16,009 research outputs found

    A Machine Learning Based Analytical Framework for Semantic Annotation Requirements

    Full text link
    The Semantic Web is an extension of the current web in which information is given well-defined meaning. The perspective of Semantic Web is to promote the quality and intelligence of the current web by changing its contents into machine understandable form. Therefore, semantic level information is one of the cornerstones of the Semantic Web. The process of adding semantic metadata to web resources is called Semantic Annotation. There are many obstacles against the Semantic Annotation, such as multilinguality, scalability, and issues which are related to diversity and inconsistency in content of different web pages. Due to the wide range of domains and the dynamic environments that the Semantic Annotation systems must be performed on, the problem of automating annotation process is one of the significant challenges in this domain. To overcome this problem, different machine learning approaches such as supervised learning, unsupervised learning and more recent ones like, semi-supervised learning and active learning have been utilized. In this paper we present an inclusive layered classification of Semantic Annotation challenges and discuss the most important issues in this field. Also, we review and analyze machine learning applications for solving semantic annotation problems. For this goal, the article tries to closely study and categorize related researches for better understanding and to reach a framework that can map machine learning techniques into the Semantic Annotation challenges and requirements

    Argumentation Mining in User-Generated Web Discourse

    Full text link
    The goal of argumentation mining, an evolving research field in computational linguistics, is to design methods capable of analyzing people's argumentation. In this article, we go beyond the state of the art in several ways. (i) We deal with actual Web data and take up the challenges given by the variety of registers, multiple domains, and unrestricted noisy user-generated Web discourse. (ii) We bridge the gap between normative argumentation theories and argumentation phenomena encountered in actual data by adapting an argumentation model tested in an extensive annotation study. (iii) We create a new gold standard corpus (90k tokens in 340 documents) and experiment with several machine learning methods to identify argument components. We offer the data, source codes, and annotation guidelines to the community under free licenses. Our findings show that argumentation mining in user-generated Web discourse is a feasible but challenging task.Comment: Cite as: Habernal, I. & Gurevych, I. (2017). Argumentation Mining in User-Generated Web Discourse. Computational Linguistics 43(1), pp. 125-17

    Personalised trails and learner profiling within e-learning environments

    Get PDF
    This deliverable focuses on personalisation and personalised trails. We begin by introducing and defining the concepts of personalisation and personalised trails. Personalisation requires that a user profile be stored, and so we assess currently available standard profile schemas and discuss the requirements for a profile to support personalised learning. We then review techniques for providing personalisation and some systems that implement these techniques, and discuss some of the issues around evaluating personalisation systems. We look especially at the use of learning and cognitive styles to support personalised learning, and also consider personalisation in the field of mobile learning, which has a slightly different take on the subject, and in commercially available systems, where personalisation support is found to currently be only at quite a low level. We conclude with a summary of the lessons to be learned from our review of personalisation and personalised trails

    The RCSB Protein Data Bank: views of structural biology for basic and applied research and education.

    Get PDF
    The RCSB Protein Data Bank (RCSB PDB, http://www.rcsb.org) provides access to 3D structures of biological macromolecules and is one of the leading resources in biology and biomedicine worldwide. Our efforts over the past 2 years focused on enabling a deeper understanding of structural biology and providing new structural views of biology that support both basic and applied research and education. Herein, we describe recently introduced data annotations including integration with external biological resources, such as gene and drug databases, new visualization tools and improved support for the mobile web. We also describe access to data files, web services and open access software components to enable software developers to more effectively mine the PDB archive and related annotations. Our efforts are aimed at expanding the role of 3D structure in understanding biology and medicine

    A story environment for learning object annotation and collection : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Computer Science at Massey University, Palmerston North, New Zealand

    Get PDF
    With the increase in computer power, network bandwidth and availability, e-learning is used more and more widely. In practice e-learning can be applied in a variety of ways, such as providing electronic resources to support teaching and learning, developing computer based tutoring programs or building computer supported collaborative learning environments. Nowadays e-learning becomes significantly important because it can improve the quality of learning through using interactive computers, online communications and information systems in ways that other teaching methods cannot achieve. The important advantage of e-learning is that it offers learners a large amount of sharable and reusable learning resources. The current approaches such as Internet search and learning object repository does not effectively help users to search for appropriate learning objects. The original story concept introduces a new semantic layer between collections of learning objects and learning material. The basic idea of the story concept is to add an interpretative, semantically rich layer, informally called 'Story' between learning objects and learning material that links learning objects according to specific themes and subjects (Heinrich & Andres, 2003a). One motivation behind this approach is to put a more focused, semantic layer on top of untargeted metadata that are commonly used to describe a single learning object. Speaking from an e-learning context the stories build on learning objects and become information resources for learning material. The overall aim of this project was to design and build a story environment to realize the above story concept. The development of the story environment includes story metadata, story environment components, the story browsing and authoring processes, and tools involved in story browsing and authoring. The story concept suggests different types of metadata should be used in a story. This project developed those different metadata specifications to support story environment. Two prototypes of tools have been designed and implemented in this project to allow users to evaluate the story concept and story environment. The story browser helps story readers to read the story narrative and look at a story from different perspectives. The story authoring tool is used by the story authors to author a story. The future work of this project has been identified in the area of adding features of current tools, user testing and further implementation of the story environment

    A quick guide for student-driven community genome annotation

    Full text link
    High quality gene models are necessary to expand the molecular and genetic tools available for a target organism, but these are available for only a handful of model organisms that have undergone extensive curation and experimental validation over the course of many years. The majority of gene models present in biological databases today have been identified in draft genome assemblies using automated annotation pipelines that are frequently based on orthologs from distantly related model organisms. Manual curation is time consuming and often requires substantial expertise, but is instrumental in improving gene model structure and identification. Manual annotation may seem to be a daunting and cost-prohibitive task for small research communities but involving undergraduates in community genome annotation consortiums can be mutually beneficial for both education and improved genomic resources. We outline a workflow for efficient manual annotation driven by a team of primarily undergraduate annotators. This model can be scaled to large teams and includes quality control processes through incremental evaluation. Moreover, it gives students an opportunity to increase their understanding of genome biology and to participate in scientific research in collaboration with peers and senior researchers at multiple institutions

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    Semantic web technology to support learning about the semantic web

    Get PDF
    This paper describes ASPL, an Advanced Semantic Platform for Learning, designed using the Magpie framework with an aim to support students learning about the Semantic Web research area. We describe the evolution of ASPL and illustrate how we used the results from a formal evaluation of the initial system to re-design the user functionalities. The second version of ASPL semantically interprets the results provided by a non-semantic web mining tool and uses them to support various forms of semantics-assisted exploration, based on pedagogical strategies such as performing later reasoning steps and problem space filtering
    corecore