557 research outputs found

    A robust compressive sensing based technique for reconstruction of sparse radar scenes

    Get PDF
    Cataloged from PDF version of article.Pulse-Doppler radar has been successfully applied to surveillance and tracking of both moving and stationary targets. For efficient processing of radar returns, delay–Doppler plane is discretized and FFT techniques are employed to compute matched filter output on this discrete grid. However, for targets whose delay–Doppler values do not coincide with the computation grid, the detection performance degrades considerably. Especially for detecting strong and closely spaced targets this causes miss detections and false alarms. This phenomena is known as the off-grid problem. Although compressive sensing based techniques provide sparse and high resolution results at sub-Nyquist sampling rates, straightforward application of these techniques is significantly more sensitive to the off-grid problem. Here a novel parameter perturbation based sparse reconstruction technique is proposed for robust delay– Doppler radar processing even under the off-grid case. Although the perturbation idea is general and can be implemented in association with other greedy techniques, presently it is used within an orthogonal matching pursuit (OMP) framework. In the proposed technique, the selected dictionary parameters are perturbed towards directions to decrease the orthogonal residual norm. The obtained results show that accurate and sparse reconstructions can be obtained for off-grid multi target cases. A new performance metric based on Kullback–Leibler Divergence (KLD) is proposed to better characterize the error between actual and reconstructed parameter spaces. Increased performance with lower reconstruction errors are obtained for all the tested performance criteria for the proposed technique compared to conventional OMP and 1 minimization techniques. © 2013 Elsevier Inc. All rights reserve

    Compressed sensing of monostatic and multistatic SAR

    Get PDF
    In this letter, we study the impact of compressed data collections from a synthetic aperture radar (SAR) sensor on the reconstruction quality of a scene of interest. Different monostatic and multistatic SAR measurement configurations produce different Fourier sampling patterns. These patterns reflect different spectral and spatial diversity tradeoffs that must be made during task planning. Compressed sensing theory argues that the mutual coherence of the measurement probes is related to the reconstruction performance of sparse domains. With this motivation, we propose a closely related t%-average mutual coherence parameter as a sensing configuration quality parameter and examine its relationship to the reconstruction behavior of various monostatic and ultranarrow-band multistatic configurations. We investigate how this easily computed metric is related to SAR reconstruction quality

    Compressed sensing of monostatic and multistatic SAR

    Get PDF
    In this paper we study the impact of sparse aperture data collection of a SAR sensor on reconstruction quality of a scene of interest. Different mono and multi-static SAR measurement configurations produce different Fourier sampling patterns. These patterns reflect different spectral and spatial diversity trade-offs that must be made during task planning. Compressed sensing theory argues that the mutual coherence of the measurement probes is related to the reconstruction performance of sparse domains. With this motivation we compare the mutual coherence and corresponding reconstruction behavior of various mono-static and ultra-narrow band multi-static configurations, which trade-off frequency for geometric diversity. We investigate if such simple metrics are related to SAR reconstruction quality in an obvious way

    SAR image reconstruction by expectation maximization based matching pursuit

    Get PDF
    Cataloged from PDF version of article.Synthetic Aperture Radar (SAR) provides high resolution images of terrain and target reflectivity. SAR systems are indispensable in many remote sensing applications. Phase errors due to uncompensated platform motion degrade resolution in reconstructed images. A multitude of autofocusing techniques has been proposed to estimate and correct phase errors in SAR images. Some autofocus techniques work as a post-processor on reconstructed images and some are integrated into the image reconstruction algorithms. Compressed Sensing (CS), as a relatively new theory, can be applied to sparse SAR image reconstruction especially in detection of strong targets. Autofocus can also be integrated into CS based SAR image reconstruction techniques. However, due to their high computational complexity, CS based techniques are not commonly used in practice. To improve efficiency of image reconstruction we propose a novel CS based SAR imaging technique which utilizes recently proposed Expectation Maximization based Matching Pursuit (EMMP) algorithm. EMMP algorithm is greedy and computationally less complex enabling fast SAR image reconstructions. The proposed EMMP based SAR image reconstruction technique also performs autofocus and image reconstruction simultaneously. Based on a variety of metrics, performance of the proposed EMMP based SAR image reconstruction technique is investigated. The obtained results show that the proposed technique provides high resolution images of sparse target scenes while performing highly accurate motion compensation. (C) 2014 Elsevier Inc. All rights reserved

    A sparsity-driven approach for joint SAR imaging and phase error correction

    Get PDF
    Image formation algorithms in a variety of applications have explicit or implicit dependence on a mathematical model of the observation process. Inaccuracies in the observation model may cause various degradations and artifacts in the reconstructed images. The application of interest in this paper is synthetic aperture radar (SAR) imaging, which particularly suffers from motion-induced model errors. These types of errors result in phase errors in SAR data which cause defocusing of the reconstructed images. Particularly focusing on imaging of fields that admit a sparse representation, we propose a sparsity-driven method for joint SAR imaging and phase error correction. Phase error correction is performed during the image formation process. The problem is set up as an optimization problem in a nonquadratic regularization-based framework. The method involves an iterative algorithm each iteration of which consists of consecutive steps of image formation and model error correction. Experimental results show the effectiveness of the approach for various types of phase errors, as well as the improvements it provides over existing techniques for model error compensation in SAR

    Performance Evaluation of Aspect Dependent-Based Ghost Suppression Methods for Through-the-Wall Radar Imaging

    Get PDF
    There are many approaches which address multipath ghost challenges in Through-the-Wall Radar Imaging (TWRI) under Compressive Sensing (CS) framework. One of the approaches, which exploits ghosts’ locations in the images, termed as Aspect Dependent (AD), does not require prior knowledge of the reflecting geometry making it superior over multipath exploitation based approaches. However, which method is superior within the AD based category is still unknown. Therefore, their performance comparison becomes inevitable, and hence this paper presents their performance evaluation in view of target reconstruction. At first, the methods were grouped based on how the subarrays were applied: multiple subarray, hybrid subarray and sparse array. The methods were fairly evaluated on varying noise level, data volume and the number of targets in the scene. Simulation results show that, when applied in a noisy environment, the hybrid subarray-based approaches were robust than the multiple subarray and sparse array. At 15 dB signal-to-noise ratio, the hybrid subarray exhibited signal to clutter ratio of 3.9 dB and 4.5 dB above the multiple subarray and sparse array, respectively. When high data volumes or in the case of multiple targets, multiple subarrays with duo subarrays became the best candidates. Keywords: Aspect dependent; compressive sensing; point target; through-wall-radar imaging

    A sparsity-driven approach for joint SAR imaging and phase error correction

    Get PDF
    Image formation algorithms in a variety of applications have explicit or implicit dependence on a mathematical model of the observation process. Inaccuracies in the observation model may cause various degradations and artifacts in the reconstructed images. The application of interest in this paper is synthetic aperture radar (SAR) imaging, which particularly suffers from motion-induced model errors. These types of errors result in phase errors in SAR data which cause defocusing of the reconstructed images. Particularly focusing on imaging of fields that admit a sparse representation, we propose a sparsity-driven method for joint SAR imaging and phase error correction. Phase error correction is performed during the image formation process. The problem is set up as an optimization problem in a nonquadratic regularization-based framework. The method involves an iterative algorithm each iteration of which consists of consecutive steps of image formation and model error correction. Experimental results show the effectiveness of the approach for various types of phase errors, as well as the improvements it provides over existing techniques for model error compensation in SAR
    • …
    corecore