255 research outputs found

    Unit circle MVDR beamformer

    Full text link
    The array polynomial is the z-transform of the array weights for a narrowband planewave beamformer using a uniform linear array (ULA). Evaluating the array polynomial on the unit circle in the complex plane yields the beampattern. The locations of the polynomial zeros on the unit circle indicate the nulls of the beampattern. For planewave signals measured with a ULA, the locations of the ensemble MVDR polynomial zeros are constrained on the unit circle. However, sample matrix inversion (SMI) MVDR polynomial zeros generally do not fall on the unit circle. The proposed unit circle MVDR (UC MVDR) projects the zeros of the SMI MVDR polynomial radially on the unit circle. This satisfies the constraint on the zeros of ensemble MVDR polynomial. Numerical simulations show that the UC MVDR beamformer suppresses interferers better than the SMI MVDR and the diagonal loaded MVDR beamformer and also improves the white noise gain (WNG).Comment: Accepted to ICASSP 201

    Adaptive beamforming for large arrays in satellite communications systems with dispersed coverage

    Get PDF
    Conventional multibeam satellite communications systems ensure coverage of wide areas through multiple fixed beams where all users inside a beam share the same bandwidth. We consider a new and more flexible system where each user is assigned his own beam, and the users can be very geographically dispersed. This is achieved through the use of a large direct radiating array (DRA) coupled with adaptive beamforming so as to reject interferences and to provide a maximal gain to the user of interest. New fast-converging adaptive beamforming algorithms are presented, which allow to obtain good signal to interference and noise ratio (SINR) with a number of snapshots much lower than the number of antennas in the array. These beamformers are evaluated on reference scenarios

    Performance analysis of beamformers using generalized loading of the covariance matrix in the presence of random steering vector errors

    Get PDF
    Robust adaptive beamforming is a key issue in array applications where there exist uncertainties about the steering vector of interest. Diagonal loading is one of the most popular techniques to improve robustness. In this paper, we present a theoretical analysis of the signal-to-interference-plus-noise ratio (SINR) for the class of beamformers based on generalized (i.e., not necessarily diagonal) loading of the covariance matrix in the presence of random steering vector errors. A closed-form expression for the SINR is derived that is shown to accurately predict the SINR obtained in simulations. This theoretical formula is valid for any loading matrix. It provides insights into the influence of the loading matrix and can serve as a helpful guide to select it. Finally, the analysis enables us to predict the level of uncertainties up to which robust beamformers are effective and then depart from the optimal SINR

    Radio Astronomical Image Formation using Constrained Least Squares and Krylov Subspaces

    Full text link
    Image formation for radio astronomy can be defined as estimating the spatial power distribution of celestial sources over the sky, given an array of antennas. One of the challenges with image formation is that the problem becomes ill-posed as the number of pixels becomes large. The introduction of constraints that incorporate a-priori knowledge is crucial. In this paper we show that in addition to non-negativity, the magnitude of each pixel in an image is also bounded from above. Indeed, the classical "dirty image" is an upper bound, but a much tighter upper bound can be formed from the data using array processing techniques. This formulates image formation as a least squares optimization problem with inequality constraints. We propose to solve this constrained least squares problem using active set techniques, and the steps needed to implement it are described. It is shown that the least squares part of the problem can be efficiently implemented with Krylov subspace based techniques, where the structure of the problem allows massive parallelism and reduced storage needs. The performance of the algorithm is evaluated using simulations

    Steering vector errors and diagonal loading

    Get PDF
    Diagonal loading is one of the most widely used and effective methods to improve robustness of adaptive beamformers. In this paper, we consider its application to the case of steering vector errors, i.e. when there exists a mismatch between the actual steering vector of interest and the presumed one. More precisely, we address the problem of optimally selecting the loading level with a view to maximise the signal to interference plus noise ratio in the presence of random steering vector errors. First, we derive an expression for the optimal loading for a given steering vector error and we show that this loading is negative. Next, this optimal loading is averaged with respect to the probability density function of the steering vector errors, yielding a very simple expression for the average optimal loading. Numerical simulations attest to the validity of the analysis and show that diagonal loading with the optimal loading factor derived herein provides a performance close to optimum

    Signal waveform estimation in the presence of uncertainties about the steering vector

    Get PDF
    We consider the problem of signal waveform estimation using an array of sensors where there exist uncertainties about the steering vector of interest. This problem occurs in many situations, including arrays undergoing deformations, uncalibrated arrays, scattering around the source, etc. In this paper, we assume that some statistical knowledge about the variations of the steering vector is available. Within this framework, two approaches are proposed, depending on whether the signal is assumed to be deterministic or random. In the former case, the maximum likelihood (ML) estimator is derived. It is shown that it amounts to a beamforming-like processing of the observations, and an iterative algorithm is presented to obtain the ML weight vector. For random signals, a Bayesian approach is advocated, and we successively derive an (approximate) minimum mean-square error estimator and maximum a posteriori estimators. Numerical examples are provided to illustrate the performances of the estimators
    • 

    corecore