of feedback loops and the type of coupling
(see the supplementary data, figure S6, available at
stacks.iop.org/PhysBio/9/055003/mmedia). Compared to the
P-, PPA- and PPM-networks always increase the switching
time, whereas the PNA- and PNM-networks always
decrease the switching time. As expected, ON-to-OFF
switching time is highly correlated with the effective fold
change (see the supplementary data, figure S7, available at
stacks.iop.org/PhysBio/9/055003/mmedia). Subsequently,
we compute the analytical expression for ON-to-OFF
switching time and show that it is determined only by the
effective fold change (see the supplementary data available
at stacks.iop.org/PhysBio/9/055003/mmedia). The effective
fold changes for the five networks are related as follows:

f eff
PPM > f eff

PPA > f eff
P > f eff

PNA > f eff
PNM. (14)

Thus, based on analytical expression and sampling results,
ON-to-OFF switching times for the five networks are related
as follows:

tON to OFF
PPM > tON to OFF

PPA > tON to OFF
P > tON to OFF

PNA > tON to OFF
PNM .

(15)

4. Discussion

Complex cellular behavior is a result of interactions between
the biochemical molecules that mediate responses to external
stimuli. Therefore, to understand cellular behavior, one must
examine the network of interactions and their dynamical
properties. This investigation is further simplified by focusing
on network motifs, i.e. a set of recurring regulatory interactions
[41]. The most commonly studied network motif is a feedback
loop for which dynamical properties in isolation are well
known. Feedback loops are often coupled together suggesting
that these networks may possess a performance advantage
over networks with single-feedback loops. In this work, we
analyze how the bistability range and switching times of a
network with a transcriptional positive feedback are affected
by additive or multiplicative coupling with another positive-
or negative-feedback loop.

We show that mLG is highly correlated with the bistability
range. Hence, experimental perturbations that increase mLG
of a bistable network will, in general, lead to an increase in
the bistability range. Moreover, a system’s stability properties
could be inferred by analyzing LGs [17]. For example, in figure
2(a), the stability of intersection points of the transcriptional
transfer function (solid curve) and the dotted line depicting
the input signal can be determined by comparing the LGs
of the two curves at those points. If the product of the

LGs of the two curves is less than 1, then the intersection
point is stable (filled circles); otherwise it is unstable (empty
circle). A possible experimental manipulation facilitating
LG measurement for the transcriptional transfer function
involves replacing the native copy of a gene under positive
feedback by a transcriptional-fusion reporter, and integrating
it somewhere else on the chromosome under the control of
an inducible promoter. In such a synthetic construct, we can
measure the promoter activity as a fluorescence readout at
different inducer (signal) levels. Finally, the slope of the
log–log plot between the fluorescence readout and signal
will give LGs. Thus, without a detailed understanding of the
biochemical mechanism that produces the input–output curve,
we have some information about the system’s stability and its
bistability range. This type of analysis could prove to be useful
because very rarely are detailed mechanisms associated with a
biochemical network available. Additionally, we analytically
show that the LG and the bistability range increase with
increases in the fold change and with increases in the Hill
coefficient. Our results have general implications in synthetic
biology, as a useful guide on which parameters can be tuned
experimentally for the optimization of a bistable switch.

Earlier models of coupled positive-feedback loops have
focused only on additive coupling [31]. In the case of
additive coupling, the network’s LG is a weighted average
of the individual LGs of the two loops. Thus, adding a
second feedback whose LG is smaller than that of the
first feedback will reduce the network’s LG, which in turn
reduces the bistability range (figure 5(a)). We discovered
this special scenario, which was not observed in previous
studies, because we considered a non-zero basal protein
production rate. Setting the basal production rate to zero
constrains the system’s lower steady state to be zero; as a
result, the higher threshold (γ2 in figure 2(c)) is at infinity.
Because of this approximation, only the lower threshold (γ1

in figure 2(c)) was used to compare the bistability ranges
in the previous analysis. Moreover, additive coupling with
a positive feedback always increases the total protein levels
(see equation (1)), and consequently its transcriptional transfer
function always lies above that of a single positive-feedback
network (see figure 5(b)). As a result, the slope of the left
tangent to this transfer function increases. Since the lower
threshold is the inverse of the slope, it decreases in the case
of the PPA-network (see figure 5(b)). Not surprisingly, a
zero basal production rate in the previous analysis resulted
in a larger bistability range for the PPA-network compared
to the P-network. In the case of multiplicative coupling
(which has not been considered earlier), the individual LGs
resulting from the two loops combine. As a result, the
network’s overall LG always increases with the addition of
a second feedback loop. This increase results in a larger
mLG, which causes the lower threshold to decrease. Hence,
a multiplicatively coupled second positive feedback always
increases the bistability range. We also examined the effects
of incorporating positive or negative cooperativity in the
PPM-network and found that cooperativity does not change
our main conclusion—the PPM-network has a larger LG
and bistability range compared to the P- and PPA-networks
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(see the supplementary data, figures S8(a)–(d) and S9(a)–
(d), available at stacks.iop.org/PhysBio/9/055003/mmedia). In
conclusion, the type of feedback coupling plays a crucial role
in determining the bistability range.

We also studied the effect of adding a negative feedback on
the bistability range of a single positive-feedback network. Past
findings show that an additively coupled negative feedback
always decreases the bistability range [28]. This decrease
was attributed to the increase in the lower threshold, while
the higher threshold was not affected significantly. The
increase in the lower threshold is explained by inspecting the
transcriptional transfer function for the PNA-network, which
is always below than that of the P-network (see equation (4)
and figure 5(d)). This downward shift in the transfer
function causes the lower threshold to increase. Hence, if
the higher threshold is not affected significantly, then an
additively coupled negative feedback always decreases the
bistability range because of an increase in the lower threshold.
However, parameter sampling reveals that an additively
coupled negative feedback can increase the bistability range
(figure 5(c)). This happens when the TF dissociation constant
for the negative operator site is much lower than that
of the positive-feedback site, as a result of which the
transcriptional transfer function becomes non-monotonic. The
non-monotonic response decreases the slope of the right
tangent (corresponding to the higher threshold, figure 5(d)),
which in turn increases the higher threshold (figure 5(c)).
If the increase in the higher threshold is greater than the
increase in the lower threshold, the net effect is an increase
in the bistability range. Thus, in contrast with past findings, a
negative feedback has the capacity to increase the bistability
range when it is additively coupled to positive feedback. On the
other hand, negative feedback always decreases the bistability
range when it is multiplicatively coupled to positive feedback
as it always reduces the mLG, which in turn increases the lower
threshold. Multiplicative coupling can also produce a non-
monotonic response; however, it scales both of the thresholds
by the same factor. For this reason, the bistability range,
defined as the ratio of the thresholds, is not affected as the
common factor gets canceled out during division.

Our analysis shows that, irrespective of the sign of
the second feedback (first feedback being positive), additive
coupling has the capacity to both increase and decrease a
network’s LG and bistability range. In contrast, the effects
produced by multiplicative coupling on the two quantities
depend on the sign of the second feedback. In this sense,
multiplicative coupling is more restrictive because the second
positive feedback will only increase the LG and bistability
range, while adding negative feedback instead will decrease
them. We speculate that, owing to its flexibility, additive
coupling could be selected for during evolution. In fact,
an earlier study notes that OR regulation logic is more
common than AND logic in a coupled feedback system [31],
where OR and AND logic closely resemble additive and
multiplicative coupling. On the other hand, we found that
multiplicatively coupling of positive-feedback loops increases
the robustness of network’s bistability range compared to
additive coupling (figure 6(a)). In contrast, in the case

of coupled positive/negative-feedback loops, multiplicative
coupling decreases the robustness compared to additive
coupling (figure 6(b)).

The differential equation-based modeling used in our
analysis represents a deterministic approximation that is
only capable of describing systemic quantities averaged
over a large population of cells. However, many important
dynamic responses are observed at the single-cell level,
where fluctuations in the number of molecules present at low
concentrations as well as the random nature of binding kinetics
at the promoter produce stochastic effects [42]. These effects
result in large variability in the switching times of bistable
networks. A recent study showed that, at large effective fold
changes, the switching times for an autoregulatory network
computed using a stochastic model deviate strongly from the
deterministic network, and a significant slowdown is predicted
[43]. Thus, it would be interesting to explore the effects of the
features of feedback architecture studied here in a stochastic
framework especially with regard to switching times.

The bistability generating mechanism that we have
analyzed in this work is based on purely transcriptional
interactions, such as the presence of positive-feedback loops
and cooperativity resulting from multimerization of TFs [44].
Post-translational mechanisms also exist that can generate
bistability, such as multi-site activation of a substrate,
cascading of phosphorylation steps and sequestration of a
protein by its specific antagonist [44]. In the presence of more
complicated post-translational modifications, the assumption
of a linear activation (equation (2)) may not hold and
will require a more rigorous analysis of the corresponding
interactions. This scenario could simplify the analysis of
transcriptional interactions as high cooperativity in TF binding
may no longer be essential in generating bistability. The
crucial role played by post-translational interactions has been
further emphasized by a recent study that showed that a
purely transcriptional network is the most fragile in generating
ultrasensitive and bistable responses [38]. It was concluded
that hybrid networks that consist of both transcriptional and
enzymatic reactions were the most robust.

In conclusion, we show that the specific effect of coupled
feedback loops on open-loop gain, bistability range and
switching times depends on the underlying mechanistic details.
Our results serve as a useful guide and provide information
about various parameters, such as the number of feedback
loops, the sign of the loops and the type of coupling, which
could be tuned experimentally to construct a bistable switch.
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