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Abstract—Robust adaptive beamforming is a key issue in array
applications where there exist uncertainties about the steering
vector of interest. Diagonal loading is one of the most popular
techniques to improve robustness. In this paper, we present a
theoretical analysis of the signal-to-interference-plus-noise ratio
(SINR) for the class of beamformers based on generalized (i.e.,
not necessarily diagonal) loading of the covariance matrix in the
presence of random steering vector errors. A closed-form expres-
sion for the SINR is derived that is shown to accurately predict the
SINR obtained in simulations. This theoretical formula is valid for
any loading matrix. It provides insights into the influence of the
loading matrix and can serve as a helpful guide to select it. Finally,
the analysis enables us to predict the level of uncertainties up to
which robust beamformers are effective and then depart from the
optimal SINR.

Index Terms—Diagonal loading, performance analysis, random
steering vector errors, robust adaptive beamforming.

I. INTRODUCTION

DAPTIVE beamforming is a primary task in most systems
using an array of sensors, and it has applications in nu-
merous domains, including seismology, sonar, radar, and com-
munications, to name a few [1]-[3]. The optimal beamformer,
i.e., the beamformer that maximizes the output signal to inter-
ference and noise ratio, is known to be, up to a scaling factor,
given by R™"a, where R is the covariance matrix of the received
signals, and a stands for the steering vector of the signal of in-
terest (SOI). In order to implement the optimal beamformer, a
needs to be known precisely, which is a property that is most
often not encountered in practice. Indeed, there exist potentially
many factors that can contribute to steering vector uncertain-
ties. For instance, the source might undergo local scattering or
there can exist uncertainties about its direction of arrival; the
propagation medium can be nonhomogeneous or might induce
fading. Finally, the array’s response might not be known per-
fectly, e.g., the individual gains and phases or the sensors’ lo-
cations are not precisely known. These types of errors are es-
pecially detrimental when the SOI is present in the data as the
latter is considered as an interference and thus tends to be elim-
inated; see, e.g., [4].
Therefore, robust adaptive beamforming has emerged as a
necessary constituent of most systems using an array of sen-

Manuscript received Oct. 10, 2003; revised March 4, 2004. The associate
editor coordinating the review of this paper and approving it for publication
was Dr. Alex B. Gershman.

The authors are with the Department of Avionics and Systems, ENSICA,
31056 Toulouse, France (e-mail: besson@ensica.fr; vincent@ensica.fr).

Digital Object Identifier 10.1109/TSP.2004.840777

sors. See [1] and [5] and references therein for comprehensive
overviews. The most widely used method, due to its simplicity
and effectiveness, is diagonal loading [6], [7], which consists of
adding a scaled identity matrix to the covariance matrix prior to
inversion. Diagonal loading can either be viewed as a means to
“equalize” the least significant eigenvalues of the sample covari-
ance matrix [8, p. 666] or to constrain the white noise array gain
[1, ch. 6], [9]. The latter interpretation also suggests that it can
be effective when dealing with uncalibrated arrays [1, ch. 6]. In-
terestingly enough, diagonal loading turns out to be the solution
to worst-case approaches recently proposed in [10]-[12]. In the
latter references, the beamformer is designed to minimize the
output power subject to the constraint that the beamformer’s re-
sponse be above some level for all the steering vectors that lie in
an ellipsoid centered around the nominal or presumed steering
vector of interest. This guarantees that the signal of interest,
whose steering vector is expected to lie in the ellipsoid, will
not be eliminated, and hence, robustness is improved. When the
ellipsoid is a sphere, then the solution to the above-mentioned
problem is of the diagonal loading type, where the loading level
is obtained from a secular equation involving the covariance ma-
trix and the radius of the sphere. In the case where the ellipsoid
is not a sphere or is flat, the robust beamformer takes the form of
a general (i.e., not necessarily diagonal) loading of the covari-
ance matrix. In either case, the solution is given by (R+ Q)™ la,
where @ denotes the nominal steering vector (in the absence of
any uncertainty), and @ stands for the loading matrix.
Through numerical simulations, this robust adaptive beam-
former was shown to perform well, at least when the size of
the ellipsoid does not grow large. However, no theoretical anal-
ysis was provided and assessing its performance remains an
open problem. The finite-sample SINR analysis of the minimum
variance distortionless response (MVDR) beamformer was pre-
sented in the famous paper by Reed et al. [13], where the proba-
bility density function (pdf) of the SINR loss (compared to per-
fectly known interference plus noise covariance matrix) is de-
rived; see also [14] and [15] for alternate derivations. Similar
finite-sample SINR’s probability density function (pdf) anal-
ysis for minimum power distortionless response (MPDR) beam-
former, i.e., when the signal of interest is present in the mea-
surements, are reported in [16] and [17]. In the latter reference,
Boroson also considered the case where the steering vector used
in the computation of the MPDR weight vector differs from the
actual steering vector. A complete finite-sample analysis of the
MPDR SINR is also presented in [18] (with an extension in [19],
where the combined effects of steering vector and finite-sample
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errors are studied) when the signal and interferences are pos-
sibly correlated. In-depth statistical analysis of the pdf of the
signal waveform estimator and weight vector can be found in
[20] and [21] for a large class of beamformers. In contrast, anal-
ysis of diagonally loaded versions of the MPDR is scarce. A
large-sample analysis of the weight vector and powers at the
output of a diagonally loaded MPDR can be found in [22] and
[23], whereas [24] derives the pdf of the beam response when
diagonal loading is used. In this paper, we present a theoret-
ical analysis of the SINR obtained with a general fixed loading
matrix and in the presence of random steering vector uncertain-
ties. The formulas obtained are quite simple and are valid for
any loading matrix @ (including nondiagonal or noninvertible).
Additionally, they are shown to predict well the performances
obtained via numerical simulations. Finally, they can serve to
provide insights into the choice of the loading matrix.

II. DATA MODEL

We consider an array composed of m sensors and assume that
the array’s output can be written as

T = as; +n; t:177N (1)

where a is the actual steering vector of the source of interest,

s¢ 1s the corresponding emitted signal, and n; denotes the noise

contribution (possibly including interferences). We assume the
following.

* a is a complex-valued, circularly symmetric (i.e., £{(a —
a)(a —a)”} = 0) random vector with mean and covari-
ance matrix given, respectively, by

E{a} =a
E{(a—a)a-a)"} =C,. @)

a corresponds to the steering vector without any pertur-
bation (e.g., for a perfectly calibrated array), whereas C,
captures the effects of all possible errors affecting the
steering vector.

* n, is the noise contribution, including interferences and
thermal noise. n; is assumed to be drawn from a zero-
mean complex-valued Gaussian distribution with covari-
ance matrix C.

* s, is a zero-mean random process
P = &{]s:*}.

The robust adaptive beamformers of [ 10]-[12] (although their
formulations are different) are obtained as the solution to the
following minimization problem:

with power

minw™ Rw subject to jwa| > 1
w
Va =1a+ Bu; ||ul| <1 3)
where B is a m X r matrix with full column rank, which defines
an ellipsoid centered around @. Under mild assumptions, the

solution to (3) is given by (up to a scaling factor that does not
affect the SINR)

w=(R+Q) 'a 4)

with @ = A(@ R)BB" and where the Lagrange multiplier
A(@, R) is obtained as the solution of a secular equation
that involves B R™'@ and the eigenvalue decomposition of
B R'B; see [10] for details. Observe that the loading level
A(@, R) is chosen adaptively, i.e., it depends on the covariance
matrix while the shaping matrix BB¥ is fixed. When B = I,
the ellipsoid becomes a sphere, and the solution amounts to
conventional diagonal loading.

In this paper, we present a SINR analysis of the robust
beamformer (4) in the case where Q = A\Q and both A and
Q are fixed. Therefore, the analysis does not apply directly
to [10]-[12], where the loading level depends on the scenario
via the covariance matrix. We will study the influence of both
the shaping matrix Q and the loading level \ by varying these
parameters. A two-step procedure is taken to perform the anal-
ysis. First, we provide an expression of the SINR for a given
a. Then, this SINR is averaged over the pdf of a to yield the
average SINR. Note that here, we do not consider finite-sample
effects, i.e., we assume that the true covariance matrix (for
a given @) R is available. In order to introduce finite-sample
effects (and thereby to combine them with steering vector
errors), one needs to assume that the two errors are of the same
order of magnitude; otherwise, one type of error dominates and
the analysis boils down to finite-sample only or steering vector
errors only analysis. In our case, since the errors in estimating R
are O(1/N), this would amount to assuming that C, = C,, /N,
where 5a is fixed, and N denotes the number of snapshots. See
[25] and [26] for a detailed and comprehensive discussion on
this issue. However, this assumption may seem arbitrary since
the errors are not likely to depend on N. Therefore, herein, we
consider that [V is large enough so that the steering vector errors
dominate. We will however illustrate the finite-sample behavior
of (4) in the numerical simulations. Before closing this section,
we would like to point out that the loading-based beamformer
in (4) might not be the most appropriate solution under the
stated hypotheses. Indeed, the approaches proposed in [27]
that consider robustness against errors in the SOI covariance
matrix are suitable in our case since the SOI covariance matrix
is P,(aa” + C,) and differs from the “nominal” covariance
matrix PSEH . However, analysis of the beamformers in [27]
is beyond the scope of the present paper, where we focus on
beamformers of the type (4).

III. SINR ANALYSIS

In this section, we provide a theoretical expression for the
average SINR when the weight vector is computed, as in (4), and
the steering vector is random with mean and covariance matrix
given by (2). We proceed as follows. In a first step, we assume
that a is given and derive the corresponding SINR. Then, we
invoke the conditional expectation rule to compute the average
SINR as

SINR = £,{SINR,} 5)

where £,{.} denotes the expectation with respect to (w.r.t.) the
pdf of a, and SINR|, corresponds to the SINR for a given a. In
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order to obtain SINR|,,, note that the weight vector, for a given
a, is given by

w,= (R, +Q)'a (6)

where R, denotes the covariance matrix for a given a. There-
fore

2
H
P ’wlaa

SINRje = Wi Cw,

_ Pla¥(R.+Q)
a EH(R|a + Q)ilC(R|a + Q)ila‘

)

However, using (1) along with the stated assumptions, it follows
that the covariance matrix is given by
Ry, = Paa" + C. (8)

LetQ = Q+C. Using Woodbury’s identity, it can be shown
that

~_1
(Ra+ Q) 'a= Q—‘i_l (9a)
1+ Pa@Q a
_ HY ‘o
(Ra+Q)'a=Q (a—%a). (9b)
14+ Pa?@Q a

Therefore, after some straightforward algebraic manipulations,
we obtain the following expression for the SINR for a given a:

SINR|, = — ; — (10)
P(a—~(a)a)” Z(a—(a)a)
where
~—1
1+ Paf
Ya) =1 E 2@ ¢
Pa@Q a
z-Q 'cq . (11)
The average SINR is thus given by
SINR = / L Ef) —da (12
P(a—~(a)a)” Z(a—~(a)a)

where p(a) is the pdf of a. Obtaining a closed-form expression
for the previous integral appears to be an intractable task. Hence,
we prefer to approximate this integral. In the Appendix, it is
shown that for any scalar function f(a) and assuming that a is
circularly symmetric

.

a

where Tr{.} stands for the trace of the matrix between braces,
and (02 f /0ada™ )|z denotes the Hessian of f(a) evaluated at
a. It should be pointed out that the previous approximation does
not require complete knowledge of the pdf of a but only its mean
and covariance matrix, which is an appealing feature. We now

o%f
dadaH

/ f(@)p(a)da ~ /(@) + Tr{ (13)
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apply the result (13) to SINR|,. However, for the purpose of sim-
plifying subsequent derivations, we first simplify the expression
of SINR|, by approximating -y(a). More precisely, we propose
to approximate y(a) by its statistical mean. Toward this end, ob-
serve that

01_@ la-na) (14a)
a a’Q a
) ~ -1 — gAa-l
0 - 9 (I— %) (14b)
dada a’Q a a’Q a
where, to obtain (14), we used the fact that
HA ! o Hy =
oa” Q a:Qla; oa™ Q a:Qlﬁ (15a)
da da
8éila ~—1 aaHéilﬁ
= ;. ———— =0. 15b
oaH @ oaH (15b)
Reporting (14) in (13) yields
1+Pa"Q @ T{Q C.)
Ea{v(a)} ~ A1 + H~_1a
ra’Q a a’Q a
_H"’_l ~—1_
a’'Q C.Q a
- —_ 2
(a"e"a)
£ %0 (16)
We propose to replace y(a) by 7o in (10) so that
SINR|, = L (17)

P(a — ’Y()E)HZ(G, — ’705) '

We would like to point out that using 7o in lieu of y(a) in (13)
does not result in a less-accurate expression for the average
SINR, as will be illustrated below. The average SINR is thus
approximated by

p(a)

SINR ~ — —da.
/ P(a —va)"Z(a - yoa)

(18)

Let f(a) = (a — va)?Z(a — @) so that SINR|, ~
[Pf(a)]~!. Using
0
a—f: = Z(a — ~8) (19)
2f
dadal (190)

along with (13) and (18) yields the following expression:
1
P|1 —~o|*(a" Za)’

<{I =@ za

SINR ~

—_H _
a'ZC,Za
- Tr{ZC, +27a}. 20
A
The previous equation provides a closed-form and compact ex-
pression for the average SINR. We stress the fact that it holds for
a large class of robust adaptive beamformers as it holds for any
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loading matrix @ and any steering vector error covariance ma-
trix C,. As will be illustrated in the next section, it predicts very
accurately the average SINR obtained through Monte Carlo sim-
ulations. Hence, it can serve as a useful tool to obtain rapid in-
sights into the choice of the loading matrix @ without resorting
to extensive simulations.

IV. NUMERICAL ILLUSTRATIONS

The aim of this section is threefold. First, we assess the
validity of the theoretical formula (20) by comparing it with
the actual SINR obtained through Monte Carlo simulations.
Second, we provide illustrations of up to which level of uncer-
tainty generalized loading can compensate for steering vector
errors and still provide a performance close to optimum. Third,
we provide rules of thumb for selecting the shape and the size
of the loading matrix. In all simulations, we consider a uniform
linear array of m = 10 sensors spaced a half-wavelength
apart. The signal of interest impinges from broadside, and thus,
a=1[11 1]T. We consider two cases for the steering
vector errors corresponding to two different matrices C,:

* Case 1: The steering vector errors are assumed to be drawn
from a zero-mean complex-valued Gaussian distribution
with covariance matrix C,, = o21.

» Case 2: We consider the case of local scattering for which
the steering vector can be written as

1 & -
a4+ — .a(f 21
a a-l—\/zkz::lgka( k) 2D

where gy, are zero-mean, independent, and identically dis-
tributed random variables with power o2, and 6}, are inde-
pendent random variables with pdf p(6). The covariance
matrix of the errors is given by [28]

C, =2 / a(f)a" (9)p(0)df = o2C.,. (22)

In the simulations presented below, we assume a Gaussian
distribution for the scatterers with standard deviation (re-
ferred to as angular spread in the literature) oy = 15°, and
the number of scatterers is set to L = 10.

In either case, we define the uncertainty ratio (UR) as

UR = 10log,, <M> .

a’a

In all simulations, we consider that the noise component con-
sists of a white noise contribution with power o2 and two in-
terferences whose DOAs are —20° and 30° and whose powers
are 20 and 30 dB above the white noise level, respectively. The
signal-to-noise ratio (SNR) is defined as

2

On

P (a"a + Tr{C,
SNR:lOlogw( (@”a+Trf }))

and corresponds to an average array SNR. In all simulations, the
SINR is evaluated as follows. We run N,, = 500 Monte Carlo

simulations with a different random @ drawn from (2), and, for
a given weight vector w, the average SINR is computed as

Nop |'wHa(n)|2

SINR(w) = — O

" n=1

(23)

We stress the fact that the measure of performance in (23) is an
average SINR. In addition to the robust adaptive beamformer
(6)—which is referred to as RB in the figures—the following
beamformers are tested:

¢ a (generalized) MVDR beamformer [27] that is given by
£ { lwHas,|” }

W\VDR = argmax —-—————<
v {|'ant|2}
wf (@a” + C,)w

wi Cw
=p{c @ +c.)}

= argmax
w
(24)

where P{.} stands for the principal eigenvector of the ma-
trix between braces. The average SINR associated with the
MVDR beamformer is readily obtained as
H 2
P |w{iypra
wﬁVDRowl\'IVDR

= Phmax {C_l(ﬁH + Ca)}

(25)

where Apax{.} corresponds to the maximum eigenvalue.
e a (hypothetical) clairvoyant optimum beamformer that
maximizes the SINR for any given a and is thus given by

w‘ljft =C la. (26)
The corresponding average SINR is given by
SINR,p; = / P(@"C 'a)p(a)da
:PTr{C—l(ﬁH +C’a)}. @7

Comparing (25) with (27), it immediately follows that
SINR ¢ > SIWMVDR. Note, however, that (27) is really
an upper bound and cannot be attained unless a is known;
see (26). The robust beamformer (6) will be compared to
these two beamfomers in order to see if loading can com-
pensate for steering vector uncertainties and still maintain
a performance close to optimum.
* the sample covariance matrix (SCM) version of (6), i.e.,

wsen =(R+ Q) 'a (28a)
]\T
~ 1 e
R = N ;Zl T, . (28b)

The performance of the SCM robust beamformer will be

evaluated by (23). It will enable us to take into account
finite-sample effects.

In a first series of simulations, we study the performance of

the beamformers versus the uncertainty ratio. The loading ma-

trix @ = AI, and we define the loading level (LL) as LL=
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L L 1 1 1 1 1 L L

20 -18 -16 -4 -12 -0 -8 -6 -4 -2 0

Fig. 1.

LL =

Uncertainty Ratio (dB)

Case 1—Output SINR versus uncertainty ratio. m = 10, SNR = 3 dB,

5dB,and N = 200.Q  I.

Output SINR

20 -18 -16 -14 -12 -0 -8 -6 4 -2 0
Uncertainty Ratio (dB)
Fig.2. Case 2—Output SINR versus uncertainty ratio. m = 10, SNR = 3 dB,

LL =

5dB,and N = 200.Q « I.

101log;o(\/c2). Note that it corresponds to a loading level rel-
ative to the white noise power. In the simulations, LL is chosen
as LL= 5 dB. The results are displayed in Figs. 1 and 2. The
following observations are in order.

The theoretical formula (20) is seen to predict very accu-
rately the average SINR obtained in simulations to within
0.2-0.4 dB for UR < —2 dB. Notice that UR = —2 dB
corresponds to a high uncertainty as the standard deviation
of the steering vector error is in this case about 79% of the
value of the steering vector. Hence, (20) provides a very
good picture of the robust adaptive beamformer’s perfor-
mance in most situations. Moreover, the finite-sample be-
havior of the robust beamformer is also close to the theo-
retical formula.

The robust beamformer has a performance very close to
that of the MVDR; the difference is less than 1 dB for URs
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Output SINR
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+ + SINRgoy,
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Relative loading level (dB)

Fig. 3. Case 1-Output SINR versus loading level. m = 10, SNR = 3 dB, UR
= —6dB,and N = 200.Q o I.

Output SINR

25} 1

1
0 2 4 6 8 10 12 14 16 18 20

0 I I I I

Relative loading level (dB)

Fig. 4. Case 2—Output SINR versus loading level. m = 10, SNR = 3 dB,
UR= —6dB,and N = 200.Q x I.

below —5 dB. For a higher UR, the robust beamformer
can no longer compensate for the uncertainties; hence, one
must turn to other solutions. It should be pointed out that
for UR > —6 dB, the MVDR does not perform as well
as the clairvoyant beamformer. Since the latter makes use
of the actual steering vector, this suggests that for high
uncertainties, the remedy would be to obtain additional
information about the actual steering vector, for instance,
by estimating it, rather than to protect the array’s response
over a larger and larger ellipsoid.

Next, the influence of the loading level is studied in Figs. 3
and 4. In these figures, the loading matrix is still proportional
to the identity matrix and UR = —6 dB. Again, it can be seen
that the theoretical average SINR is very close to the practical
average SINR. In addition, it can be observed that, although LL
has an influence onto the final SINR, there exists a large range
of values for LL, which provide a similar performance.
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Fig. 5. Case 1—Output SINR versus SNR. m = 10,
N =200.Q x I.

UR = —6 dB, and

Output SINR
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— SINR -
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—_SINRgg -
7 0
+ SINRgey, P
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Signal to Noise Ratio (dB)

Fig. 6. Case 2—Output SINR versus SNR. m =
N =200.Q  I.

10, UR = —6 dB, and

In Figs. 5 and 6, we display the output SINR versus the (array)
SNR. In these figures, UR = —6 dB, and the loading matrix is
still proportional to the identity matrix. We fix the noise level
and the loading factor A is fixed and chosen to be 5 dB above
the noise level. The SNR is varied by varying the source power.
As can be observed, theoretical and empirical results are still in
very good agreement. The diagonally loaded beamformer has a
performance close to the MVDR for SNR s below 6 dB. How-
ever, it departs from it when SNR increases as A is fixed and,
thus, is no longer chosen optimally.

Finally, we study the influence of the shape of the loading
matrix, which is directly related to the form of the ellipsoid in
(3). Intuitively, since £{(a —a@)(a—a)?} = C,, it follows that
a can be written as @ = @+ C-/*u, where C./? is a square-root
of C,. This suggests that B should be related to 0(11/ % or, equiv-
alently, that @ o< C,. Indeed, under the assumption that a is

-—SINRp,
05 | & SINRyon 7
— SINRq 5
b |....SINRg_ca o
15F 1
2 . . . . . . . . .
20 -18 -6 -14 -12 -0 -8 -6 -4 -2 0
Uncertainty Ratio (dB)
Fig. 7. Case 2—Optimum SINR obtained with the robust beamformer versus

uncertainty level. m = 10, and SNR = 3 dB.

Optimum loading level
15 T T . . . . T T T

0
°
0 - -
_5 - B
10 , , . , . . , , ,
-20 -18 -16 -14 -12  -10 -8 -6 -4 -2 0
Uncertainty Ratio (dB)
Fig. 8. Case 2—Optimum loading level for the robust beamformer versus

uncertainty level. m = 10, and SNR = 3 dB.

Gaussian distributed, protecting those @ = a4+ C(l/ 2uis equiv-
alent to protecting the @, which have a given probability of ap-
pearance. Hence, we check whether this intuitive hypothesis re-
sults in a better performance than using diagonal loading only.
Toward this end, we consider the second case onvly. For each
value of UR, we consider both @ = Al and Q@ = A\C,, (note that
Tr{C,} = Tr{I}), and we look for the value of A that results in
the optimal average SINR in (20). We plot in Fig. 7 the obtained
optimum SINR and the corresponding loading level in Fig. 8.
Examination of these figures reveals two facts. First, as could
be expected, the optimum loading level depends on UR (and,
of course, on SNR, which is a well-known fact). However, the
optimum loading levels vary from one case to another. Second,
the performance obtained with @ o« C, is always inferior to
that obtained with @ o I. So, even if the steering vector co-
variance matrix is not a scaled identity matrix, it is questionable
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to use something other than diagonal loading. In other words,
the use of a flat ellipsoid may not be recommended. Note also,
as discussed in [10], that choosing @ o C|, implies that one
has a strong a priori on the shape of the errors, which is seldom
the case. Hence, robustness may be endangered if @ is chosen
as @ x C,, whereas the true covariance matrix of the steering
vector errors is not C,,. This provides an additional argument in
favor of diagonal loading.

V. CONCLUSIONS

In this paper, we analyzed the performance of a large class
of robust beamformers based on loading of the covariance ma-
trix. The analysis was carried out assuming that random steering
vector errors are present. A simple theoretical expression of the
output average SINR was derived, which was shown to closely
match the results obtained in simulations. Some important con-
clusions were drawn from this analysis. First, loading of the
covariance matrix enables us to maintain a performance close
to optimum, at least for small to moderate uncertainties. When
the uncertainty ratio is above some level (typically —5 dB), the
performance degrades, and one has to turn to other solutions,
including estimation of the steering vector. Second, even if the
covariance matrix of the steering vector errors is not diagonal,
there is no real advantage of using @ « C|, instead of @ x I,
hence, conventional diagonal loading, except maybe in some
“pathological” cases, turns out to be an effective solution.

APPENDIX
PROOF OF (13)

Let f(.) be a (possibly complex-valued) scalar function, and
leta € C™ be a complex-valued random vector with mean @.
Suppose we wish to calculate the average value of f(a)

£ {f(a)} = / f(a)p(a)da

where p(a) is the pdf of a. For notational convenience, let us
define @ = [a}, a?]” and @ = [a}, a; ], where the subscripts
r and  stand for the real and imaginary parts, respectively. Ac-
cordingly, let n = [aT a,H]T, n=~E{n}anda = a—a,
n =n—7n,and & = a — a. Throughout the Appendix, we
adopt the following convention for the derivatives with respect

to complex parameters:
0 .0
8aR ' 6(11 '

7] 1

da 2
Finally, as there cannot be any confusion, we use indifferently
f(a) or f(a). We wish to approximate (29) when the errors
are small. In this case, we can write the following Taylor series
expansion:

(29)

o Of] .~ lp O |
f(“)—f(a)‘i‘%laa‘i‘ia WEO“F"'
o m df| | Of | -
=f(a@) +a 8aa+ 9a¥ |
) 22 f ‘ 22
i da*dat z da*dal |- | ~
+ 2"7 0% 0% f n+ (30)
dadat a dadaT z
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Taking the expectation on both sides of the previous equation
and ignoring higher order terms, we get

£{f(a)}

1 ) aZafH ‘ d 8afT
~ @+ 5T ety | e T
dadall ‘E dada”l E
1 r. ¢ ? 223fH ‘ E 8af T
:f(a')+§Tr |:CT I-\H:| 9 f ‘a 82 f e
@ @ dadaHt [ 0adaT |—
2f a a
0
= f@)+Tr{Co —t
f(@)+ r{ dadat a}

1 02 f
T {I‘a da*daH E}

where T, 2 glaa’}, C, e £{aa} and where we used the
fact that ((92f/0a*9a™)|z)T = (0°f/0ada™)|g. When a is
circularly symmetric, (31) reduces to

J

v 0%f

+ T, dada™

a

(3D

92 f

" Pada” 42

£{f(a)} ~ f(@) + Tr{C
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